
XML Schema

Michael B. Spring
Department of Information Science and Telecommunications

University of Pittsburgh
spring@imap.pitt.edu

http://www.sis.pitt.edu/~spring

September 4, 2001 XML Schema 2

Overview

• Introduction
• Background
• Simplification
• References

• Defining a document model
• Namespaces
• Schema proper
• Datatypes

• Simple
• Complex

September 4, 2001 XML Schema 3

Background
• There is, as yet no clear and simple explanation of the

various “Schema” efforts. These include:
• Various Structural Schema to replace DTDs
• RDF Schema
• Datatypes
• Namespaces

• The RDF specification is about the clearest:
“RDF Schemas might be contrasted with XML Schemas … an
XML Schema gives specific constraints on the structure of an XML
document … an RDF Schema provides information about the
interpretation of the statements given in an RDF data model….RDF
uses XML for its interchange encoding … XML [datatypes] should
be the foundation”

September 4, 2001 XML Schema 4

Simplification
• The XML Schema efforts extend the SGML Document

Type Definition (DTD) functionality
• The DTD was designed as a means for defining the structural

properties of a class of documents.
• Schema provide an alternative form for defining a

documents structure. They also:
• Allow for more precise control of the content in a document –

via the datatype extensions
• Allow for more than one definition to be applied within a

document via the namespaces extension
• Allow for simplification of parsing engines by defining

schema in the form of XML documents

September 4, 2001 XML Schema 5

Definitions
• “Document instance” is a single document, in our case

made up of elements that are hierarchically nested and
encapsulated by begin and end tags.

• “Document Type Definition” is a description of a class
of document instances that can be used to validate a
given document.

• “Schema” is a description of a class of document
instances, and is itself a document instance, that can be
used to validate a given document.

• “Namespace” is a specification or schema. In the case
of a specification, the specification defines the
document class.

September 4, 2001 XML Schema 6

Complications

• Schema work has been complicated in that it is directed
at a number of different goals.

• It is further complicated by the fact that there have been
competing specifications
• The Document Content Description (DCD) effort was one

proposal by Textuality, Microsoft, and IBM
• http://www.w3.org/TR/NOTE-dcd

• Document Definition Markup Language (DDML) effort was
another proposal by the Europeans

• http://www.w3.org/TR/NOTE-ddml

• The current slides reflect the W3C specification

September 4, 2001 XML Schema 7

Selected References
• Microsoft developed an early specification for IE5.

• Many books reference these specifications and some systems such
as IE5 will probably continue to use them for a while

• This presentation looks to the W3C specification:
• The requirements for XML Schema were set out in:

• http://www.w3.org/TR/NOTE-xml-schema-req
• A primer on XML Schema may be found at:

• http://www.w3.org/TR/xmlschema-0/
• The structural schema specification may be found at:

• http://www.w3.org/TR/xmlschema-1/
• The datatype specification may be found at:

• http://www.w3.org/TR/xmlschema-2/
• The RDF specification may be found at:

• http://www.w3.org/TR/2000/CR-rdf-schema-20000327/

September 4, 2001 XML Schema 8

Review of XML Parsing

• What is happening when an XML parser is invoked can
be confusing.

• Parsers can be validating or non-validating. All parsers
check for to make sure XML documents are well
formed. This does not require a DTD or schema. The
document instance is simply checked to make sure it
follows the syntax rules

• Validation of a document requires that the document
instance have an associated DTD or schema against
which it can be checked.

September 4, 2001 XML Schema 9

Schema Benefits

• Schema are more powerful than DTDs in that
they:
• Allow for inheritance (namespaces)
• Allow modular construction
• Provide a mechanism to avoid name collisions

(namespaces)
• Allow content control (datatypes)
• Allow for more documentation in content

description (schema)
• Allow for simpler parsing (schema)

September 4, 2001 XML Schema 10

Namespaces
• Namespaces provide the mechanism by which:

• Element naming collisions can be avoided – defining a scope
for elements

• Element naming can be modularized
• Document definitions can employ multiple inheritance

• A namespace is a schema that defines a set of elements
• The attribute “xmlns” is reserved as the means by

which this association is made
• Namespaces are defined in:

http://www.w3.org/TR/REC-xml-names/

September 4, 2001 XML Schema 11

Namespace Association(1)
• A simple association between an element and a

namespace would appear as shown below:
<html xmlns="http://www.w3.org/TR/WD-HTML40">

• This says that the element “html”, and the allowable
subelements are defined by the named attribute. (In this
case, “WD-HTML40” is actually a specification and
not a schema)

• The namespaces are extensible and can be combined a
number of ways. As used above, the namespace applies
to all children or subelements of the element “html”

• If the namespace association is “unqualified”, as the
example above is, subelements of the element would
appear as in previous versions of XML

September 4, 2001 XML Schema 12

Namespace Association(2)
• Formally “xmlns” is the DefaultAttName.
• The namespace specification also allows for a

PrefixedAttName which is “xmlns” followed by a “:”
followed by an “NCName”.

• An NCName begins with a letter or underscore and that
has a few other restrictions in terms of allowed symbols
in the name.

• The NCName is used as a prefix for elements from that
namespace – including the one for which it is an
attribute:

<mbs:email xmlns:mbs="http://www.pitt.edu/~spring/m_schema.xsd">

September 4, 2001 XML Schema 13

Modularity, Inheritance and
Collision Avoidance

• Multiple namespaces may be associated with a given
element and its sub elements:
<html:html xmlns:html="href2"
xmlns:spring="href1" xmlns:math="href3">

• allows the children of html to include elements from all
of these namespaces
<html:head><<html:title>The title of the doc</html:head>
<html:body>
<math:equation>z=x+y </math:equation>
<spring:equation>some things are distinguished </spring:equation>
</html:body> </html:html>

• Note that there is no conflict between the “equation”
elements from the two namespaces

September 4, 2001 XML Schema 14

Scope of a Namespace
• Namespaces can also be scoped within a document
• Given a top level association, subelements may be

explicitly defined as belonging to another namespace:
<email xmlns="http://www.pitt.edu/~spring/m_schema.xsd">
<to>Joe</to>
<from>Mary</from>
<body>
<eq:eqn xmlns:eq ="http://www.pitt.edu/~spring/e_schema.xsd">
<eq:relation>some element</eq:relation></eq:eqn>
<h1>some text</h1>
</body></email>

September 4, 2001 XML Schema 15

Namespaces in Context
• Namespaces define both general schemas and XML

specific schemas such as:
• XML Link Language (XLL) capabilities
• XML Style Language (XSL) capabilities
• XSL Transformation (XSLT) capabilities
• XML Pointer capabilites

• Parsers are based on specifications which imply
specific schema. For example, XSLT parsers.
• IE5 accepts XML documents that begin:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">-->

• While James Clark’s XT accepts documents that begin:
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

September 4, 2001 XML Schema 16

A Simple Schema
• A schema is an XML document where the top level

element is “schema” and the associated namesapce is
that for XML schema. Thus:
<schema xmlns=http://www.w3.org/2001/XMLSchema>

<element name= “mynote”>
<complexType >

<sequence>
<element name = “To” type = “string”/>
<element name = “From” type = “string”/>
<element name = “Note” type = “string”/>

</sequence>
<attribute name = “Date” type = “date”/>

</complexType>
</element>

</schema>

September 4, 2001 XML Schema 17

The Schema Referenced
• Assuming the schema defined on the previous slide is

located in the current directory in the file mbsnote.xsd,
the following now allows validation:
<mynote xmlns = “mbsnote.xsd”

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="mbsnote.xsd

http://www.pitt.edu/~spring/mynote.xsd“
Date = “2001-05-27”>

<To>Jonathan</To>
<From>Patrick</From>
<Note>Here is a little message for you</Note>
</mynote>

September 4, 2001 XML Schema 18

A Schema using Type
• The “complexType” element defines structure.
• The schema namespace is qualified and the target and

default namespace are the same
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”

xmlns= “http://localhost/”
targetNamespace=" http://localhost/”>

<xsd: element name= “mynote” type = “mynotetype”/>
<xsd:complexType name= “mynotetype”>

<xsd:sequence>
<xsd:element name = “To” type = “xsd:string”/>
<xsd:element name = “From” type = “xsd:string”/>
<xsd:element name = “Note” type = “xsd:string”/>

</xsd:sequence>
<xsd:attribute name = “Date” type = “xsd:date”/>

</xsd:complexType>
</xsd:schema>

September 4, 2001 XML Schema 19

Just for clarity

• Note the reference to my node type if the target is
qualified and the schema namespace is not.
<schema xmlns=“http://www.w3.org/2001/XMLSchema”

xmlns:mn= “http://localhost/”
targetNamespace=" http://localhost/”>

<element name= “mynote” type = “mn:mynotetype”/>
<complexType name= “mynotetype”>

<sequence>
<element name = “To” type = “string”/>
<element name = “From” type = “string”/>
<element name = “Note” type = “string”/>

</sequence>
<attribute name = “Date” type = “date”/>

</complexType>
</schema>

September 4, 2001 XML Schema 20

A Schema with Occurrence(1)
<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema

xmlns= “http://localhosrt/”
targetNamespace=" http://localhos/”>

<xsd: element name= “mydoc” type = “mydoctype”/>
<xsd:complexType name= “mydoctype”>

<xsd:sequence>
<xsd:element name = “FrontMatter” type = “FMT”/>
<xsd:element name = “Body” type = “BODYT”/>
<xsd:element name = “EndMatter” type = “EMT”/>

</xsd:sequence>
<xsd:attribute name = “Editor” type = “xsd:string”/>
<xsd:attribute name = “Status” type = “xsd:string”/>
<xsd:attribute name = “ISBN” type = “xsd:string”/>

</xsd:complexType>

September 4, 2001 XML Schema 21

A Schema with Occurrence(2)
<xsd:complexType name= “FMT”>

<xsd:sequence>
<xsd:element name = “Title” type = “xsd:string”/>
<xsd:element name = “Author” type = “xsd:string”

maxOccurs=“unbounded”/>
<xsd:element name = “Pubdate” type = “xsd:string”/>
<xsd:element name = “Acknowledge” type = “xsd:string”

minOccurs=“0”/>
<xsd:element name = “Dedication” type = “xsd:string”

minOccurs=“0”/>
<xsd:element name = “Preface” type = “xsd:string”

minOccurs=“0”/>
</xsd:sequence>

</xsd:complexType>

September 4, 2001 XML Schema 22

A Schema with Occurrence(3)
<xsd:complexType name= “BODYT”>

<xsd:choice>
<xsd:element name = “Part” type = “PARTT”

minOccurs=“1” maxOccurs=“10”/>
<xsd:element name = “Chapter” type = “CHAPTERT”

minOccurs=“1” maxOccurs=“unbounded”/>
</xsd:choice>

</xsd:complexType>

<xsd:complexType name= “PARTT”>
<xsd:element name = “Chapter” type = “CHAPTERT”

minOccurs=“1” maxOccurs=“unbounded”/>
</xsd:complexType>

….
</xsd:schema>

September 4, 2001 XML Schema 23

Choices, Sequences, and Sets
• The example above shows how minOccurs and

maxOccurs can be used to control the elements in an
instance

• Sequence and choice elements can also be used and
nested in a variety of ways.

• Schema also allows, with some restrictions, and “all”
element that says all the elements named must appear,
but they may appear in any order. The restrictions are:
• It must occur at the top level of the schema
• The occurrence indicators can only be “0” or “1”
• The all group may not be nested in a sequence or choice

September 4, 2001 XML Schema 24

Global Declarations & References
• Normally, the form for a schema is:

• Schema
• ElementTop (referencing TypeX)
• TypeX (defining subelements of ElementTop)

• Other elements can be defined at the top level:
• Schema

• ElementTop (referencing TypeX)
• ElementA
• TypeX

– ElementC (referencing ElementA)

• Global elements must be typed. They may not use
minOccurs, maxOccurs or the “ref” attributes.

September 4, 2001 XML Schema 25

Example of a Global Element and
Reference

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns= “http://localhost/”
targetNamespace=" http://localhost/”>

<xsd:element name= “mydoc” type = “mydoctype”/>
<xsd:element name = “comment” type = “xsd:string”/>
<xsd:complexType name= “mydoctype”>

<xsd:sequence>
<xsd:element ref=“comment” minOccurs=“0”/>
<xsd:element name = “FrontMatter” type = “FMT”/>
<xsd:element name = “Body” type =“BODYT”/>
<xsd:element name = “EndMatter” type = “EMT”/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

September 4, 2001 XML Schema 26

Anonymous Types(1)

• In our first example, we used “anonymous
types”
<element name= “mynote”>

<complexType >
<sequence>

<element name = “To” type = “string”/>
<element name = “From” type = “string”/>
<element name = “Note” type = “string”/>

</sequence>
<attribute name = “Date” type = “date”/>

</complexType>
</element>

September 4, 2001 XML Schema 27

Anonymous Types(2)
• Note that simple types may not have attributes.
• To create a “simple type”* that allows attributes,

derive it from a simple type by extension.
<element name= “myinteger”>

<complexType >
<simpleContent>

<extension base = “integer”>
<attribute name = “coin” type = “string”/>

</extension>
</simpleContent>

</complexType>
</element>

• This now allows:
<myinteger coin = “dime”>27</myinteger>

* The derived type is by definition complex.

September 4, 2001 XML Schema 28

Mixed Content Models
• To this point, all elements have been made up of:

• elements only
• data only

• An element that contains both is said to have a mixed
content model.

• Schema allow mixed content via a complex type.
• Unlike XML 1.0 which allowed subelements and data

to be randomly intermingled, the schema specification
says the order of the subelements must be as specified
by the complex type. An example is shown on the next
slide

September 4, 2001 XML Schema 29

Mixed Content Declaration
<xsd:element name = “example”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name = “Title” type = string/>
<xsd:element name = “Explan”>

<xsd:complexType mixed=“true”>
<xsd:sequence>

<xsd:element name = “emph” type = “xsd:string”/>
<xsd:element name = “warning” type = “xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:attribute name = “Num” type = “xsd:integer”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

September 4, 2001 XML Schema 30

Mixed Content Example

• Given the declaration on the previous slide, the
following instance is now valid:

<example Num = “23”>
<Title>Here is another example</Title>
<Explan>
Here is some <emph> mixed content</emph> and a
<warning>caution about being careful when using
and declaring these.</warning>
</Explan>
</example>

September 4, 2001 XML Schema 31

Compound Schema(1)

• A schema may include references to other schema
<element name= “mynote”>

<complexType >
<sequence>

<element name = “to” type=“string”/>
<element name = “from” type=“string”/>
<element name = “htmlbody”>

<complexType >
<sequence>

<any namespace =http://www.w3.org/1999/xhtml
minOccurs=“1” maxOccurs=“unbounded”
processingContents=“skip”/>

</sequence>
</complexType>

</element>
</sequence>

<attribute name = “Date” type = “date”/>
</complexType>

</element>

September 4, 2001 XML Schema 32

Compound Schema(2)

• A schema may also explicitly include other
schema using the include element
<schema xmlns=“http://www.w3.org/2001/XMLSchema”

xmlns:mn= “http://localhost/”
targetNamespace=" http://localhost/”>

<include schemaLocation=
http://someloaction/schemas/definitions.xsd/>

<element name= “mynote” type = “mn:mynotetype”/>
……..

</schema>

September 4, 2001 XML Schema 33

The Schema Annotation Element

• The schema provides for an annotation element that
allows human consumable and machine consumable
information to be provided:
<schema xmlns=“http://www.w3.org/2001/XMLSchema”

xmlns:mn= “http://localhost/”
targetNamespace=" http://localhost/”>

<annotation>
<documentation>This belongs to me</documentation>
<appinfo>here is some processing instruction</appinfo>
</annotation>

……..
</schema>

September 4, 2001 XML Schema 34

Content Data Control under DTD’s
• XML (SGML) was designed to structure content and

excluded control of data apart from syntax checking.
An element could be checked for other structures, but
the structure of the text could not be controlled.

• Element content was defined as:
• #PCDATA –text searched for elements & entities
• #RDATA – text searched for entities but not elements
• #CDATA – text not searched
• #NDATA – non-character data

September 4, 2001 XML Schema 35

Attribute Value Control under
DTDs

• Attribute values could be somewhat more finely
controlled, most notably as enumerated values,
but the control was still generally limited to
very broad classes

• Some of the built in datatypes for XML for
attributes included
• ID
• IDREF
• NMTOKEN
• NOTATION

September 4, 2001 XML Schema 36

DataTypes under Schema
• If XML was to be used for e-commerce, and as a

wrapper for data interchange, more control was needed
• XML schema are designed to allow detailed control of

element content and attribute values.
• All of the DTD controls (PCDATA , RDATA, and

CDATA are replaced with the string type
• Schemas have a total of 44 built in primitive(19) and

derived(25) data types versus the 10 under DTD’s
(most of which were for attribute values

• Schemas also provide powerful tools for defining
additional user defined derived data types

September 4, 2001 XML Schema 37

PrimitiveDataTypes
• String “Hello”
• Boolean {true, false}
• Decimal 9.4
• Float 13.78E1
• double 13.78E1
• duration P2Y2M4Detc
• dateTime CCYY-MM-

DDhh-mm-ss
• Time hh:mm:ss.sss
• Date CCYY-MM-DD

• gYearMonth CCYY-MM
• gYear CCYY
• gMonthDay MM-DD
• gDay DD
• gMonth MM
• hexBinary 00A8
• base64Binary dPm6
• anyURI http://xyz.com
• Qname a qualified namespace

name
• NOTATION a NOTATION

from XML

September 4, 2001 XML Schema 38

Derived DataTypes
• normalizedString A string with tabs, line feeds, and carriage returns converted to spaces

• Token A normalized string with consecutive spaces reduced to one
• Language one of the established language codes
• IDREFS Attributes only, same as previously defined
• ENTITIES Attributes only, same as previously defined
• NMTOKEN Attributes only, same as previously defined
• NMTOKENS Attributes only, same as previously defined
• Name an XMl name
• NCName a namespace name
• ID Attributes only, same as previously defined
• IDREF Attributes only, same as previously defined
• ENTITY Attributes only, same as previously defined

September 4, 2001 XML Schema 39

Derived DataTypes
• Integer decimal with no fractional part
• nonPositiveInteger 0 to negative infinity
• negativeInteger –1 to negative infinit
• Long the integers from–9223372036854775808 to 9223372036854775807
• int the integers from–2147483648 to 2147483647
• Short the integers from -32768 to 32767
• Byte the integers from –128 to 127
• nonNegativeInteger integers greater than or equal to 0
• unsignedLong non negative integer less than 18446744073709551615
• unsignedInt unsignedLong less than 4294967295
• unsignedShort unsignedInt less than 65535
• unsignedByte unsignedShort less than 255
• positiveInteger nonNegativeInteger gretaer than or equal to 1

September 4, 2001 XML Schema 40

User Derived Data Types
• While the built-in types, both primitive and derived

provide a significant increase in data control, schema
allow further refinement by defining various
restrictions.

• Restrictions are placed on facets which vary for the
various datatypes.

• In addition, the derived types may be defined as lists,
unions, or atomic constructions.

• Additional information about the datatype and its
ability to be further extended or refined may also be
included.

September 4, 2001 XML Schema 41

Constraining Facets

• Examples of Constraining facets for a couple primitive
types would include the following:

totalDigits, fractionDigits, pattern, whiteSpace,
enumeration, maxInclusive, maxExclusive,
minInclusive, minExclusive

decimal

pattern, whiteSpaceboolean

length, minLength, maxLength, pattern,
enumeration, whiteSpace

string
FacetsType

September 4, 2001 XML Schema 42

DataType Restrictions
• Simple datatype restricted by range

<element name = "pubyear">
<simpleType>

<restriction base = “positiveinteger">
<minInclusive>1000</minInclusive>
<maxInclusive>3000</maxInclusive>

</restriction>
</simpleType>

</element>
• Simple datatype restricted by enumeration

<element name = “status">
<simpleType>

<restriction base = “string">
<enumeration value = “draft”>
<enumeration value = “final”>

</restriction>
</simpleType>

</element>

September 4, 2001 XML Schema 43

DataType Restrictions

• Named datatype restricted by length and pattern
<xsd:simpleType name="TelephoneNumber">

<xsd:restriction base="xsd:string">
<xsd:length value="8"/>
<xsd:pattern value="\d{3}-\d{4}"/>

</xsd:restriction>
</xsd:simpleType>

September 4, 2001 XML Schema 44

The Schema in Overview
• The schema element serves as a logical container for:

• type definitions: A set of named simple and complex type
definitions.

• attribute declarations: A set of named (top-level) attribute
declarations.

• element declarations: A set of named (top-level) element
declarations.

• attribute group definitions: A set of named attribute group
definitions.

• model group definitions: A set of named model group
definitions.

• notation declarations: A set of notation declarations.
• annotations: A set of annotations.

