
1

XPath and XSLT

Michael B. Spring
Department of Information Science and Telecommunications

University of Pittsburgh
spring@imap .pitt.edu

http://www.sis.pitt.edu/~spring

September 4, 2001 XML Processing 2

Overview

• Context
• The Basics of XPath

• Nodes
• Axes
• Expressions

• XPath and XSLT
• Stylesheet templates
• Transformations

September 4, 2001 XML Processing 3

Context
• An XML document is a directed graph or a tree.
• The XPath language allows a set of nodes of this tree to

be identified
• XPath allows for a number of special manipulations of the

tree – these are called axes
• XPath allows for a number of Node tests

• XPath is used by many other tools, but most notably
by:
• XSLT which is used to transform an XML document into

another form
• XPointer which is used in turn by XLink to identify a

particular location within a document based on the tree
structure.

2

September 4, 2001 XML Processing 4

XPath
• XPath views a document as a tree of nodes, using the

Document Object Model (DOM).
• The topmost part of the DOM tree is the root node

• The root of the DOM is not the same as the document root
element, but it contains the document root element which is
abbreviated here as the document element.

• Nodes are of different types
• Nodes of different types (e.g. element versus attribute) have

logical restrictions on the children they may have.
• For example, children of the root node may include

comments, elements, and PI.
• XPath provides a variety of mechanisms that allows

sets of nodes to be identified.

September 4, 2001 XML Processing 5

XPath View of a Document
root

BackFront

Processing InstructionDocumentComment

ChapterChapterChapter

BodyAttribute Namespace

Text

DOM root

Document root

September 4, 2001 XML Processing 6

XPath Terminology
Nodes

• Nodes are the atomic entities in an XPath.
• Nodes may be of the following types:

• Root
• Element
• Attribute
• Text
• Comment
• Processing Instruction
• Namespace

• Each type of node allows for specific children
• The currently “selected” node in an XPath is the

context node.

3

September 4, 2001 XML Processing 7

XPath Terminology
Axes

• Axes represent the direction in which search of an
XPath proceeds from the context node.

• There are thirteen Axes in XPath, with about five (*)
that are used frequently:
• self*
• parent*, ancestor, ancestor-or-self
• child*, descendant, descendant-or-self*
• following, preceding
• following-sibling, preceding sibling
• attribute*
• namespace

September 4, 2001 XML Processing 8

XPath Terminology:
Abbreviated Axes Names

• A document tree can be navigated using axes, but
describing nodes using “descendant-or-self can be
tedious. The more common axes have abbreviated
terminology
• the descendent-or-self axis is abbreviated as “//”

• “//footnotes” would find footnotes anywhere in the tree
• the parent axis is abbreviated “..”. “..” is the parent of the

context node.
• “//footnotes/..” would find the the parents of all footnotes

• the attribute axis is abbrevated as @
• The self node – the context node is abbreviated “.”

September 4, 2001 XML Processing 9

XPath Expression
• an instance of an XPath is called an expression, or a

location path
• A location path is a sequence of location steps – each

step separated from the next by a “/”
• A location step is an axis specification followed by an

optional node test (separated by “::”) followed by a
predicate (enclosed in “[]”)

• when a system processes an expression, it builds a node
set
• The node set may then be processed by the application

4

September 4, 2001 XML Processing 10

Node Tests and Functions
• There are a variety of node tests including:

• node() – selects all nodes
• text() – selects text nodes
• comment() -- selects comment nodes
• processing-instructions() – selects all processing instructions

• There are a variety of node set functions including
• last() returns the last node of a set
• count() returns the number of nodes in a set
• id(string) returns the element node whose id matches string

September 4, 2001 XML Processing 11

XPath Operators

• All of the operators, except one have already
been seen:the simplest predicates test context
• “/” is the XPath separator operator
• “//” is the XPath abbreviation operator for all

descendant children
• “|” is the union operator which allows two sets of

nodes to be combined

September 4, 2001 XML Processing 12

XPath Predicates
• Predicates are used to test given node sets and are

enclosed in “[]”s
• /chap/para[7] selects the seventh para of the chap element

which must be the document element
• //chap/para[last()] selects the last para of all chap elements
• //para[footnote] selects para's that have footnotes
• //para[footnote][@status] selects para'sthat have footnotes

and and attribute called “status”
• //chap[title = 'Introduction'] selects chapter(s) that have a title

subelement whose value is “Introduction”
• //chap/para[@type='ordered'] selects all paras of all chaps that

have an attribute called type with a value of “ordered”

5

September 4, 2001 XML Processing 13

Gathering a Node Set
• Path expressions may be relative or absolute

• Keep in mind that in many applications using XPath, there
will be a location in the tree – a context node, from which the
path begins

• An absolute expression begins from the root node
• “/book/front/author” identifies all the author nodes of the front

element of the book element of the root node, if any
• A relative expression begins from the context node

• “front/author” identifies all of the author nodes of the front
element of the current node, if any

September 4, 2001 XML Processing 14

Examples
• /Doc/Body/Chap

• would select the Chap nodes in all the Body nodes of the Doc
node which is THE Document element under the DOM root
node. This could be written more formally as:
“/child::Doc/child::Body/Chap”

• Chap//footnote
• Would select all the footnote elements in all elements that are

in the Chap elements of the current node
• //footnote/..

• Would select the parent elements of all footnote elements
anywhere in a document. This could be written more formally
as:/descendant-or-self::node()/child::footnote/parent::node()

September 4, 2001 XML Processing 15

More Examples
• /doc/(front | back)//text()

• would select all of the text nodes in the front and back
elements of the doc element which is the document root

• //comment()
• Would select all comment nodes

• /book/chapter[1]/section[1]/para[3]
• Would select the third para of the first section of the first

chapter of the book element. More formally
/child::book/child::chapter[position()=1]/child::section[positio
n()==1/para[position()=3]

6

September 4, 2001 XML Processing 16

Still More Examples
• And finally, two last examples:
• .//footnote/../title

• Would select all of the title nodes that were children of all of
the nodes that were parents of the footnote nodes that were
descendants of the current node. More formally
self::node()/self -
descendant::footnote/parent::node()/child::title

• //chapter/section[position()=1 and position()=last()/title
• Would select all of the title nodes of the first and last sections

of all of the chapter nodes anywhere in the tree.

September 4, 2001 XML Processing 17

The Uses of XPath
• Why all this functionality?

• The basic answer is that XPath is the foundation on which all
tree manipulation is done.

• The most fundamental tree manipulator is XSLT. It is
used to select and filter sets of nodes from an input
document creating an output document.
• XSLT is a very complex standard, and we will only overview

it here.
• XSLT is also used in conjunction with formatting objects

which are described separately
• XPointer and XLink also use XPath and are described

separately.

September 4, 2001 XML Processing 18

XSLT
• XSLT defines a class of applications that provide for

the transformation of documents using XPath
• While XSLT is a part of the “XSL” standard, and can

be used to “style” documents, it is different enough that
it is dealt with separately

• We can match, filter, and select nodes in sets that are
returned by XPath

• XSLT has many function. Two main functions are:
• As a tool to convert XML documents to html documents
• As a tool to convert a base XML document to multiple forms

7

September 4, 2001 XML Processing 19

How XSLT is Used
• XSLT is used to transform documents. It accomplishes

this by attaching a “style sheet” to the document.
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="my.xsl"?>

• The style sheet is an XML document whose elements
are come from the xslnamespace.

<xsl:stylesheet xmlns:xsl=http://www.w3.org/Transform/1.0>
…. templates…
</xsl:stylesheet>

• The templates define how given elements are
transformed

September 4, 2001 XML Processing 20

XSLT Processors
• Formally, a style sheet should begin to convert XML to

HTML should begin:
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl=http://www.w3.org/Transform/1.0

xmlns:html=http://www.w3.org/TR/REC-html40

• Each processor, non of which is yet fully conforming
requires a different start:
• IE5 accepts XML documents that begin:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

• While James Clark’s XT accepts documents that begin:
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform

September 4, 2001 XML Processing 21

XSLT Elements Overview
• Stylesheet structuring

• <xsl:stylesheet>
• <xsl:include>
• <xsl:import>

• Template structuring
• <xsl:template>
• <xsl:apply-template>
• <xsl:call-template>

• Conditional processing
• <xsl:if>
• <xsl:choose>
• <xsl:when>
• <xsl:otherwise>
• <xsl:for-each>

• Generating output
• <xsl:value-of>
• <xsl:element>
• <xsl:attribute>
• <xsl:comment>
• <xsl:processing-instruction>
• <xsl:text>

• Variables and parameters
• <xsl:variable>
• <xsl:param>
• <xsl:with-param>

• Sorting and numbering
• <xsl:sort>
• <xsl:number>

8

September 4, 2001 XML Processing 22

XSLT Elements, Simplified
• A basic XSLT style sheet consists of:

• The main element -- <xsl:stylesheet >
• Transformation elements -- <xsl:template>

– Access elements -- <xsl:value-of>
– Further processing -- <xsl:apply-templates>
– Loops -- <xsl:for-each>
– Sorting -- <xsl:sort>
– Testing -- <xsl:if>
– Numbering -- <xsl:number>

• Other high level elements for dealing with whitespace and
combining stylesheets

• Each of the transformation elements uses XPath in
some form to do its work

September 4, 2001 XML Processing 23

The Basic Idea
• An input tree is processed recursively through the use of

templates.
• Each template, starting with the root element is processed

producing a set of nodes.
• The internal instructions in the template describe how the set is

processed by other templates in the stylesheet.
• Ideally, there is a template for each element of the input document

that takes the text and wraps it with the appropriate tags for the
output document

• Keep in mind that for template processing, only element, text,
comment and processing instruction nodes are processed.
Attribute and namespace nodes are not passed on

September 4, 2001 XML Processing 24

A Simple Example
• An XML document “programs” is made up of multiplesubelements (foo

and bar.)
• The style sheet that has two templates as follows:

<xsl:template match=“/program">
<ProgramListing>
<xsl:apply-templates />
</ProgramListing>

/xsl:template>
<xsl:template match=“foo">

<Module>
<xsl:value-of select = “.” />
</Module>

</xsl:template>
• This style sheet processes the “program” element outputting new tags

and calling apply-templates. The processor finds foo and bar elements.
Because there is no template for “bar”, these elements are ignored.
“ foos” are output as “Modules”

9

September 4, 2001 XML Processing 25

Anatomy of a Template
• Within a template, the simplest set of rules would be

something along the following lines:
literal text to be output
<xsl:value-of select=“ ."/>
<xsl:apply-templates />
literal text to be output

• If we were converting a “book” to “html”, we might
use something like this at the top level

<xsl :template match = “/book”>
<HTML><HEAD>
<TITLE><xsl :value-of select=“title/text()”/></TITLE>
</HEAD><BODY>
<H1><xsl :value-of select=“title/text()”/></H1>
<xsl :apply-templates />
</BODY></HTML>
</xsl :template>

September 4, 2001 XML Processing 26

Changing Order
• Imagine a book that has a front, middle, and end. The

following template would reverse the order of these
parts in the output:

<xsl:template match = “/book”>
<xsl:apply-templates select = “end”/>
<xsl:apply-templates select = “middle”/>
<xsl:apply-templates select = “front”/>
</xsl:template>

• Of course, templates would be needed to handle the
nodes generated by each of these selects

September 4, 2001 XML Processing 27

Conditional Processing
• A template can do conditional processing.
• Consider a “program” made up of “modules” made up

of “lines” of code.
• One way to mark the beginning and end of the modules

would be in the module template. But the line template
could also handle the task:

<xsl:template match = “line”>
<xsl:if test=“position()=first()">
/* Start of Module */
</xsl:if>
<xsl:value-of select = “.”/>
<xsl:if test=“position()=last()">
/* End of Module */
</xsl:if>
</xsl:template>

10

September 4, 2001 XML Processing 28

For-each
• Normally, a template would hand off processing of

subelements to other templates. But if might be
logically more clear to work within a template.
Consider a pricelist, in which has a series of items each
of which has an number, description, and price. We
want to build a table which is easier to see in a single
template.

• The second example shows how the same for-each
might make use of a sort on the price of the items.

September 4, 2001 XML Processing 29

Example of a for-each
<xsl:template match=“pricelist">
<table>
<xsl:for-each select=“item"/>
<tr>
<td><xsl:value-of select=“./number”></td>
<td><xsl:value-of select=“./description”></td>
<td><xsl:value-of select=“./price”></td>
</tr>
</xsl:for-each>
</table>
</xsl:template>

September 4, 2001 XML Processing 30

Example of a for-each with a sort
<xsl:template match=“pricelist">
<table>
<xsl:for -each select=“item"/>
<xsl: sort select =“./price”>
<tr>
<td><xsl:value-of select=“./number”></td>
<td><xsl:value-of select=“./description”></td>
<td><xsl:value-of select=“./price”></td>
</tr>
</xsl:for -each>
</table>
</xsl:template>

11

September 4, 2001 XML Processing 31

Numbering
• Within a template, xsl:number may be used to number

items
<xsl:template match=“/program">

<ProgramListing>
<xsl:apply-templates />
</ProgramListing>

/xsl:template>
<xsl:template match=“foo">

<Module>
<xsl:number expr=“position()”/>
<xsl:value-of match = “.” />
</Module>

</xsl:template>

• Number allows very complex manipulations within one
level, across levels, or based on a hierarchy

September 4, 2001 XML Processing 32

Explicit Elements, Attributes, etc.
• Within a template, xsl:element, xsl:attribute, and other

explicit copymarking schemes may be used to convert
elements in the input document to attributes in the
output document and the reverse.

<xsl:template match=“pricelist">
<xsl:for -each select=“item"/>
<item>
<xsl:attribute name = “num”><xsl:value-of select=“./number”></xsl:attribute>
<xsl:attribute name = “desc ”><xsl:value-of select=“./description”></xsl:attribute>
<xsl:attribute name = “price”><xsl:value-of select=“./price”></xsl:attribute>
<xsl:value-of select=“.”>
</item>
</xsl:for -each>
</xsl:template>

