

ARBAC07: A Role-based Administration Model for RBAC with Hybrid Hierarchy

Yue Zhang James B.D. Joshi
Department of Computer Science School of Information Science

University of Pittsburgh University of Pittsburgh
Pittsburgh, PA, USA Pittsburgh, PA, USA
zysxqn@cs.pitt.edu jjoshi@sis.pitt.edu

Abstract
Recently, administration of RBAC systems using role-

based approach has become very appealing because of
the benefits that a role-based approach typically brings.
This approach uses RBAC itself to manage RBAC policies
so that the administration functions can be decentralized
and made more efficient. ARBAC97, ARBAC99, and
ARBAC02 are series of well-known solutions for
decentralized RBAC administration. However, none of
these can be used for RBAC systems that support hybrid
hierarchies, which have been shown to be necessary to
specify fine-grained RBAC policies. In this paper, we
propose the ARBAC07 model based on the ARBAC97,
ARBAC99 and ARBAC02 models for an RBAC system
with hybrid hierarchy. We show that our model keeps all
the advantages of the original model and can further deal
with more fine-grained RBAC policies where hybrid
hierarchy is needed.

1. Introduction
Role Based Access Control (RBAC) has become

widely accepted as a promising alternative to the
traditional discretionary access control (DAC) and
mandatory access control (MAC) approaches [3, 4, 5, 12].
In RBAC, permissions are assigned to roles and users are
made members of roles. An RBAC approach is policy-
neutral and flexible. Users can be easily reassigned from
one role to another if needed, and roles can also be
granted new permissions or existing permissions can be
easily reassigned if the function of a role changes.

A crucial challenge for RBAC systems is the
development of an efficient enterprise policy
administration framework. In modern large enterprise-
wide systems, there could be many roles and many more
users/permissions [14]. The relationships among the roles,
users, and permissions change continuously. Centralized
management of such large number of roles, users,
permissions and their interrelationships has several
drawbacks [11]. Hence, decentralizing the administration
of RBAC policies without losing the central control is a
challenging goal for system designers and developers.

The use of role itself to manage the RBAC system has
become an appealing idea. Sandhu et al. [14] have
proposed an ARBAC97 (Administration RBAC ‘97)
model consisting of URA97 (User-Role Assignment ‘97),
PRA97 (Permission-Role Assignment ‘97), and RRA97
(Role-Role Assignment ’97) models, which use RBAC to
manage RBAC policies. They have further extended this
model to ARBAC99 where they separate
users/permissions into mobile and immobile
users/permissions [15], and later to ARBAC02, where
they use an organization structure to define user-role
assignment and role-permission assignment [11]. (In the
rest of the paper, we use ARBAC to refer to ARBAC97,
ARBAC99, and ARBAC02 models). However, these
models do not deal with RBAC policies with hybrid
hierarchies – where different types of hierarchical
relationships among roles co-exist [7]. In a hybrid
hierarchy, there are three types of inheritance
relationships between any pair roles. The permission-only
inheritance hierarchy (I-hierarchy, ≥i) means that the
senior role inherits all permissions of the junior role; The
activation-only inheritance hierarchy (A-hierarchy, ≥a)
means that the user who can activate the senior role can
also activate the junior role; And the permission-
activation inheritance hierarchy (IA-hierarchy, ≥) means
both. Several researchers have found that hybrid
hierarchy is necessary when a more fine-grained RBAC
model is needed. In particular, Joshi et.al. show that roles
related to A-hierarchy can be constrained by a DSoD
constraint, and A-hierarchy is suitable for permission-
centric cardinality constraints, while I-hierarchy or IA-
hierarchy is suitable for user-centric cardinality
constraints [10, 13]. Furthermore, Du et al. show that
hybrid hierarchy is particularly useful when we want to
map the policies in multi-domain systems [2].

In this paper, we propose an ARBAC07 model which
can deal with more fine-grained security policies using
hybrid hierarchies. We achieve this by redefining all the
necessary elements in the ARBAC97, ARBAC99, and
ARBAC02 models resulting in the ARBAC0797,
ARBAC0799, and ARBAC0702 models, respectively. The
overall ARBAC07 model is the combination of the three
sub-models, as shown in Figure 1. We show that the

1961-4244-1500-4/07/$25.00 ©2007 IEEE

proposed ARBAC07 model is practical and flexible in
complex situations where hybrid hierarchy is needed.

ARBAC97

ARBAC99 ARBAC02

ARBAC0797

ARBAC0799 ARBAC0702

ARBAC07

Legend:
Consists of:

Extend

Re-define

Figure 1. Relationship between ARBAC07 model and ARBAC models

The paper is organized as follows. In section 2, we
review the necessary background such as hybrid
hierarchy and ARBAC models. We present our
ARBAC07 model in Section 3. We present the related
work in Section 4 and then conclude in Section 5.

2. Background
2.1. Hybrid Hierarchy
Hybrid hierarchy was introduced in the context of the
Generalized Time based RBAC (GTRBAC) model to
facilitate specifications of fine grained policies [7]. In a
hybrid hierarchy, we have three hierarchy types:
permission-inheritance-only hierarchy (I-hierarchy), role-
activation-only hierarchy (A-hierarchy) and the combined
permission-inheritance-activation hierarchy (IA-
hierarchy) [78]. Semantically, s ≥i j means permissions
available through j are also available through s; s ≥a j
means that any user who can activate s can also activate j;
and s ≥ j means that s inherits permissions of j and the
users who can activate s can also activate j. Figure 2
shows a sample hybrid hierarchy.

r0

r1 r2 r3

r4 r5 r6 r7 r8 r9 r10

r11 r12 r13 r14 r15 r16 r17 r18

p11 p12 p13

p10

p0 p1 p2,p3 p4 p5 p6 p7,p8 p9

uLegend
I-hierarchy

A-hierarchy

IA-hierarchy

user-role-assignment

role-permission-assignment

DSoD

Figure 2. A sample hybrid hierarchy

Joshi et al. have shown that in a hybrid hierarchy, the
hierarchical relation between any pair of roles which are
not directly related could be derived [8]. It is obvious that
the three hierarchy types are transitive. For instance, if (x
≥ y) and (y ≥ z) then it implies (x ≥ z). Similarly, since IA-
relation can be considered as both I-relation and A-

relation, we have the following relations as shown in
Figure 3(a): (x <f1> y) ∧ (y <f2> z) → (x <f> z), where,
(<f1> = ≥) ∨ (<f2> = ≥) and <f> = <f1>, if <f2> = ≥ ,
otherwise <f> = <f2>.

A special case of derived relation is when an A-relation
is followed by an I-relation, as shown in Figure 3(b). We
should be very careful when analyzing its semantic. Here,
by activating x, a user assigned to x can not acquire the
permissions of z, although he can acquire the permissions
of z by activating y. This means a user assigned to x can
still acquire the permissions available through role z even
though there is no explicit relation between x and z. In
this situation, we say that x has a “conditioned” relation
with z, written as x[y] ≥i z. In [8], the conditioned derived
relation is defined as x[A](B) ≥i y, where B indicates a set
of A-paths from x to y. In this paper, we ignore set B; if B
is not empty, we simply consider it as x ≥a y without
affecting any semantics.

Now consider the case where an I-relation is followed
by an A-relation, as shown in Figure 3(c). Here, a user
assigned to x can not acquire the permissions of z, since
he can only acquire the permissions of y (by activating x)
but can not activate y. Therefore, there’s no relation
between x and z. We use ≥d to refer to both regular as
well as conditioned derived relations, as defined below:

DEFINITION 2.1 (Derived Relation): Let x and y be roles
such that (x ≥d y), that is, x has a derived relation with y.
Then the following holds: (x ≥i y)∨(x ≥a y)∨(x ≥
y)∨(∃a∈R, x[a] ≥i y). Here, we say x is senior to y and y
is junior to x.

Joshi et al. propose a complete and sound set of
inference rules to find all the possible derived relations
between any pair of roles in a hybrid hierarchy [8].

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

zx i≥ zx i≥ zx i≥zx a≥ zx≥ zx a≥ zx a≥

x

y

z

x

y

z

zyx i≥][(c) No relation(b)(a) Unconditioned relations
Figure 3. Derived relations between x and z in a hybrid hierarchy

2.2. ARBAC97
We explain the three models of ARBAC97 (URA97,

PRA97, and RRA97) by an example using the regular
hierarchy and administrative role hierarchy shown in
Figure 4 and Figure 5 (both use the standard hierarchy).

URA97 Model: URA97 has two components, one
dealing with the assignment of users to roles (the grant
model) and the other with revocation of user membership

197

(the revocation model). User-role assignment is
controlled in URA97 by the can_assign relation:
can_assign(x, y, z), where x is the administrative role, y is
the prerequisite condition, and z is the role range. For
example, can_assign(PSO1, ED, [E1]) means that a
member of the administrative role PSO1 or its senior can
assign a user who has current membership in ED to be a
member of the regular role E1. User revocation in URA97
is controlled by the similar can_revoke relation:
can_revoke(x, z), where x is the administrative role, and z
is the role range. For example, can_revoke(PSO1, [E1,
PL1]) means that a member of the administrative role
PSO1 (or a member of an administrative role senior to
PSO1) can revoke a user whose current membership is E1,
PE1, QE1, or PL1

DIR

PL1

PE1 QE1

E1

PL2

PE2 QE2

E2

ED

E

SSO

DSO

PSO1 PSO2
Figure 4. Regular roles Figure 5. Administration roles

PRA97 Model: Similar to URA97, PRA97 uses two
relations to control the role-permission
assignment/revocation: can_assignp(x, y, z), and
can_revokep(x, z), where x is the administration role, y is
the prerequisite condition, and z is the role range. For
example, can_assignp(DSO, DIR, [PL1,PL1]) means that a
member of the administrative role DSO or its senior can
take any permission assigned to the DIR role and make it
available to the regular role PL1.

RRA97 model: RRA97 distinguishes three kinds of
roles, as follows:
Abilities: roles that can only have permissions and other

abilities as members.
Groups: roles that can only have users and other groups

as members.
UP-Roles: roles that have no restriction on membership,

i.e., their membership can include users,
permissions, groups, abilities, and other UP-
roles.

Ability is a collection of permissions that should be
assigned as a single unit to a role. For example, the ability
to open an account in a banking application will
encompass many different individual permissions. It does
not make sense to assign only some of these permissions
to a role as the entire set are needed to do the task
properly. The function of ability is to collect permissions

together so that administrators can treat them as a single
unit. Assigning abilities to roles is therefore very much
like assigning permissions to roles.

Similarly, a group is a set of users that should be
assigned as a single unit to a role. The function of a group
is to collect users together so that administrators can treat
them as a single unit. Assigning groups to roles is
therefore very much like assigning users to roles.

In RRA97, operations on UP-Roles are determined by
the can-modify relation: can_modify(x, y), where x is the
administrative role and y is the role range. For example,
can_modify(DSO1, [E1, PL1]) means a member of DSO1
or its senior can create and delete roles in the range [E1,
PL1] and can modify relationships between roles in [E1,
PL1]. RRA97 restricts that ranges in all can_modify
relations do not overlap. Furthermore, the ranges in all
can_modify relations must be encapsulated, which means
the range has a single senior-most role and a single
junior-most role.

2.3. ARBAC99
 The RRA97 is unchanged in ARBAC99. ARBAC99
introduces the notion of mobile user/permission and
immobile user/permission. An immobile user/permission
can be assigned to roles only one time while a mobile
user/permission can be assigned to roles several times, as
in ARBAC97. For example, if we want to assign Adam to
ED role so that he can be familiar with the basic work in
the engineering department but we do not want him to be
assigned to any senior roles such as PL1, we can make
Adam as an immobile user. Once Adam is eligible for
other senior roles, we can make Adam a mobile user, so
that he can be further assigned to senior roles such as PL1.

2.4. ARBAC02
 Again, the RRA97 is unchanged in ARBAC02.
ARBAC02 uses two separate role hierarchies called
Organization Structure of Users (OS-U) and Organization
Structure of Permissions (OS-P) to control the user-role
and role-permission assignments. Unlike the
can_assign/can_revoke operations in URA97, its
prerequisite condition x is as defined below:

DEFINITION 2.2 (prerequisite condition for users using
OS-U): a user u is said to satisfy the prerequisite
condition x iff
Case 1: x ∈ role: ∃(x’ ≥ x), (u, x’) ∈ URA
Case 2: x ∈ org. unit of OS-U: ∃(x’ ≤ x), (u, x’) ∈ UUA

 Similarly, the prerequisite condition x for a permission is
re-defined as follows:

DEFINITION 2.3 (prerequisite condition for permissions
using OS-P): a permission p is said to satisfy the
prerequisite condition x iff
Case 1: x ∈ role: ∃(x’ ≤ x)(p, x’) ∈ PRA

198

Case 2: x ∈ org. unit of OS-P: ∃(x’ ≥ x)(p, x’) ∈ PPA.

(Note. URA: user-role assignment, UUA: user-
organization assignment on OS-U, PRA: permission–role
assignment, PPA: permission-organization assignment on
OS-P. To distinguish role and organization unit names,
we use an ‘@’ in the head of organization unit names.)
 Based on these definitions, the can-assign, can-revoke,
can_assignp, can_revokep remain unchanged.

3. ARBAC07 model
In this section, we propose the ARBAC0797,

ARBAC0799, and ARBAC0702 models in detail. These
models redefine all the necessary elements in the
corresponding ARBAC models to facilitate an RBAC
system with hybrid hierarchy.

3.1. ARBAC0797
Like the original ARBAC97 model, we still separate

the user-role assignment model (URA0797), the role-
permission assignment model (PRA0797), and the role-
role administration model (RRA0797)

URA0797 model: In URA97, can_assign(x, y, z) means a
member of the administrative role x or its senior can
assign a user that satisfies the prerequisite condition y to a
regular role in the range z. Because URA0797 needs to
deal with hybrid hierarchy, we need to redefine the
semantics of can_assign accordingly. Specifically, we
need to characterize the situation in which a user will
satisfy a prerequisite condition. Consider the example in
Figure 4, any user assigned to DIR or PL1 satisfies the
prerequisite condition PL1 because a member of DIR is
also a member of PL1. Therefore, the authors of
ARBAC97 implicitly assume that the hierarchy relation in
the standard hierarchy is “Is-a” relation [10]. In the
hybrid hierarchy, it is obvious that “Is-a” relation is
essentially the IA-relation. According to this observation,
we re-define the prerequisite condition for users as
follows:

DEFINITION 3.1 (Prerequisite condition for users in
hybrid hierarchy): A user u is said to satisfy r iff ∃r1 ≥
r, such that (u, r1) ∈URA, where ≥ is the IA-relation.

 Moreover, we need to specify the notion of range in the
hybrid hierarchy. Note that the range is just a convenient
representation of a set of roles [14], and it does not have
special semantics related to hierarchical relations. We
keep the original definition of range in ARBAC07, which
is simply a set of roles.
 Therefore, in URA0797, can_assign(x, y, z) means a
member of the administrative role x or its “senior” can
assign a user that satisfies the prerequiste condtion y to be
a member of a regular role in the range z, where the
semantics of “senior” and “satisfies” is defined definition

2.1 and 3.1, respectively. We use an example shown in
Figure 6(a) to illustrate the semantics of URA0797. Figure
6(a) shows the sub-structure of a department in the
university. The role department chair (C) is IA-senior to
the role full-time professor (FP) assuming that the
department chair is also a full-time professor. The role
part-time professor (PT) is A-senior to FP because PT
should not inherit all permissions of FP, but a user
assigned to it should be able to activate FP when needed.
Suppose the university administrator a wants to assign a
user u to a fellowship role (F) (indicating u has been
awarded the fellowship); furthermore, we add a constraint
saying that only the member of the full-time professor can
be awarded that fellowship. This semantics is captured by
can_assign(a, FP, F) in URA0797. Obviously, any
member of FP can satisfy the FP constraint and can be
assigned to F. Besides, according to definition 3.1, the
member of C satisfies the FP constraint but the member
of PP does not satisfy the FP constraint; Thus, the
member of PP can not be assigned to F. This semantics is
straight forward in the real organization; the department
chair is also a full-time professor so he can be awarded
that fellowship; the part-time professor, however, is not a
full-time professor so he can not be awarded that
fellowship. This example shows that the URA0797 model
is practical when hybrid hierarchy is needed.

PRA0797 Model: PRA0797 is the counterpart of
URA0797. The only difference is that in PRA0797, we
need to define prerequisite condition required for a
permission in presence of a hybrid hierarchy. Consider
Figure 4 again; any permission assigned to E or ED
satisfies the prerequisite condition ED, since permissions
which can be acquired through E can also be acquired
through ED. Therefore, the author of ARBAC97
implicitly assumes that the hierarchy relation in the
standard hierarchy is “Permission Inheritance” relation
[10], which is in conflict with the previous assumption of
the “Is-a” relation. In the hybrid hierarchy, we can use I-
relation to accurately capture this semantics. According to
this observation, we re-define the prerequisite condition
for permissions as follows:

DEFINITION 3.2 (Prerequisite condition for permissions
in hybrid hierarchy): A permission p is said to satisfy r
iff ∃r1 ≤i r, such that (p, r1) ∈PRA, where ≥i is the I-
relation.

Therefore, in PRA0797, can_assignp(x, y, z) means a
member of the administrative role x or its “senior” can
assign any permission that “satisfies” the prerequiste
condition y to the regular role in the range z, where the
semantics of “senior” and “satisfies” is defined by
definition 2.1 and 3.2, respectively. We use an example
shown in Figure 6(b) to illustrate the semantics of
PRA0797. Figure 6(b) shows the sub-structure of a
department in the university. The role full-time professor

199

(FP) is I-senior to the role research assistant (RA)
because a full-time professor should inherit all
permissions of a RA but he need not be able to activate
the RA role himself. The role FP is also A-senior to the
role instructor (I) because FP should not be able to
inherit all permissions of I (e.g. a full time professor that
is not an instructor can not grade students’ exam), but
need to activate I when needed. (e.g, when he is an
instructor of the course). Now, suppose the university
administrator a creates a new role full-time assistant
professor (FAP) and wants to assign any permission of
FP to FAP. This semantics is captured by can_assignp(a,
FP, FAP) in PRA0797. Obviously, any permissions of FP
can satisfy the FP constraint and can be assigned to FAP.
Besides, according to definition 3.2, the permissions of
RA also satisfy the FP constraint but the permissions of I
do not satisfy the FP constraint; thus, permissions of I can
not be assigned to F. This semantics is staight forward in
the real organization. The permissions of RA is also
contained in the permissions of FP, and can be assigned
to FAP. The permissions of I, however, are not
necessarily contained in the permissions of FP, and can
not be assigned to FAP. This example shows that the
PRA0797 model is also practical when hybrid hierarchy is
needed.

Figure 6. Examples of URA07 and PRA07

RRA0797 Model: The key notion in RRA9797 is the
encapsulated range, which is defined as follows:

DEFINITION 3.3 (Encapsulated range in RRA9797): A
range (x, y) is said to be encapsulated if ∀r1 ∈ (x, y) ∧
∀r2 ∉ (x, y), we have r2>r1⇔r2> y and r2<r1⇔r2<x.

 Intuitively, the encapsulated range has a single senior-
most role and a single junior-most role so any change
made to the encapsulated range will not cause unexpected
side effects to roles elsewhere in the hierarchy. In the
hybrid hierarchy, the hierarchical relation is defined by
derived relations ≥d between any role pair, so we re-
define the encapsulated range in hybrid hierarchy as
follows:

DEFINITION 3.4 (encapsulated range in RRA0797): A
range (x, y) is said to be encapsulated if ∀r1∈(x, y) ∧
∀r2 ∉ (x, y), we have r2 >d r1⇔r2>d y and r2 <d r1⇔r2 <d x.

 In RRA0797, we restrict the range in the can_modify
tuple to be encapsulated range defined in definition 3.4.
The operations in RRA0797 are the same as in RRA9797.

3.2 ARBAC0799
 ARBAC99 only extends the URA97 and PRA97 by
adding the notions of mobile/immobile users/permissions
as described in Section 2.3. Obviously, we can still use
these notions in ARBAC0799 since they have no
relationship with hybrid hierarchy.

3.3 ARBAC0702

In ARBAC0702, we want to adopt the notion of
Organization Structure from URA02. Here, we need to
characterize the situation under which a user will satisfy a
prerequisite condition using organizational structure. As
discussed before, the user-role assignment is determined
by the IA-relation in the hybrid hierarchy. So we have:

DEFENITION 3.5 (prerequisite condition for users in
ARBAC0702 using OS-U): a user u is said to satisfy the
prerequisite condition x iff
Case 1: x ∈ role: ∃(x’ ≥ x) (u, x’) ∈ URA
Case 2: x ∈ org. unit of OS-U: ∃(x’ ≤ x) (u, x’) ∈ UUA
where ≥ is the IA-relation in hybrid hierarchy.

 Based on these definitions, we can define the same
can_assign and can_revoke operations as in URA02.

Similarly, we adopt the Organization Structure as in
PRA02 by capturing the scenario under which a
permission will satisfy a prerequisite condition using
organization structure. As discussed before, the
permission-role assignment is determined by the I-
relation in the hybrid hierarchy. Therefore, we have:

DEFENITION 3.6 (Prerequisite condition for permissions
in ARBAC0702 using OS-P): a permission p is said to
satisfy the prerequisite condition x iff
Case 1: x ∈ role: ∃(x’ ≤i x)(p, x’) ∈ PRA
Case 2: x ∈ org. unit of OS-P: ∃(x’ ≥i x)(p, x’) ∈ PPA.
where ≥i is the I-relation in hybrid hierarchy

 Given these definitions, we can use the same
can_assignp and can_revokep relations as in PRA97/02.

3.4 Advantages of ARBAC07
 The obvious advantage of ARBAC07 is the ability to
deal with hybrid hierarchy. As discussed in Section 1, we
believe it is very important to design the administration
model that can deal with the hybrid hierarchy, which is
the main motivation of ARBAC07.
 Besides, by using a clearly defined hybrid hierarchy,
we are able to solve an ambiguity in the original ARBAC

F

FP

PP C

FAP FP

RA I
(a) Example of URA07 97 (b) Example of PRA07 97

200

model. Specifically, using standard hierarchy only, the
author of ARBAC assumes the relation of standard
hierarchy as “Is-a” relation in URA97 and as “Permission
Inheritance” relation in PRA97. In ARBAC07, we clearly
show that the user-role assignment should be determined
by the IA-relation and the role-permission assignment
should be determined by the I-relation in the hybrid
hierarchy. Therefore, we resolve this ambiguity in the
original model by using hybrid hierarchy.
 Finally, we keep all the notions and operations in the
original ARBAC models, and redefine them, as needed to
provide the semantics for ARBAC07. Hence, our
ARBAC07 model keeps all the advantages of the original
models, and extends the capability to handle the
administration of RBAC models with hybrid hierarchy.

4. Related Work
 Several researchers have studied the use of role itself

to manage RBAC policies, resulting in several role-based
administration models. Sandhu et al. propose an
ARBAC97 model consisting of URA97, PRA97 and
RRA97 [14]. URA97 defines can-assign and can-revoke
relations to manage the user-role assignment, and PRA97
is a counterpart of URA97. The fundamental idea in
RRA97 is the encapsulated range, which is a “closed”
sub-hierarchy in which every path upwards (or
downwards) goes through the same role. They later
extend ARBAC97 to ARBAC99, where the notion of
mobile and immobile user/permission is introduced. They
finally extend ARBAC97 to ARBAC02, where they use
the notion of organization structure to redefine the user-
role assignment and the role-permission assignment.
Crampton et al.’s SARBAC model was motivated by the
shortcomings of the ARBAC97 model and used the
notion of administrative scope [1]. Both of these models
use standard hierarchy.

Several researchers have found the limitations of the
standard hierarchy. Li et al. [9], after careful analysis,
have suggested that the standard hierarchy in the RBAC
standard introduces several ambiguities. Sandhu first
emphasized the necessity of using two different hierarchy
relations to allow expressing generic lattice-based policies
using RBAC [13]. Moffett et al. further show that there
are three different uses (semantics) of a role hierarchy
[10]. Joshi et al. have proposed formal definitions of three
types of hierarchies used in this paper [8].

To the best of our knowledge, little research has
addressed the issue of how to build a complete
administration model for an RBAC system with hybrid
hierarchy, which is the primary goal of our paper.

5. Conclusion and Future Work
In this paper, we have proposed the ARBAC07 model

that can be used to administer an RBAC system with

hybrid hierarchies. Our model re-defines all the necessary
elements in the ARBAC model accordingly. Moreover,
we find that the original ARBAC model has ambiguous
semantics in its user-role assignment and role-permission
assignment components, which we remove in our
proposed model. We show that our model keeps all the
advantages of the original ARBAC model and can deal
with more complex situations where hybrid hierarchy is
needed. We plan to extend this work to construct a
complete administration model for GTRBAC systems
with hybrid hierarchy and constraints.

Acknowledgements: This research has been
supported by the US National Science Foundation award
IIS-0545912.

 6. References
[1] J. Crampton, G. Loizou, “Administrative scope: A foundation for

role-based administrative models”, ACM Transactions on
Information and System Security (TISSEC), Volume 6, Issue 2,
May. 2003, pp. 201-231.

[2] S. Du, and J. B. D. Joshi, “Supporting Authorization Query and
Inter-domain Role Mapping in Presence of Hybrid Role
Hierarchy,” The 11th ACM Symposium on Access Control Models
and Technologies, USA, June 2006.

[3] D. Ferraioio, J. Cugini, and R. Kuhn, “Role-based access control
(RBAC): Features and motivations”, In Proceedings of 11th
Annual Computer Security Application Conference, New Orleans,
LA, Dec. 1995, pp. 241-48.

[4] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R.
Chandramouli,“Proposed NIST standard for role-based access
control,” ACM Transactions on Information and Systems Security,
vol. 4, no. 3, pp. 224–274, August 2001.

[5] L. Guiri, “Role-based access control: A natural approach”, In
Proceedings of the 1st ACM Workshop on Role-Based Access
Control, ACM, 1997.

[6] J. B. D. Joshi, E. Bertino, and A. Ghafoor, “Temporal hierarchies
and inheritance semantics for GTRBAC”, In Proceedings of the
7th ACM symposium on Access control models and technologies,
New York, NY, USA, 74–83.

[7] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor, "Generalized
Temporal Role Based Access Control Model," IEEE Transactions
on Knowledge and Data Engineering, Volume 7, Issue 1, Jan.
2005.

[8] J. B. D. Joshi, E. Bertino, and A. Ghafoor, "Formal Foundations
for Hybrid Role Hierarchy", ACM Transaction in Information and
Systems Security (in press).

[9] N. Li, “A Critique of the ANSI Standard on Role Based Access
Control”, to appear in IEEE Security and Privacy.

[10] J. D. Moffett and E. C. Lupu, “The uses of role hierarchies in
access control”, Proceedings of the fourth ACM workshop on
Role-based access control, 1999, pp. 153-160.

[11] S. Oh, R. Sandhu, “A model for role administration using
organization structure”, Proceedings of the 7th ACM symposium
on Access control models and technologies, Monterey, CA 2002.

[12] R. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
Based Access Control Models”, IEEE Computer 29(2): 38-47,
IEEE Press, 1996.

 [13] R. Sandhu, “Role activation hierarchies”, Proceedings of the third
ACM workshop on Role-based access control, Fairfax, Virginia,
United States, 1998, pp. 33-40.

201

[14] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97
Model for Role-Based Administration of Roles”, ACM
Transactions on Information and System Security (TISSEC),
Volume 2, Issue 1, Feb. 1999, pp. 105-135.

[15] R. Sandhu and Q. Munawer, “The ARBAC99 Model for
Administration of Roles (1999)”, In Proceedings of 15th Computer
Security Applications Conference, Arizona, US, Feb 1999, pp. 229.

202

