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ABSTRACT

High-level semantic vulnerabilities such as SQL injection and cross-
site scripting have surpassed buffer overflows as the most prevalent
security exploits. The breadth and diversity of software vulnera-
bilities demand new security solutions that combine the speed and
practicality of hardware approaches with the flexibility and robust-
ness of software systems.

This paper proposes Raksha, an architecture for software se-
curity based on dynamic information flow tracking (DIFT). Rak-
sha provides three novel features that allow for a flexible hard-
ware/software approach to security. First, it supports flexible and
programmable security policies that enable software to direct hard-
ware analysis towards a wide range of high-level and low-level at-
tacks. Second, it supports multiple active security policies that can
protect the system against concurrent attacks. Third, it supports
low-overhead security handlers that allow software to correct, com-
plement, or extend the hardware-based analysis without the over-
head associated with operating system traps.

We present an FPGA prototype for Raksha that provides a full-
featured Linux workstation for security analysis. Using unmodi-
fied binaries for real-world applications, we demonstrate that Rak-
sha can detect high-level attacks such as directory traversal, com-
mand injection, SQL injection, and cross-site scripting as well as
low-level attacks such as buffer overflows. We also show that low-
overhead exception handling is critical for analyses such as mem-
ory corruption protection in order to address false positives that
occur due to the diverse code patterns in frequently used software.

Categories and Subject Descriptors: C.0 [General]: Hardware-
Software Interfaces; D.4.6 [Operating Systems:] Security & Pro-
tection — Information Flow Controls

General Terms: Security, Design, Experimentation, Performance

Keywords: Software security, Semantic Vulnerabilities, Dynamic
information flow tracking, Processor architecture

1. INTRODUCTION

It is widely recognized that computer security is a critical prob-
lem with far-reaching financial and social implications [19]. De-
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spite significant development efforts, existing security tools do not
provide reliable protection against an ever-increasing set of attacks,
worms, and viruses that target vulnerabilities in deployed software.
Apart from memory corruption bugs such as buffer overflows, at-
tackers are now focusing on high-level exploits such as SQL injec-
tion, command injection, cross-site scripting and directory traver-
sals [11, 26]. Worms that target multiple vulnerabilities in an or-
chestrated manner are also increasingly common [1, 26].

The root of the problem is that existing approaches do not ex-
hibit many of the desired characteristics for security techniques:
robust: they should provide defense against vulnerabilities with
few false positives or false negatives; flexible: they should adapt
to cover evolving threats; end-to-end: they should be applicable to
user programs, libraries, and even the operating system; practical:
they should work with real-world code and software models (ex-
isting binaries, dynamically generated, or extensible code) without
specific assumptions about compilers or libraries; and finally fast:
they should have small impact on application performance.

Recent research has established dynamic information flow track-
ing (DIFT) [9, 17] as a promising platform for detecting a wide
range of security attacks. The idea behind DIFT is to tag (taint)
untrusted data and track its propagation through the system. DIFT
associates a tag with every word of memory in the system. Any
new data derived from untrusted data is also tagged. If tainted data
is used in a potentially unsafe manner, such as executing a tagged
SQL command or dereferencing a tagged pointer, a security excep-
tion is raised.

The generality of the DIFT model has led to the development of
several software [4, 14, 5, 28, 13, 18, 15, 21] and hardware [24,
6, 2] implementations. Nevertheless, current DIFT systems do not
exhibit all of the characteristics listed above. Software DIFT is flex-
ible, as it can enforce arbitrary policies and adapt to different types
of exploits. However, DIFT through runtime binary instrumenta-
tion leads to slowdowns ranging from 3x to 37x [21, 14]. Some
software systems require access to the source code [28], while oth-
ers do not work safely with multithreaded programs [21].

Hardware DIFT systems address several performance and prac-
ticality issues by performing tag propagation and checks transpar-
ently as a program executes. However, such systems use a sin-
gle hardcoded security policy that targets memory corruption at-
tacks. Hence, they cannot address high-level semantic vulnerabil-
ities, such as SQL injection, which tend to be architecture, lan-
guage, and OS-independent. Moreover, hardware DIFT systems
cannot cope with binaries that violate their basic assumptions about
safe/unsafe uses, or defend against attacks that evade their taint
tracking rules [8]. Finally, no existing DIFT system can protect
the OS code.



This paper presents Raksha', a flexible architecture for software
security using information flow tracking. Raksha provides a frame-
work that combines the best of both hardware and software DIFT.
Hardware support provides transparent, fine-grain management of
security tags at low performance overhead for user code, OS code,
and data that crosses multiple processes. Software provides the
flexibility and robustness necessary to deal with a wide range of
attacks.

Raksha introduces the following features at the architecture level.
First, it provides a flexible and programmable mechanism for spec-
ifying security policies. The flexibility is necessary to target high-
level attacks such as cross-site scripting, and to avoid the trade-
offs between false positives and false negatives due to the diversity
of code patterns observed in commonly used software. Second,
Raksha enables security exceptions that run at the same privilege
level and address space as the protected program. This allows the
integration of the hardware security mechanisms with additional
software analyses, without incurring the performance overhead of
switching to the operating system. It also makes DIFT applicable to
the OS code. Finally, Raksha supports multiple concurrently active
security policies. This allows for protection against a wide range of
attacks.

In addition to defining the Raksha architecture, we have devel-
oped a prototype system by modifying an open-source SPARC pro-
cessor and mapping the design onto an FPGA board. We have also
modified the Linux operating system to manage Raksha’s security
features. The resulting system is a full-featured Linux workstation
that can apply security policies to all memory regions (text, heap,
stack) for all types of software code (dynamically generated code,
self-modifying code, shared libraries, OS, and device drivers). The
security framework is extensible through software, can track infor-
mation flow across address spaces, and can thwart attacks employ-
ing multiple processes.

The specific contributions of this work are:

e We present the architecture and implementation of Raksha,
an information flow tracking architecture for software secu-
rity. Specifically, we discuss hardware support for multiple,
programmable security policies and low-overhead security
exceptions.

Using a full-system prototype, we demonstrate that Raksha
facilitates the integration of hardware and software security
techniques that protect real-world software from a wide range
of attacks. We show that Raksha is the first DIFT architecture
to protect unmodified binaries from high-level attacks such
as command injection, SQL injection, and cross-site script-
ing. It also provides protection against memory corruption
exploits. We also show that Raksha’s performance overhead
is low even when coupled with intensive software analysis
techniques.

We discuss the lessons learned from applying DIFT to real-
world applications in a full-system environment. Specifi-
cally, we present previously unknown false positive corner
cases for both high-level and memory corruption attacks and
provide mitigation strategies and directions for future research.

Overall, we show that Raksha can be the substrate for security
frameworks that are robust, flexible, end-to-end, practical, and fast.
The remainder of the paper is organized as follows. Section 2 re-
views related work on information flow tracking. Section 3 presents
the security and performance challenges that motivated this work.

'Raksha means protection in Sanskrit.
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Section 4 presents the Raksha architecture and Section 5 describes
our full-system prototype. Section 6 evaluates Raksha’s security
features, while Section 7 measures performance overhead. Finally,
Section 8 concludes the paper.

2. DYNAMIC INFORMATION FLOW
TRACKING

Security covers many topics including data encryption, content
protection, and network trustworthiness [19]. This work focuses
on detecting malicious attacks on deployed software using dynamic
information flow tracking.

DIFT associates a tag with every memory word. The tag is used
to taint data from untrusted sources. Most operations propagate
tags from source operands to destination operands. If tagged data
is used in unsafe ways, such as dereferencing a tagged pointer or
executing a tagged SQL command, a security exception is raised.
An important issue for DIFT-based attack detection is identifying
when a tainted operand can be safely accessed without raising an
exception. Depending on the type of analysis, input validation may
be performed directly by the DIFT system or may be inferred from
application behavior. In any case, the system must manage the fol-
lowing tradeoff: conservative tag clearing can lead to frequent false
positive exceptions (incorrect program termination or low perfor-
mance), while overly liberal tag clearing can lead to false negatives
(low security).

2.1 Software-based DIFT

DIFT can be implemented by instrumenting programs at the source
code level [28]. Compile-time optimizations such as on-demand
allocation of tags and elimination of tagging for most local vari-
ables can significantly reduce the space and runtime overhead. Still,
CPU-intensive code may slow down by 80% with memory corrup-
tion protection [28]. More importantly, this approach cannot track
information flow through third party programs, binary libraries, and
system calls available only in binary form. It also cannot handle in-
line assembly, dynamically generated code, self-modifying code, or
programs written in multiple languages. Multithreaded code can-
not be supported due to the potential race conditions between tag
and data updates.

DIFT can be also be implemented through dynamic binary in-
strumentation of unmodified binaries [14, 21]. This technique is
applicable to all user executables and library binaries. Software op-
timizations such as merging checks within and across basic blocks
can reduce the overhead for CPU-intensive applications from 37 x
[14] to 3x [21]. However, this overhead is still too high for wide-
spread use. This approach can neither support multithreaded code
nor track information flow across multiple processes. For perfor-
mance reasons, dynamic instrumentation systems support a single
policy that protects against attacks on control data. It has been
shown that this policy is insufficient to prevent all memory corrup-
tion cases [3].

For managed or interpreted languages, DIFT can be implemented
by instrumenting the interpreter or rewriting at the bytecode level
[15, 18, 13]. Such implementations have been shown to detect
high-level vulnerabilities in Java and PHP code. Their main dis-
advantage is that any code written in other languages (e.g., JNI
calls in Java) require custom wrappers for safety. Moreover, this
approach cannot track information flow across multiple processes
or easily deal with multithreaded executables.



2.2 Hardware-based DIFT

Hardware DIFT architectures extend each register and memory
location by one tag bit. The hardware propagates and checks tags
transparently as instructions execute without additional instrumen-
tation or runtime overhead. Hardware can apply DIFT to any ap-
plication, even those using self-modifying code, JIT compilation,
or multithreading. All existing hardware DIFT systems focus on
memory corruption attacks using a single, fixed security policy.

Minos was one of the first systems to support DIFT in hardware
[6]. Its design addresses many basic issues pertaining to integration
of tags in modern processors and management of tags in the OS.
Minos’ security policy focuses on control data attacks that over-
write return addresses or function pointers. Minos cannot protect
against non-control data attacks [3].

The architecture by Suh et al [24] targets both control and non-
control attacks by checking tags on both code and data pointer
dereferences. Recognizing that real-world programs often validate
their input through bounds checks, this design does not propagate
the tag of an index if it is added to an untainted pointer with a
pointer arithmetic instruction. This choice eliminates many false
positive security exceptions but also allows for false negatives on
common attacks such as return-into-libc [8]. A significant weak-
ness is that most architectures do not have well-defined pointer
arithmetic instructions. This design also introduced an efficient
multi-granular mechanism for managing tag storage that reduces
the memory overhead to less than 2%.

The architecture by Chen et al [2] provides the strongest secu-
rity model for memory corruption attacks. It is similar to [24] but
does not clear tags on pointer arithmetic, as there is no guarantee
that the index has been validated. Instead, it clears the tag when
tainted data is compared to untainted data, which is assumed to be
a bounds check. As we discuss in Section 3, this approach results
in both false positives and false negatives in commonly used code.
Moreover, this design does not check the tag bit while fetching in-
structions, which allows for attacks when the code is writeable (JIT
systems, virtual machines, etc) [8].

DIFT can also be used to ensure the confidentiality of sensitive
data [27, 22]. RIFLE [27] proposed a system solution that tracks
the flow of sensitive data in order to prevent information leaks.
Apart from explicit information flow, RIFLE must also track im-
plicit flow, such as information gleaned from branch conditions.
RIFLE uses software binary rewriting to turn all implicit flows into
explicit flows that can be tracked using DIFT techniques. The over-
all system combines this software infrastructure with a hardware
DIFT implementation to track the propagation of sensitive infor-
mation and prevent leaks. Infoshield [22] uses a DIFT architecture
to implement information usage safety. It assumes that the pro-
gram was properly written and audited and uses runtime checks to
ensure that sensitive information is used only in the way defined
during program development.

3. THE CASE FOR A FLEXIBLE DIFT
ARCHITECTURE

The systems discussed above have demonstrated the overall po-
tential of DIFT, and the benefits and weaknesses of hardware and
software implementations. In this paper, we make the case for a
flexible DIFT architecture that allows us to integrate the best of
both hardware and software techniques. Specifically, we argue that
hardware should provide a few key mechanisms on which software
builds in order to create efficient systems that protect against a wide
range of attacks.

3.1 Flexible Specification of Security Policies

Existing hardware DIFT systems use a single hardcoded policy
for tag management. The policy targets memory corruption ex-
ploits such as buffer overflows. Tags are propagated from source
to destination operands for all instructions. A tag is cleared when
data is validated or reset. The hardware raises an exception when
an instruction, a jump target, or load/store address is tagged.

A hardcoded policy is not sufficient for a robust security sys-
tem. High-level attacks require tag management policies that are
significantly different from memory corruption attacks. To prevent
SQL injection attacks, for example, we must verify that any query
passed to the SQL server does not contain tagged command char-
acters. Unlike the rules for memory corruption that untaint tags on
certain validation instructions, the SQL injection rules never un-
taint. The tag check rules are different as well. For SQL injection,
we raise an exception to intercept the call to the SQL query exe-
cute function in order to check its input string for tainted command
characters. Obviously, SQL string checks constitute a complex,
high-level operation that can be done only in software, as they de-
pend on the SQL grammar and the specifics of the database server.

Moreover, a static policy cannot cope with the diverse set of con-
ventions in real world software that may lead to numerous false
positives or negatives during a security analysis. For example,
when protecting against memory corruption attacks with DIFT, we
should untaint any untrusted data validated by the application. Un-
fortunately, validation procedures are ambiguously defined, mak-
ing it difficult to describe them correctly in a single hardware pol-
icy. The architecture in [2] assumes that comparisons implement
validation through bounds checking. However, we have observed
numerous other validation patterns in popular software. GCC’s
parsing functions and glibc’s _itoa_word () function use a mod-
ulo operation to validate hash table indices. The UID hash table in
the Linux 2.6 kernel as well as glibc’s _itoa () function vali-
date the index by performing a logical AND operation because the
table size is a power of 2. Even worse, comparisons are not al-
ways bounds checks. We observed a case in the traceroute pro-
gram where confusing a comparison in the free () function for
a bounds check allows for a buffer overflow attack. Overall, hard-
coding the security policy can lead to one of two extremes: un-
warranted validation of untrusted data that compromises security,
or program termination due to false positives on legitimate uses of
untrusted data.

We suggest that hardware policies for tag management should
be flexible and programmable. Software should have fine-grain
control over tag propagation and check rules in order to target an
evolving set of attacks and to address the intricacies of real-world
software.

3.2 Support for Multiple Active Policies

Existing hardware DIFT systems support a single security pol-
icy. Even if we assume a programmable policy, such systems can
protect against a single attack at a time. Unfortunately, it is now
common for attacks to exploit multiple vulnerabilities in a coor-
dinated manner [1, 26]. One could consider multiplexing several
policies by creating the superset of propagation and check rules
for the tag bit. However, several policies define incompatible rules
(e.g., string tainting vs. pointer tainting policies). Merging them
would result in either a flood of spurious exceptions or a high risk
of false negatives.

We suggest that DIFT architectures should support multiple con-
currently active, security policies that protect against different at-
tacks or provide mutually supportive protection against a single at-
tack. While the exact number of active policies is still a topic of



research, our current experiments suggest that four policies are suf-
ficient: two policies to help with high-level semantic attacks, one
policy to protect against memory corruption, and one policy to as-
sist with low-overhead security exceptions.

3.3 Low-overhead Security Exceptions

Existing DIFT architectures assume that hardware alone can fully
identify unsafe uses of tagged data. Hence, tag exceptions simply
trap into the OS and terminate the application. The exception over-
head is not significant.

Looking forward, it is more realistic to expect that DIFT hard-
ware will play a key role in identifying potential threats for which
further software analysis is needed to detect an actual exploit. For
SQL injection, for example, the hardware should track tags of in-
puts to the database. It will be up to software to determine if the
query string contains tainted command characters, or tainted, yet
harmless data. Similarly, a memory corruption policy may use soft-
ware to correctly determine the code patterns that constitute input
data validation. Enforcing security policies partially in software
places a premium on the overhead of security exceptions. OS traps
cost hundreds to thousands of cycles. Hence, even infrequent secu-
rity exceptions can have a large impact on application performance.
System operators should not have to choose between security and
performance.

We believe that security exceptions should be handled at the user
level, incurring the overhead of a function call instead of that of a
full OS trap. Low-overhead security exceptions allow for software-
extensible security policies without sacrificing performance. The
challenge with user-level exception handling is protecting the ex-
ception handler’s code and data from a potentially compromised
application running at the same privilege level.

3.4 Applying DIFT to OS Code

Existing DIFT systems cannot protect the OS code primarily be-
cause the OS already runs at the highest privilege level. Hence, it
is difficult to protect the security exception handler from a poten-
tially compromised OS component. We view this as a significant
shortcoming of DIFT architectures given that a successful attack
against the OS can compromise the whole system. Remotely ex-
ploitable kernel vulnerabilities occur even in high-security operat-
ing systems such as OpenBSD [16]. Moreover, OS vulnerabilities
often take weeks for vendors to patch after they are publicized [26].

If the system supports user-level security exceptions, we can ap-
ply DIFT to significant portions of the OS code. User-level excep-
tions require a mechanism to protect the handler from other code
running in the same address space and privilege level. The same
mechanism can protect the security handler from other OS compo-
nents. We should note that a portion of the OS must still be trusted,
including the security handlers themselves and the code that man-
ages them. Still, we can check large portions of the OS, including
the device drivers that are common targets of security attacks [25].

4. THE RAKSHA ARCHITECTURE

Raksha follows the general model of previous hardware DIFT
systems [24, 6, 2]. All storage locations, including registers, caches,
and main memory, are extended by tag bits. All ISA instructions
are extended to propagate tags from input to output operands, and
check tags in addition to their regular operation. Since tag opera-
tions happen transparently, Raksha can run any type of unmodified
binaries without introducing runtime overheads.
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4.1 Architecture Overview

Raksha differs from previous work by supporting the features
discussed in Section 3.

First, it supports multiple active security policies. Specifically,
each word is associated with a 4-bit tag, where each bit supports an
independent security policy with separate rules for propagation and
checks. As indicated by the popularity of ECC codes, 4 extra bits
per 32-bit word is an acceptable overhead for additional reliability.
The tag storage overhead can be reduced significantly using multi-
granular approaches that exploit the common case where all words
in a cache line or in a memory page are associated with the same
tag [24]. The choice of four tag bits per word was motivated by
the number of security policies used to protect against a diverse
set of attacks with the Raksha prototype (see Section 6). Even if
future experiments show that a different number of active policies
is needed, the basic mechanisms described in this paper will apply.

The second difference is that Raksha’s security policies are highly
flexible and software-programmable. Software uses a set of policy
configuration registers to describe the propagation and check rules
for each tag bit. The specification format allows fine-grain control
over the rules. Specifically, software can independently control the
tag rules for each class of instructions and configure how tags from
multiple input operands are combined. Moreover, Raksha allows
software to specify custom rules for a small number of individual
instructions. This enables handling of corner cases within an in-
struction class. For example, “xor rl,rl,ri” is a commonly used
idiom to reset registers, especially on x86 machines. To avoid false
positives while detecting memory corruption attacks, we must rec-
ognize this case and suppress tag propagation from the inputs to
the output. Section 6.4 discusses complex corner cases that can be
addressed using custom rules.

The third difference is that Raksha supports user-level handling
of security exceptions. Hence, the exception overhead is similar to
that of a function call rather than the overhead of a full OS trap.
Two hardware mechanisms are necessary to support user-level ex-
ceptions handling. First, the processor has an additional trusted
mode that is orthogonal to the conventional user and kernel mode
privilege levels. Software can directly access the tags or the pol-
icy configuration registers only when trusted mode is enabled. Tag
propagation and checks are also disabled when in trusted mode.
Second, a hardware register provides the address for a predefined
security handler to be invoked on a tag exception. When a tag ex-
ception is raised, the processor automatically switches to the trusted
mode but remains in the same user/kernel mode and the same ad-
dress space. There is no need for an additional mechanism to pro-
tect the security handler’s code and data from malicious code. Rak-
sha protects the handler using one of the four active security poli-
cies. Its code and data are tagged and a rule is specified that gener-
ates an exception if they are accessed outside of the trusted mode.

4.2 Tag Propagation and Checks

Hardware performs tag propagation and checks transparently for
all instructions executed outside of trusted mode. The exact rules
for tag propagation and checks are specified by a set of fag propa-
gation registers (TPR) and tag check registers (TCR). There is one
TCR/TPR pair for each of the four security policies supported by
hardware. Figures 1 and 2 present the format for the two registers
as well as an example configuration for a pointer tainting analysis.

To balance flexibility and compactness, TPRs and TCRs specify
rules at the granularity of primitive operation classes. The classes
are floating point, move, integer arithmetic, comparisons, and log-
ical. The move class includes register-to-register moves, loads,
stores, and jumps (move to program counter). To track information



Tag Propagation Register

28 27 26 2524 2322 2120 1817 16 15 1413 1211 109 87 65 43 21 0
CUST3 | CUST2 | CUST1 | CUSTO MOV CUST3 | CUST2 | CUST1 | CUSTO LOG COMP ARITH FP MOV
Enable Enable Enable Enable Enable mode mode mode mode mode mode mode mode mode

Custom Operation Enables
[0] Source Propagation Enable (On/Off)
[1] Source Address Propagation Enable (On/Off)

Example propagation rules for pointer tainting analysis:
Logic & arithmetic operations:
Move operations: Dest tag < source tag
Other operations: No Propagation
TPR encoding: 00 00 00 00 001 00 00 00 00 10 00 10 00 10

Move Operation Enables

[0] Source Propagation Enable (On/Off)

[1] Source Address Propagation Enable (On/Off)

[2] Destination Address Propagation Enable (On/Off)

Mode Encoding

00 — No Propagation

01 — AND source operand tags
10 — OR source operand tags

Dest tag < source1 tag OR source2 tag

Figure 1: The format of the Tag Propagation Register. There are 4 TPRs, one per active security policy.

flow with high precision, we do not assign each ISA instruction to
a single class. Instead, each instruction is decomposed into one or
more primitive operations according to its semantics. For example,
the subcc SPARC instruction is decomposed into two operations,
a subtraction (arithmetic class) and a comparison that sets a condi-
tion code. As the instruction is executed, we apply the tag rules for
both arithmetic and comparison operations. This approach is par-
ticularly important for ISAs that include CISC-style instructions,
such as the x86. It also reflects a basic design principle of Raksha:
information flow analysis tracks basic data operations, regardless
of how these operations are packaged into ISA instructions. Pre-
vious DIFT systems define tag policies at the granularity of ISA
instructions, which creates several opportunities for false positives
and false negatives.

To handle corner cases such as register resetting with an xor
instruction, TPRs and TCRs can also specify rules for up to four
custom operations. As the instruction is decoded, we compare its
opcode to four opcodes defined by software in the custom operation
registers. If the opcode matches, we use the corresponding custom
rules for propagation and checks instead of the generic rules for its
primitive operation(s).

As shown in Figure 1, each TPR uses a series of two-bit fields to
describe the propagation rule for each primitive class and custom
operation (bits 0 to 17). Each field indicates if there is propagation
from source to destination tags and if multiple source tags are com-
bined using logical AND or OR. Bits 18 to 26 contain fields that
provide source operand selection for tag propagation for move and
custom operations. For move operations, we can propagate tags
from the source, source address, and destination address operands.
The load instruction 1d [r2], r1, for example, considers reg-
ister r2 as the source address, and the memory location referenced
by r2 as the source.

As shown in Figure 2, each TCR uses a series of fields that spec-
ify which operands of a primitive class or custom operation should
be checked for a tag exception. If a check is enabled and the tag bit
of the corresponding operand is set, a security exception is raised.
For most operation classes, there are three operands to consider
but for moves (loads and stores) we must also consider source and
destination addresses. Each TCR includes an additional operation
class named execute. This class specifies the rule for tag checks
on instruction fetches. We can choose to raise a security excep-
tion if the fetched instruction is tagged or if the program counter is
tagged. The former occurs when executing tainted code, while the
latter can happen when a jump instruction propagates an input tag
to the program counter.
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4.3 User-level Security Exceptions

A security exception occurs when a TCR-controlled tag check
fails for the current instruction. Security exceptions are precise in
Raksha. When the exception occurs, the offending instruction is
not committed. Instead, exception information is saved to a spe-
cial set of registers for subsequent processing (PC, failing operand,
which tag policies failed, etc).

The distinguishing feature of security exceptions in Raksha is
that they are processed at the user-level. When the exception oc-
curs, the machine does not switch to the kernel mode and does not
transfer control to the operating system. Instead, the machine main-
tains its current privilege level (user or kernel) and simply activates
the trusted mode. Control is transfered to a predefined address for
the security exception handler. In trusted mode, tag checks and
propagation are disabled for all instructions. Moreover, software
has access to the TCRs, TPRs and the registers that contain the in-
formation about the security exception. Finally, software running in
the trusted mode can directly access the 4-bit tags associated with
memory locations and regular registers. > The hardware provides
extra instructions to facilitate access to this additional state when in
trusted mode.

The predefined address for the exception handler is available in
a special register that can be updated only while in trusted mode.
At the beginning of each program, the exception handler address is
initialized before control is passed to the application. The applica-
tion cannot change the exception handler address because it runs in
untrusted mode.

The exception handler can include arbitrary software that pro-
cesses the security exception. It may summarily terminate the com-
promised application or simply clean up and ignore the exception.
It may also perform a complex analysis to determine whether this
is a false positive or try to address the security issue without termi-
nating the code. The handler overhead depends on the complexity
of the processing it performs. Since the handler executes in the
same address space as the application, invoking the handler does
not incur the cost of an OS trap (privilege level change, TLB flush-
ing, etc.). The cost of invoking the security exception handler in
Raksha is similar to that of a function call.

Since the exception handler and applications run at the same
privilege level and in the same address space, there is a need for
a mechanism that protects the handler code and data from a com-

“Conventional code running outside the trusted mode can implic-
itly operate on tags but is not explicitly aware of their existence.
Hence, it cannot directly read or write these tags.



Tag Check Register

25 2322 2019 17 16

1413

1211 109 87 65 21 0

‘ CUST 3 ‘ CUST 2 ‘ CUST 1 ‘ CUSTO ‘ LOG ‘ COMP ‘ ARITH ‘ FP ‘

MoV ‘ EXEC ‘

Predefined Operation Enables
[0] Source Check Enable (On/Off)
[1] Destination Check Enable (On/Off)

Custom Operation Enables

[0] Source 1 Check Enable (On/Off)
[1] Source 2 Check Enable (On/Off)
[2] Destination Check Enable (On/Off)

Execute Operation Enables
[0] PC Check Enable (On/Off)
[1] Instruction Check Enable (On/Off)

Move Operation Enables

[0] Source Check Enable (On/Off)

[1] Source Address Check Enable (On/Off)

[2] Destination Address Check Enable (On/Off)

[3] Destination Check Enable (On/Off)

Example check rules for pointer tainting analysis:

Execute operations (PC, Instruction): On
Comparison operations (Sources only): On
Move operations (Source & Dest addresses):  On
Custom operation 0: On (for AND instruction, sources only)
Other operations: Off

TCR encoding: 000 000 000 011 00 01 00 00 0110 11

Figure 2: The format of the Tag Check Register. There are 4 TCRs, one per active security policy.

promised application. Unlike the handler, user code runs only in
untrusted mode and is forbidden from using the additional instruc-
tions that manipulate special registers or directly access the 4-bit
tags in memory. Still, a malicious application could overwrite the
code or data belonging to the handler. To prevent this, we use one
of the four security policies to sandbox the handler’s data and code.
We set one of the four tag bits for every memory location used by
the security handler for its code or data. The TCR is configured so
that any instruction fetch or data load/store to locations with this
tag bit set will generate an exception. This sandboxing approach
provides efficient protection without requiring different privilege
levels. Hence, it can also be used to protect the trusted portion of
the OS from the untrusted portion. We can also use the sandboxing
mechanism (same policy) to implement the function call or system
call interposition needed to detect some attacks.

4.4 Discussion

Raksha defines tag bits per 32-bit word instead of per byte. We
find the overhead of per-byte tags unnecessary. Considering the
way compilers allocate variables, it is extremely unlikely that two
variables with dramatically different security characteristics will be
packed into a single word. The one exception we found to this rule
so far is that some applications construct strings by concatenating
untrusted and trusted information. Infrequently, this results in a
word with both trusted and untrusted bytes.

To ensure that subword accesses do not introduce false negatives,
we check the tag bit for the whole word even if a subset is read. For
tag propagation on subword writes, we use a control register to al-
low software to select a method for merging the existing tag with
the new one (and, or, overwrite, or preserve). As always, it is best
for hardware to use a conservative policy and rely on software anal-
ysis within the exception handler to filter out the rare false positives
due to subword accesses. We would use the same approach to im-
plement Raksha on ISAs that support unaligned accesses that span
multiple words.

Raksha can be combined with any base instruction set. For a
given ISA, we decompose each instruction into its primitive op-
erations and apply the proper check and propagate rules. This is
a powerful mechanism that can cover both RISC and CISC archi-
tectures. For simple instructions, hardware can perform the de-
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composition during instruction decoding. For the most complex
CISC instructions, it is best to perform the decomposition using a
micro-coding approach, as is often done for instruction decoding
purposes. Raksha can handle instruction sets with condition code
registers or other special registers by properly tagging these regis-
ters in the same manner as general purpose registers.

The operating system can interrupt and switch out an applica-
tion that is currently in a security handler. As the OS saves/restores
the process context, it also saves the trusted mode status. It must
also save/store the special registers introduced by Raksha as if they
were user-level registers. When the application resumes, its secu-
rity handler will continue.

Like most other DIFT architectures, Raksha does not track im-
plicit information flow since it would cause a large number of false
positives. In addition, unlike information leaks, security exploits
usually rely only on tainted code or data that is explicitly propa-
gated through the system.

S. THE RAKSHA PROTOTYPE SYSTEM

To evaluate Raksha, we developed a prototype system based on
the SPARC architecture. Previous DIFT systems used a functional
model like Bochs to evaluate security issues and a separate perfor-
mance model like Simplescalar to evaluate overhead issues with
user-only code [24, 6, 2]. Instead, we use a single prototype to pro-
vide both functional and performance analysis. Hence, we can get
a performance measurement for any real-world application that we
study for security purposes. Moreover, we can use a single platform
to evaluate performance and security issues related to the operating
system and the interaction between multiple processes (e.g., a web
server and a database).

The Raksha prototype is based on the Leon SPARC V8 proces-
sor, a 32-bit open-source synthesizable core developed by Gaisler
Research [12]. We modified Leon to include the security features of
Raksha and mapped the design onto an FPGA board. The resulting
system is a full-featured SPARC Linux workstation.

5.1 Hardware Implementation

Figure 3 shows a simplified diagram of the Raksha hardware,
focusing on the processor pipeline. Leon uses a single-issue, 7-
stage pipeline. We modified its RTL code to add 4-bit tags to all
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Figure 3: The Raksha version of the pipeline for the Leon SPARC V8 processor.

user-visible registers, and cache and memory locations; introduced
the configuration and exception registers defined by Raksha; and
added the instructions that manipulate special registers or provide
direct access to tags in the trusted mode. Overall, we added 9 in-
structions and 16 registers to the SPARC V8 ISA. We also added
support for the low-overhead security exceptions and extended all
buses to accommodate tag transfers in parallel with the associated
data.

The processor operates on tags as instructions flow through its
pipeline as directed by the policy configuration registers (TCRs
and TPRs). The Fetch stage checks the program counter tag and
the tag of the instruction fetched from the I-cache. The Decode
stage decomposes each instruction into its primitive operations and
checks if its opcode matches any of the custom operations. The
Access stage reads the tags for the source operands from the regis-
ter file, including the destination operand. It also reads the TCRs
and TPRs. By the end of this stage, we know the exact tag prop-
agation and check rules to apply for this instruction. Note that the
security rules applied for each of the four tag bits are independent
of one another. The Execute and Memory stages propagate source
tags to the destination tag in accordance with the active policies.
The Exception stage performs any necessary tag checks and raises
a precise security exception if needed. All state updates (registers,
configuration registers, etc.) are performed in the Writeback stage.
Pipeline forwarding for the tag bits is implemented similar to, and
in parallel with, forwarding for regular data values.

Our current implementation of the memory system simply ex-
tends all cache lines and buses by 4 tag bits per 32-bit word. We
also reserved a portion of main memory for tag storage and modi-
fied the memory controller to properly access both data and tags on
cached and uncached requests. This approach introduces a 12.5%
overhead in the memory system for tag storage. On a board with
support for ECC DRAM, we could use the 4 bits per 32-bit word
available to the ECC code to store the Raksha tags. For future ver-
sions of the prototype, we plan to implement the multi-granular tag
storage approach proposed by Suh et al [24], where tags are allo-
cated on demand for cache lines and memory pages that actually
have tagged data.

We synthesized Raksha on the Pender GR-CPCI-XC2V Com-
pact PCI board which contains a Xilinx XC2VP6000 FPGA. Ta-
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[ Parameter | Specification
Pipeline depth 7 stages
Register windows 8
Instruction cache 8 KB, 2-way set associative
Data cache 32 KB, 2-way set associative
Instruction TLB 8 entries, fully-associative
Data TLB 8 entries, fully-associative
Memory bus width 64 bits
Prototype Board GR-CPCI-XC2V board
FPGA device XC2VP6000
Memory 512MB SDRAM DIMM
1/0 100Mb Ethernet MAC
Clock frequency 20 MHz
Block RAM utilization 22% (32 out of 144)
4-input LUT utilization 42% (28,897 out of 67,584)
Total gate count 2,405,334
Gate count increase over base Leon | 7.17%

Table 1: The architectural and design parameters for the Rak-
sha prototype.

ble 1 summarizes the basic board and design statistics, including
the utilization of the FPGA resources. Since Leon uses a write-
through, no-write-allocate data cache, we had to modify its design
to perform a read-modify-write access on the tag bits in the case
of a write miss. This change and its small impact on application
performance would not have been necessary had we started with a
write-back cache. There was no other impact on the processor per-
formance, as tags are processed in parallel and independently from
the data in all pipeline stages.

Security features are trustworthy only if they have been thor-
oughly validated. Similar to other ISA extensions, the Raksha secu-
rity mechanisms define a relatively narrow hardware interface that
can be validated using a collection of directed and randomly gener-
ated test cases that stress individual instructions and combinations
of instructions, modes, and system states. The random test genera-
tor creates arbitrary SPARC programs with randomly generated tag
policies. Periodically, test programs enable the trusted mode and
verify that any registers or memory locations modified since the
last checkpoint have the expected tag and data values. The expected



Figure 4: The GR-CPCI-XC2V board used for the prototype
Raksha system.

values are generated by a simple functional-only model of Raksha
for SPARC. If the validation fails, the test case halts with an error.
The test case generator supports almost all SPARC V8 instructions.
‘We have run tens of thousands of test cases on the simulated RTL
using a 30-processor cluster and on the actual FPGA prototype.

5.2 Software Implementation

The Raksha prototype provides a full-fledged custom Linux dis-
tribution derived from Cross-Compiled Linux From Scratch [7].
The distribution is based on Linux kernel 2.6.11, GCC 4.0.2 and
GNU C Library 2.3.6. It includes 120 software packages. Our dis-
tribution can bootstrap itself from source code and run unmodified

enterprise applications such as Apache, PostgreSQL, and OpenSSH.

We have modified the Linux kernel to provide support for Rak-
sha’s security features. We ensure that the additional registers are
saved and restored properly on context switches, system calls, and
interrupts. Register tags must also be saved on signal delivery and
SPARC register window overflows/underflows. Tags are properly
copied when inter-process communication occurs, such as through
pipes or when passing program arguments/environment variables
to execve.

Security handlers are implemented as shared libraries preloaded
by the dynamic linker. The OS ensures that all memory tags are
initialized to zero when pages are allocated and that all processes
start in trusted mode with register tags cleared. The security han-
dler initializes the policy configuration registers and any necessary
tags before disabling the trusted mode and transferring control to
the application. For best performance, the basic code for invoking
and returning from a security handler have been written directly in
SPARC assembly. The code for any additional software analyses
invoked by the security handler can be written in any programming
language.

Most security analyses require that tags are properly initialized
or set when receiving data from input channels. We have imple-
mented tag initialization within the security handler using the sys-
tem call interposition tag policy discussed in Section 6. For ex-
ample, a SQL injection analysis may wish to tag all data from the
network. The reference handler would use system call interposi-
tion on the recv, recvfrom, and read system calls to intercept
these system calls, and taint all data returned by them.
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For future versions of the Raksha software, we will focus on
high-level languages for security policy specification and a cen-
tralized platform for runtime policy management. This would al-
low applications or operators to easily specify which policies are
needed, as well as modify existing policies when new events occur
(e.g., loading a plugin). We will also extend the infrastructure of
security handlers to support checks on OS code, utilizing in full the
hardware features of Raksha.

6. SECURITY EVALUATION

To evaluate the capabilities of Raksha’s security features, we at-
tempted a wide range of attacks on unmodified SPARC binaries for
real-world applications. Raksha successfully detected both high-
level attacks and memory corruption exploits on these programs.
This section discusses the experiments, the policies used, and the
lessons learned for two classes of attacks.

6.1 Security Experiments

Table 2 summarizes the security experiments we performed. They
include attacks on basic utilities (tar, gzip, polymorph, sus), net-
work utilities (traceroute, openssh), servers (proftpd, wu-ftpd), Web
applications (Scry, Wabbit, PhpSysInfo), and search engine soft-
ware (htdig). For each experiment, we list the programming lan-
guage of the application, the type of attack, the DIFT analyses used
for the detection, and the actual vulnerability detected by Raksha.

Unlike previous DIFT architectures, Raksha does not have a fixed
security policy. The four supported policies can be set to detect
a wide range of attacks. Hence, Raksha can be programmed to
detect high-level attacks like SQL injection, command injection,
cross-site scripting, and directory traversals, as well as conven-
tional memory corruption and format string attacks. The correct
mix of policies can be determined on a per-application basis by
the system operator. For example, a Web server might select SQL
injection and cross-site scripting protection, while an SSH server
would probably select pointer tainting and format string protection.

To the best of our knowledge, Raksha is the first DIFT architec-
ture to demonstrate detection of high-level attacks on unmodified
application binaries. This is a significant result because high-level
attacks now account for the majority of software exploits [26]. All
prior work on high-level attack detection required access to the ap-
plication source code or Java bytecode [28, 15, 18, 13]. High-level
attacks are particularly challenging because they are language and
OS independent. Enforcing type safety cannot protect against these
semantic attacks, which makes Java and PHP code as vulnerable as
C and C++.

An additional observation from Table 2 is that, by tracking infor-
mation flow at the level of primitive operations, Raksha provides
attack detection in a language-independent manner. The same poli-
cies can be used regardless of the application’s source language.
For example, htdig (C++) and PhpSysInfo (PHP) use the same
cross-site scripting policy, even though one is written in a low-level,
compiled language and the other in a high-level, interpreted lan-
guage. Raksha can also apply its security policies across multiple
collaborating programs that have been written in different program-
ming languages.

6.2 Policies

The DIFT policies used for the security experiments are explained
further in Table 3. For all but two programs, we use two concurrent
security policies. We can have all the analyses in Table 2 con-
currently active using the 4 tag bits available in Raksha: one for
string tainting, one for pointer tainting, one for function/system
call interposition, and one for the protection of the security han-



[ Program | Lang. | Attack [ Analysis | Detected Vulnerability

gzip C Directory traversal String tainting Open file with tainted absolute path
+ System call interposition

tar C Directory traversal String tainting Open file with tainted absolute path
+ System call interposition

Wabbit PHP Directory traversal String tainting Open file with tainted pathname outside web root directory
+ System call interposition

Scry PHP Cross-site scripting | String tainting Tainted HTML output includes < script >
+ System call interposition

PhpSysInfo | PHP Cross-site scripting | String tainting Tainted HTML output includes < script >
+ System call interposition

htdig C++ Cross-site scripting | String tainting Tainted HTML output includes < script >
+ System call interposition

OpenSSH C Command injection | String tainting execve tainted filename
+ System call interposition

ProFTPD C SQL injection String tainting Unescaped tainted SQL query
+ Function call interposition

traceroute C Double free Pointer tainting Tainted data pointer dereference

polymorph | C Buffer overflow Pointer tainting Tainted code pointer dereference (return address)

SUS C Format string bug String tainting Tainted format string specifier in syslog
+ Function call interposition

WU-FTPD | C Format string bug String tainting Tainted format string specifier in vfprintf
+ Function call interposition

Table 2: The security experiments performed with the Raksha prototype.

dler. This combination allows comprehensive protection against
low-level and high-level vulnerabilities.

The pointer tainting policy protects against memory corruption
vulnerabilities, similar to the hardcoded protection provided by pre-
vious DIFT systems [24, 6, 2]. This policy prohibits tagged in-
formation from being used as a load address, store address, jump
address, or instruction. We invoke a software security handler to
recognize bounds checks through comparisons or logical AND in-
structions. If a bounds check is detected, we clear tags. Hence,
untrusted data can be used as an array index if it has been properly
validated, a common operation in real-world applications. Previous
DIFT architectures simply hardcoded the policy that any compari-
son between a tagged and an untagged operand validates the tagged
operand. This avoids the overhead of invoking the software handler
through an OS trap but can lead to both false negatives and false
positives (see Sections 3.1 and 6.4).

The string tainting policy is used to protect against high-level se-
mantic attacks. It tracks untrusted data via tag propagation and al-
lows software to check tainted arguments before sensitive function
and system calls. For protection from Web vulnerabilities such as
cross-site scripting, string tainting is applied both to Apache itself
and to any associated modules such as PHP.

To protect the security handler from malicious attacks, we use a
fault-isolation tag policy that implements sandboxing. The handler
code and data are tagged, and a rule is specified that generates an
exception if they are accessed outside of trusted mode. This policy
ensures handler integrity even during a memory corruption attack
on the application.

6.3 Lessons from High-Level Attacks

Raksha is the first DIFT system to prevent high-level attacks such
as directory traversals on unmodified binaries. Raksha is well-
suited to detect such high-level vulnerabilities as they tend to be
precisely defined. A SQL query either has, or doesn’t have, a
tagged command, and Raksha security handlers can easily distin-
guish between safe and unsafe uses of tainted information for this
class of attacks. Application and language routines for validating
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untrusted information do not have to be separately identified, avoid-
ing any associated false positives and negatives.

Our experiments show that check rules for these high-level at-
tacks must be easily customizable. For example, there is no uni-
versally accepted standard for cross-site scripting filters. A wide
variety of filters are necessary to deal with the diverse set of be-
haviors in real-world software. Some applications HTML-encode
all untrusted input; others allow input to contain a safe, restricted
subset of HTML tags; and finally applications such as Bugzilla al-
low untrusted input to contain a restricted set of SQL commands.
Because it provides programmable policies and can be extended
through software, Raksha can support such customization.

Most high-level bugs can be caught at the system call layer,
which has many advantages. System calls are infrequent, and in-
terposition has minimal overhead for most workloads [10, 20]. The
kernel ABI explicitly defines the semantics of each system call.
Moreover, system calls provide complete mediation. If we inter-
posed on a higher level routine, applications might evade our pro-
tection by calling directly into lower-level functions. Even though
all checks are applied at the coarse granularity of system calls, the
precise, fine-grain taint tracking supported by Raksha hardware is
critical in order to distinguish a safe (untainted) argument to a sys-
tem call from an untrusted argument that must be validated.

Prior work has shown that SQL injection can always be safely
detected without false positives or negatives, so long as trusted and
untrusted data can be distinguished and the SQL grammar is known
[23]. Raksha does not provide perfect precision, as tags are tracked
at word granularity rather than byte granularity. Strings are one
of the few situations in which the same word may contain tainted
and untainted bytes. Nevertheless, this has not been a significant
enough issue thus far to motivate support for byte-level tags. To
ensure that an application performing a byte-by-byte copy over a
tainted word actually untaints the word, our string tainting policy
uses merge overwrite as the tag merge mode. Our current SQL
validation routine is also not as advanced as the algorithm in [23],
since we scan for tainted command characters without parsing the
SQL grammar. This will be addressed in future work.



Policy

Tag Initialization

Propagation Rule

Check Rule |

String Tainting Input from untrusted channel

Move (sources only)
Integer Arithmetic & Logical

Analysis dependent

Pointer Tainting Input from untrusted channel

Move (sources only)
Integer Arithmetic & Logical

Move (destination & source address)
Comparison (source) &

Program Counter & Instruction &
AND Custom operation (source)

System Call Interposition Trap base register

Move (sources only)

Program counter

Function Call Interposition | At monitored function(s)

Tagged instruction

Fault Isolation At sandboxed memory regions

Tagged instruction
Move (destination, source)

Table 3: The tag initialization, propagation, and check rules for the security policies used in our experiments. The propagation
rules identify the operation classes that propagate tags. The check rules specify the operation classes that raise exceptions on tagged
operands. When needed, we identify the specific operands involved in propagation or checking.

Translation and lookup tables remain the most significant prob-
lem for web vulnerability detection using DIFT systems [8]. Our
string tainting policy correctly propagates during string manipula-
tion, copying, concatenating, etc. However, web applications may
translate input from one encoding to another by indexing bytes
of an untrusted string into a lookup table (e.g., convert to upper-
case characters). Common glibc string conversion functions such
as atoi () and sprintf () also use lookup tables. Currently,
the string tainting policy will not propagate tags across such tables.
If a tainted string is converted using a lookup table, then the tag
bits of the resulting string will be cleared without an actual val-
idation. Enabling move source address propagation in our string
tainting policy would allow us to track tags correctly across lookup
tables. However, it would also result in frequent false positives
for PHP-based web applications as much of the address space be-
comes tainted. This is because the string propagation rules provide
no mechanism for untainting a pointer except for overwriting the
pointer with an untainted word. Despite these concerns, our string
tainting policy did not prevent us from detecting all attacks in our
experiments without any false positives. We are currently inves-
tigating better rules to address the issue of translation and lookup
tables.

6.4 Lessons from Memory Corruption

Hardware and software DIFT architectures have very little infor-
mation available when protecting against memory corruption vul-
nerabilities. Unmodified binaries do not provide bounds informa-
tion and do not explicitly identify when a pointer has been validated
via some sort of bounds check. Hence, DIFT systems must detect
on their own when a tagged pointer should be considered safe.

However, detecting validation patterns is particularly difficult.
As discussed in Section 3.1, not every bounds check is a compari-
son and not every comparison is a bounds check. Raksha can mit-
igate some of the ambiguity by using flexible security policies and
perform further processing in the security handlers. To detect the
case where an AND instruction is used as a bounds check, we can
use a custom operation to specify a unique policy for the AND
instruction. If the AND has a tagged source operand, a security
exception is raised. The handler untaints the first source operand
if the second source operand is untagged and is a power of 2 mi-
nus one. Previous DIFT architectures [2, 24] would not correctly
identify this behavior, and would often terminate the safe program.

Unfortunately, we have also encountered other cases that cannot
be resolved with hardware or software DIFT alone. Several fre-
quently used functions in the GNU C library include tagged pointer
dereferences that do not require a bounds check of any sort to be
considered safe. For example, all the character conversion and clas-
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Compare Filter AND Filter Combined Filter
Raksha 0S Raksha 0S Raksha 0OS

bzip2 2.98x | 13.20x 1.19x | 1.75x 1.33x | 2.80x
crafty 1.00x 1.00x 1.00x | 1.00x 1.00x | 1.00x
gap 1.12x 1.70x 1.00x | 1.01x 1.49x | 4.04x
gce 1.01x 1.04x 1.00x | 1.00x 1.00x | 1.03x
gzip 1.31x 2.92x 2.39x | 7.20x 2.66x | 9.97x
mcf 1.00x 1.04x 1.00x | 1.00x 1.00x | 1.00x
parser 1.04x 1.04x 1.24x | 2.28x 1.07x 1.43x
twolf 1.58x 4.19x 1.19x | 1.86x 1.85x | 4.48x
vpr 1.00x 1.02x 1.00x | 1.00x 1.00x | 1.00x

Table 4: Performance slowdown for the SPEC benchmarks
with a pointer tainting analysis that filters false positives by
clearing tags for select compare and AND instructions. A slow-
down of 1.34x implies that the program runs 34% slower with
security checks enabled.

sification functions (toupper (), tolower (), etc.) use 256-
entry tables that can be safely indexed with tagged bytes. This is
safe because the table has exactly 256 entries. If the table had 255
entries or fewer, a buffer overflow could result. Without bounds
information in binaries, it is impossible for any DIFT system to
resolve this corner case.

It is reasonable to expect that additional corner cases will come
up as DIFT-based memory corruption protection is used with more
real-world binaries. Hence, it is important for a DIFT architecture
to support software that extends or corrects the hardware checks as
needed. One possible solution to the issue of false positives from
difficult corner cases is to run applications on non-malicious, but
tainted data, and to whitelist instructions and data that fail the mem-
ory corruption policy. The drawback to this approach is that it will
only whitelist the false positives that are seen with that particular
input. To support a memory corruption policy free of false positives
and negatives, language or compiler help would be required. Reli-
able bounds information or well-defined code patterns for bounds
checks would be sufficient to eliminate the above issues.

It is important to note that we observed no false positives or neg-
atives for the code pointer protection provided by jump addresses
checks and tainted instruction checks. Only the data pointer protec-
tion provided by load and store address checks have these issues.

7. PERFORMANCE EVALUATION

Hardware DIFT systems, including Raksha, perform fine-grain
tag propagation and checks transparently as the application exe-
cutes. Hence, they incur minimal runtime overhead compared to



program execution with security checks disabled [24, 6, 2]. The
small overhead is due to tag management during program initial-
ization, paging, and I/O events. Nevertheless, such events are rare
and involve significantly higher sources of overhead compared to
tag manipulation.

We focus our performance evaluation on a feature unique to Rak-
sha - the low-overhead handlers for security exceptions. Raksha
supports user-level exception handlers as a mechanism to extend
and correct the hardware security analysis. As discussed in Section
6, exception overhead is not particularly important in protecting
against semantic vulnerabilities. High-level attacks require soft-
ware intervention only at the boundaries of certain system calls,
which are infrequent events that transition to the operating system
by default. On the other hand, fast software handlers can be use-
ful in the protection against memory corruption attacks, by helping
identify potential bounds-check operations and managing the trade-
off between false positives and false negatives.

Table 4 presents the slowdown experienced by various integer
benchmarks from the SPEC2000 suite when software handlers are
used to identify input validation cases while running the pointer
tainting analysis that provides protection against memory corrup-
tion attacks. We attempted to separately filter two validation cases:
comparison instructions that constitute bounds checks; and logi-
cal AND instructions with a power of two minus one that serve as
bounds checks if used before indexing into a power of two sized
table. The hardware raises an exception on a compare or logical
AND instruction with a tagged input. The latter requires the use
of a custom check policy, specific to the AND instruction. The ex-
ception handlers examines the application; if it is actually a bounds
check, the handler clears the source operand tag and resumes the
program execution. Clearing the operand tag avoids a false pos-
itive security exception later in the program execution. We also
attempted to filter both validation cases in a combined analysis.

For every filter case, the left column in Table 4 shows the slow-
down with Raksha when the software filter utilizes the low-overhead
security exception. The right column measures the slowdown when
the software filter is invoked through a regular OS exception. OS
traps are the mechanism that previous DIFT architectures would
use to invoke further software, had they recognized the need for
software intervention to properly handle these corner cases.

Table 4 indicates that for programs like gcc and crafty, the over-
head of software filtering is quite low for both mechanisms, as they
rarely use tagged data in comparisons or logical AND instructions.
On the other hand, utilities like twolf and bzip2 generate these cases
more frequently. Hence, the slowdown is closely related to the
overhead of the mechanism used to invoke the software filter. For
gzip, Raksha’s mechanism limits the overhead of compare filtering
to 30%, while OS traps slow down the program by more than 2.9x.
The comparison between the two techniques is similar for gzip and
parser with the AND instruction filter. There are some patholog-
ical cases that run slowly on both systems. For example, bzip2
with the compare filter experiences a 3x slowdown even with user-
level exceptions. On the other hand, using OS traps leads to a 13 x
slowdown. If a user has to choose between a 13x slowdown or
program termination due to false positives, she will likely disable
DIFT. While Raksha cannot eliminate all performance issues in all
cases, it helps reduce the overhead of avoiding false positives and
negatives in strong security policies.

Table 4 shows that the overhead for the combined filter is some-
times lower than that with one of the individual filters. This is due
to the synergistic nature of the two filters. The AND filter may
untag an operand that is later used multiple times in compare oper-
ations (e.g., by loading a variable from memory during each loop
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Figure 5: The performance degradation for a microbenchmark
that invokes a security handler of controlled length every cer-
tain number of instructions. All numbers are normalized to a
baseline case which has no tag operations.

iteration). Another interesting observation is that the filter over-
heads could be reduced in some cases if, instead of just clearing
the register tag, we could also clear the tag for the memory location
assigned to the variable (if any).

To better understand the tradeoffs between the invocation fre-
quency of software handlers and runtime overhead, we developed a
simple microbenchmark. The microbenchmark invokes a security
handler every 100 to 100,000 instructions. The duration of the han-
dler is also controlled to be 0, 200, 500, or 1000 arithmetic instruc-
tions. This is in addition to the instructions necessary to invoke and
terminate the handler. Figure 5 shows that if security exceptions
are invoked less frequently than every 5,000 instructions, both user-
level and OS-level exception handling are acceptable as their cost is
easily amortized. On the other hand, if software is involved as often
as every 1,000 or 100 instructions, user-level handlers are critical in
maintaining acceptable performance levels. Low-overhead security
exceptions allow software to intervene more frequently or perform
more work per invocation. For reference, our software filters for
the experiments in Table 4 require approximately 100 instructions
per invocation.

8. CONCLUSIONS AND FUTURE WORK

We presented Raksha, a novel information flow architecture for
software security. Raksha provides a framework that combines the
best of both hardware and software DIFT. Hardware support pro-
vides transparent, fine-grain management of security tags at low
performance overhead for user code, OS code, and data that crosses
multiple processes. Software provides the flexibility and robustness
necessary to deal with a wide range of attacks.

Unlike previously proposed DIFT architectures, Raksha supports
flexible and programmable security policies. Software can set the
security policy to provide protection against a new type of attack
or identify a corner case in the interaction of existing security poli-
cies and deployed software. Raksha supports multiple active poli-
cies that allow concurrent protection against both high-level and
low-level vulnerabilities. Finally, Raksha supports a user-level ex-




ception handling that allows for fast security handlers that execute
in the same address space as the potentially malicious application.
Overall, Raksha supports the mechanisms that allow software to
correct, complement, or extend the hardware-based analysis.

We implemented a fully-featured Linux workstation as a proto-
type for Raksha using a synthesizable SPARC core and an FPGA
board. Running real-world software on the prototype, we demon-
strated that Raksha is the first DIFT architecture to detect high-
level vulnerabilities such as directory traversals, command injec-
tion, SQL injection, and cross-site scripting, while providing pro-
tection again conventional memory corruption attacks. We also
showed and evaluated how low overhead security handlers can be
used to address the shortcomings of hardware security analysis in a
performance-efficient manner.

Raksha’s flexible architecture provides several opportunities for
further security research. First, we will extend the security poli-
cies to support the operating system, protecting the kernel from
memory corruption attacks and user/kernel pointer dereferences.
We will also investigate stronger policies, such as detecting tainted
system call arguments during memory corruption attacks or speci-
fying practical tag propagation rules for lookup tables in Web ap-
plications. We are also interested in improving the infrastructure
for defining and managing security policies in a manner that sup-
ports cross-process, cross-file, and whole-system information flow.
Finally, we believe that the basic mechanisms in Raksha have inter-
esting applications beyond security for services such as debugging,
fault isolation, or profiling.
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