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Abstract—In the age of Big Data, advances in distributed tech-
nologies and cloud storage services provide highly efficient and
cost-effective solutions to large scale data storage and manage-
ment. Supporting self-emerging data using clouds is a challenging
problem. While straight-forward centralized approaches provide
a basic solution to the problem, unfortunately they are limited to
a single point of trust. Supporting attack-resilient timed release of
encrypted data stored in clouds requires new mechanisms for self
emergence of data encryption keys that enables encrypted data
to become accessible at a future point in time. Prior to the release
time, the encryption key remains undiscovered and unavailable in
a secure distributed system, making the private data unavailable.
In this paper, we propose Emerge, a self-emerging timed data
release protocol for securely hiding data encryption keys of
private encrypted data in a large-scale Distributed Hash Table
(DHT) network that makes the data available and accessible only
at the defined release time. We develop a suite of erasure-coding-
based routing path construction schemes for securely storing
and routing encryption keys in DHT networks that protect an
adversary from inferring the encryption key prior to the release
time (release-ahead attack) or from destroying the key altogether
(drop attack). Through extensive experimental evaluation, we
demonstrate that the proposed schemes are resilient to both
release-ahead attack and drop attack as well as to attacks that
arise due to traditional churn issues in DHT networks.

I. INTRODUCTION

With the sheer size of data generated in the age of Big
Data, fueled by the rapid development of cloud and Big Data
technologies, we are witnessing an extensive use of cloud
storage services for efficient and cost-effective management of
large scale data. Supporting self-emerging data using clouds
is a challenging problem. While straight-forward centralized
approaches provide a basic solution to the problem, unfortu-
nately they are limited to a single point of trust.

Several scenarios create a need for self emerging data. For
example, non-releasable private data may become releasable
due to the degradation of time-varying data privacy [10]. Other
examples include personal data of individuals (e.g., medi-
cal diagnostics information, web browsing patterns, location
trajectory patterns) collected during the childhood and adult
life of individuals. The sensitivity of such data may drop as
the individual ages and after the end of the individual’s life,
requiring self-emergence of the protected data. The timed-
release mechanism can also help audit certain time-sensitive
online events. For instance, in a secure voting mechanism,

the encrypted vote of individuals may be collected during the
polling process and the collected data may be allowed to be
accessed (decrypted) only after the end of the polling process
(release time). Similarly, an online examination scheduled to
be administered at a given time (release time) may not be
accessed before the prescribed start time.

Enabling self-emerging data release in clouds requires
mechanisms to guarantee that the encrypted data stored in
clouds are decrypted only at the release time, thus making the
raw private data self-emerge. For this purpose, the encryption
key, which is generated at the time of encryption, has to be
securely protected and delivered to the legitimate receivers
at the release time. In a naive centralized approach, the
encryption key can be secretly stored on a trusted third party
server until the release time, but this simple strategy may fail to
protect adequate privacy because of the single point of trust.
Specifically, the adversary can locate the key and focus on
breaching the security through insider attacks or the service
provider may be forced to release the key prior to the release
time which can violate the intended privacy provided by self-
emerging data.

In this paper, we present Emerge, a self-emerging timed data
release protocol for securely hiding encryption keys of en-
crypted data in large-scale Distributed Hash Table (DHT) [19]
networks. In Emerge, the encryption key is packaged, split
into multiple fragments through erasure coding [21] and routed
among the DHT nodes along a pre-determined pseudorandom
routing path pattern to the receiver so that the key can be
recovered exactly at the release time by the receiver.

The proposed Emerge protocol ensures private data to be
securely hidden and inaccessible until the release time and
enables self emergence of it at the release time. We note that
the objectives of the protocol can be significantly challenged
by adversaries controlling a sizable proportion of the DHT
network. When a sufficient number of DHT nodes are com-
promised by an adversary, s/he can either release the hidden
data before the prescribed release time (release-ahead attack)
or destroy the hidden data altogether (drop attack). These
two specific attacks in combination with traditional churn
issues [20] in DHTs constitute significant challenges to the
design of the Emerge protocol. Thus, ensuring high resilience
to churn and to release-ahead attacks and drop attacks is a



Fig. 1: Self-emerging cloud data storage system

central objective of the system design. We conduct exten-
sive experimental evaluation of the proposed protocol using
Overlay Weaver DHT toolkit [17] and the results demonstrate
that the proposed erasure-coding-based schemes provide high
resilience to both release ahead and drop attacks and as well
as to churn issues in DHT.

The rest of the paper is organized as follows. We present
the system model that supports the Emerge protocol and
discuss the potential attack and churn issues in Section II.
We then explain the proposed Emerge protocols in detail
in Section III. We evaluate the proposed techniques through
extensive experiments in Section IV. Finally, the related work
is presented in Section V and we conclude in Section VI.

II. SYSTEM AND MODELS

In this section, we first present the self-emerging cloud
data storage system, and then discuss the main challenges,
including the adversary models and churn.

A. Self-emerging cloud data storage system

There are four major entities in the self-emerging cloud data
storage system, namely the data senders, the data receivers,
the DHT network and the cloud, as shown in Figure 1. As the
owner of the data, the data senders want to protect the data
stored in the cloud from being accessed until a pre-defined
data release time. The data however needs to be accessible to
the receivers after the release time. The data senders encrypt
their data before uploading to the cloud and they use the DHT
network to make their encryption keys ‘disappear’ before the
future data release time. The encryption key automatically
appears to the receivers at the release time, allowing the
receivers to decrypt the protected data.

If we denote the start time as ts and the expected future
release time as tr, we can express the entire time period that
the data owner wants to make the encryption key disappear
as T . It is referred to as the emerging time period as the
encryption key is emerging from the DHT to the intended
receiver during T . At start time ts, the sender encrypts her data
and sends the encrypted data and encryption key to the cloud
and the DHT network respectively (shown as ‘initialize’ in

Figure 1). During the emerging time period T , the encryption
key will be packaged, split to multiple packages and routed
among the nodes in the DHT. Each package, after being stored
by a node in the DHT for a limited time period (shown as
‘hold’ in Figure 1), will be sent to the next node and gets
routed towards the receiver along a carefully designed path.
At the release time tr, the receiver can collect the packages
from the DHT network to recover the encryption key (show
as ‘recover’). She can then download the encrypted data from
the storage cloud and decrypt the data using the key. It is easy
to see that the DHT network takes the core role in the system
for the Emerge protocol. Next, we analyze the challenges and
attacks that lead to the compromise of the stored key in the
DHT network.

B. Adversary models

Based on the objective of the adversary, we define two attack
models, namely the release-ahead attack aiming to extract the
encryption key from DHT network before the release time tr
and the drop attack aiming to prevent the encryption key to
be recovered by the legitimate receiver after tr. For both the
attack models, the adversary needs to control a fraction of
DHT nodes which can be realized through Sybil attack [5],
Eclipse attack [18] or collusion with other adversaries.

In release ahead attack, the adversary, which may include
the legitimate receiver, aims to extract the encryption key from
the DHT network to decrypt the data before the release time
tr. They can collect the encryption key packages from their
controlled DHT nodes if the packages pass these malicious
nodes. This attack is effective in many scenarios that require
timed release of self-emerging data. For instance, in an online
exam scenario, if the adversary can decrypt the exam questions
before other participants, he can earn more time to answer the
questions and affect the fairness of the exam.

In drop attack, the adversary aims to prevent the encryption
key to be received by the legitimate receiver to decrypt the
data in the cloud at release time tr. The adversary can drop
the encryption key packages from their controlled DHT nodes
if the packages pass these malicious nodes. A successful drop
attack can make the encrypted data still inaccessible after the



release time tr. In those time-sensitive scenarios, this means
the scheduled activity has to be canceled. For example, the
online exam cannot be started. In addition, since the key
for the encrypted data is lost, unless the adversary releases
those dropped packages again, the encrypted data can never
be decrypted.

C. Churn impact

The data storage in DHT networks always suffers from
the churn issue [20]. The churn impact to our system can
be summarized as short-term and long-term impacts. The
short-term impact is caused by the transiently left nodes. The
nodes leave the network for a short time period, so their ID
and responsibilities have not been transferred to other nodes.
This may block the routing of encryption key packages in
the network for a short time period but its effect is limited.
However, the long-term impact is vital to our system. A node
is ‘dead’ when it leaves the network for a long time and its
ID and responsibility in the encryption key package routing is
deprived. Because of the death of the nodes, the encryption key
packages stored on them are also lost. Even if the packages
are replicated to other nodes, we note that the new nodes
also have probability p (the fraction of nodes controlled by
the adversary) to be malicious, thus significantly increasing
the chance for the adversary to get it and run release-ahead
attack successfully. For example, in the case that a package is
replicated to three nodes and two of them are dead and then
replaced by new nodes during the emerging time period T , the
probability for the adversary to get the package increases from
1− (1− p)3 to 1− (1− p)5, where p stands for the fraction
of nodes in DHT controlled by the adversary. Therefore, the
conventional replication [21] is not adopted in this paper.

Motivated by those challenges, we propose the Emerge
protocols for the DHT network to carefully package and route
the encryption key during the emerging time period T to
handle both the attack models and churn.

III. EMERGE PROTOCOLS

In this section, we present the proposed Emerge protocols
in detail. The Emerge protocol consists of three components,
namely routing path construction, initial package generation
and package routing, to be implemented in a sequential order.
Specifically, at start time ts, the sender enters DHT network as
a node. It first locally determines routing path pattern based on
the adopted pattern construction scheme and pseudo-randomly
select DHT IDs to fill in the pattern. Then, based on the pattern
and selected IDs, the sender node locally generates the initial
data packages. Finally, it sends the initial packages out and
the packages will be routed and processed along the paths to
deliver the encryption key to the receiver at the release time
tr.

Based on the adopted routing path construction schemes,
we propose three Emerge protocols and all of them are
based on the erasure coding mechanism [21]. As a common
mechanism to protect data, erasure coding [21] can divide
a data package to m fragments and recode them into n

fragments so that the package can be recovered from any m
fragments (m ≤ n). We start from the one-hop path pattern
scheme, which applies erasure coding to establish multiple
one-hope paths between sender and receiver to guarantee
attack resilience. Then, by taking dead nodes (churn) into
account, we propose the adjusted one-hop path pattern scheme
to make it resilient to churn issues by estimating the number
of dead nodes and adjusting the parameters of erasure coding
based on the estimation. After that, by dividing the entire
emerging time period T = ts − tr into several shorter time
periods, we propose the multi-hop path pattern scheme to
iteratively implement the erasure coding mechanism to route
the packages so that the lose of packages during each shorter
time period can be suppressed and the lost packages can be
recovered by multiple usages of erasure coding. To compare
the schemes in terms of attack resilience, we measure the
release-ahead attack resilience, Rr as the probability that an
adversary fails to restore the encryption key package before
the legitimate release time tr, and drop attack resilience,
Rd as the probability that an adversary fails to prevent the
encryption key package to be restored by the receiver at the
release time tr. In this paper, we desire Rr = Rd because
we expect that the proposed Emerge protocol has both good
release-ahead attack resilience and good drop attack resilience
without compromising either of them and making the protocol
vulnerable.

A. One-hop scheme

The one-hop path pattern scheme applies the erasure coding
to split the encryption key package into n fragments and send
each of them through an one-hop path to receiver to allow at
most n−m of the fragment transmissions to be unsuccessful.
In other words, n holder nodes are applied to store the n
fragments for the entire emerging time period T . We name all
the nodes selected by the sender to form the path pattern as
holder nodes. Each holder node receives package(s) from its
predecessor(s), holds(stores) the packages for a time period
(in this scheme the entire emerging time period T ) and sends
the packages to its successor(s) after that time period.

1) Routing path construction: To construct the one-hop
path pattern, we need to determine the total number of frag-
ments, n and the minimum (threshold) number of fragments
to restore the encryption key package, m. Given the maximum
available nodes that can be used to form the pattern (namely
the limited recourse), N , we can calculate the value of n and
m to maximize the attack resilience through Algorithm 1.

Algorithm 1: One-hop path pattern
Input : Maximum available node number N .
Output: Total fragment number n, threshold fragment number

m.
1 m = bN+1

2
c;

2 n = 2m− 1;

If an adversary controls at least m holder nodes, the encryp-
tion key package will be restored at start time and the release-



Fig. 2: One-hop scheme Fig. 3: Adjusted one-hop
scheme

ahead attack is successful. If the adversary controls at least
n−m+1 holder nodes, the receiver will fail to receive at least
m fragment to restore the encryption key package at release
time tr, which makes drop attack successful. Therefore, by
setting n−m+1 = m, namely n = 2m−1, we get equivalent
release-ahead attack resilience Rr and drop attack resilience
Rd.

Lemma 1. In one-hop scheme, with Rr = Rd, a larger n
makes attack resilience Rr and Rd higher.

Proof. From [15], we can get:

n

m
= (

σ
√

p(1−p)
m +

√
σ2p(1−p)

m + 4(1− p)
2(1− p)

)2 (1)

where p denotes the probability that a random DHT node is
malicious and σ is positively proportional to the Rd. To get
Rr = Rd so that the system has good attack resilience towards
both the two attacks, we need n = 2m − 1, namely n

m =
2m−1
m ≈ 2. Therefore, in equation 1, with fixed value of n

m
and p, a larger m makes σ larger and therefore Rd higher.
Since n ≈ 2m and Rr = Rd, we can conclude that lager n
makes Rr and Rd higher.

Therefore, given the limited available nodes N to form
the pattern, we need to maximize n to maximize the attack
resilience, so we set m = bN+1

2 c (line 1) to maximize m as
an integer and then get n = 2m− 1 (line 2).

2) Initial package generation: The sender generates n
initial data packages as the n fragments of encryption key
package.

3) Package routing: At start time ts, the sender node sends
the n initial data packages to the n holder nodes. The n holder
nodes hold the packages for the entire emerging time period
T . At the release time tr = ts+ T , the holder nodes send the
packages to the receiver node.

4) Security analysis: The release-ahead attack resilience is
Rr = 1 −

∑n
i=m

(
n
i

)
pi(1 − p)n−i and drop attack resilience

is Rd = 1−
∑n
i=n−m+1

(
n
i

)
pi(1− p)n−i, as the success rate

of both the attack models follows binomial distribution. In
the example shown in Figure 2 with n = 5 and m = 3,

two holder nodes are malicious. In release-ahead attack, the
two malicious holder nodes can get two fragments, which is
less than m to restore the encryption key package. In drop
attack, the two malicious holder nodes can drop two fragments,
but the receiver can still get 3 = m fragments to restore the
encryption key package at release time tr.

B. Adjusted one-hop scheme

If the emerging time period T is long, more holder nodes
may become dead, which makes their stored fragments get
lost. We can approach this problem through two solutions.
The first solution is to generate a new fragment when one
fragment is lost. However, to generate the new fragment, at
least m living fragments have to be collected by one DHT node
to restore the encryption key package and re-generate the n
fragments through erasure coding. This means the encryption
key package has to be known by one node, which significantly
increases the success rate of release-ahead attack because this
node has probability p to be malicious. In this paper, we apply
our second solution. We estimate the number of dead holder
nodes as d and reserve some fragments for them through
adjusting m and n.

Algorithm 2: Adjusted one-hop path pattern
Input : Maximum available node number N , emerging time

period T .
Output: Total fragment number n, threshold fragment number

m.
1 n = N ;
2 pdead = 1− e−

1
λ
T ;

3 d = pdead ∗ n;
4 for m = 1 to n do
5 Dif = |

∑n
i=m

(
n
i

)
pi(1− p)n−i −∑n−d

i=n−d−m+1

(
n−d
i

)
pi(1− p)n−d−i|

6 end
7 m = the value between 1 and n that minimizes Dif .

1) Routing path construction: As suggested by [1], the
node death in DHT network can be expressed by a decay
pattern, namely the exponential distribution. We can then es-
timate the percentage of dead holder nodes after the emerging
time period T to be pdead = 1 − e−

1
λT , where λ is the

average DHT node lifetime. (In [1], λ is set to 3 years, but
it can be changed for different DHT networks.) Therefore,
among the n total holder nodes, the number of dead holder
nodes should be d = pdead ∗ n, which makes the number
of living holder nodes to be n − d. To do drop attack, the
adversary should drop at least n − d − m + 1 fragments
among the n− d living fragments to make the receiver can at
most get m − 1 fragment at the release time tr and fails to
recover the encryption key package. The probability for this,
which follows the binomial distribution, can be calculated by
Pd =

∑n−d
i=n−d−m+1

(
n−d
i

)
pi(1−p)n−d−i. However, the dead

nodes have no influence to the release-ahead attack because
the adversary can collect the fragments at the beginning
of emerge process before any node death. The probability
for the adversary to collect at least m fragments from the



Fig. 4: Multi-hop scheme
total n fragments to restore the encryption key package is
Pr =

∑n
i=m

(
n
i

)
pi(1 − p)n−i. Given the maximum available

nodes N and emerging time period T , we can calculate m
and n through Algorithm 2. We first set n = N (line 1)
to maximize attack resilience(the proof is similar to that of
lemma 1), and then estimate the dead nodes (line 2-3). After
that, we try to find the value of m between 1 and n to make
Pd = Pr so that Rd = Rr (line 4-7).

2) Initial package generation: We use the same approach
as the one-hope scheme.

3) Package routing: We use the same approach as the one-
hope scheme.

4) Security analysis: In the example shown as Figure 3,
we have maximum available nodes N = 6 and estimate
pdead = 1

6 . Therefore, we can calculate n = N = 6, d = 1
we assume we get m = 3 from Algorithm 2. If there are
two malicious holder nodes and one dead holder nodes after
the emerging time period T , the adversary will fail to restore
the encryption key package with 2 < m fragments and the
receiver can successfully recover the encryption key package
with 3 = m received fragments.

Although the adjusted one-hop scheme is resilient to both
attack resilience and churn, it has two security problems due
to large emerging time period T . To better express T in time
scale, we represent T to be α times of average DHT node
lifetime, λ. We believe this is reasonable because different
DHT networks may have different average DHT node lifetime.
First, when emerging time period T is large, the percentage
(pdead) of nodes to be dead may be quite large. For example,
if we set pdead = 0.99 = 1 − e− 1

λT , we can get α = 4.6,
which means 99% fragments will be lost due to churn after
4.6 times of average DHT node lifetime, λ. In such cases, the
adjusted one-hop scheme fails to make attack resilience high.
Another issue in this context is the dead node error. An implicit
assumption for the scheme is the accuracy of the estimation.
Unfortunately, in practice, the number of dead nodes does not
always match with the estimation, which causes errors.

C. Multi-hop scheme

To solve the security problems due to long emerging time
period T in one-hop schemes, we propose the multi-hop

Algorithm 3: Multi-hop path pattern
Input : Maximum available node number N , emerging time

period T , DHT node average lifetime λ.
Output: Total fragment number n, threshold fragment number

m, number of groups of n holder nodes l.
1 for l = 1 to b5(T

λ
+ 1)2lgN−3c do

2 n = bN
l
c;

3 pdead = 1− e−
T
λl ;

4 d = pdead ∗ n;
5 for m = 1 to n do
6 Dif = |

∑n
i=m

(
n
i

)
pi(1− p)n−i −∑n−d

i=n−d−m+1

(
n−d
i

)
pi(1− p)n−d−i|

7 end
8 m = the value between 1 and n that minimizes Dif ;
9 Rr = (1−

∑n
i=m

(
n
i

)
pi(1− p)n−i)l;

10 Rd = (1−
∑n−d
i=n−d−m+1

(
n−d
i

)
pi(1− p)n−d−i)l;

11 end
12 The selected (l, n,m) maximizes min(Rr, Rd).

scheme. Instead of deploying a single set of nodes (Figure
3) to hold the packages during the entire T , we now arrange
multiple sets of nodes (Figure 4) to carry the packages in relay
from the sender to the receiver. Also, the single usage of the
erasure coding is now extended to a nested usage so that the
old packages can be merged at each set of nodes to generate
new packages and the reduced number of alive packages
can be replenished during each re-generation. Specifically, we
divide the entire long T to l pieces of short time periods,
namely T = l ∗4T . To form the path pattern, we need l sets
of nodes to carry the packages in relay and each set to take
charge of the packages for4T , namely (i−1)4T ≤ t < i4T ,
where i ∈ [1, l]. Each set contains n nodes, so the entire
number of nodes to form the path pattern is n∗l, which should
be pseudo-randomly selected by the sender node in a non-
repeated way. At the start of the ith short time period, namely
the time t = (i − 1)4T , each node in the ith set receives
one package from each node in the (i− 1)th set. Ideally, the
number of received packages should be n. However, some
packages may be lost due to drop attack (the (i− 1)th set has
malicious nodes) or churn (some nodes in the (i − 1)th set
become dead during the (i − 1)th short time period). If the
number of received packages is at least m, the node in the ith

set can still successfully merge the received packages to get
the one generating them through erasure coding (called parent
package). This parent package consists of the n new packages
and the IDs of the nodes in the (i + 1)th group. At the end
of the ith short time period, namely the time t = i4T , the n
new packages are sent to the n nodes in the (i+ 1)th group.
The whole process is then repeated during the next short time
period 4T . This routing scheme has two advantages. First,
since 4T < T , the lost packages during 4T is much fewer
than T . Second, by iteratively implementing erasure coding,
each group of n nodes can recover the lost packages caused
by drop attack or churn during the previous short time period.

1) Routing path construction: Besides the values of m
and n for erasure coding, the multi-hop scheme also needs
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(a) T = 0.1λ
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Fig. 5: Varying emerging time period T

to decide the value of l, namely the number of short time
period 4T = T

l , also as the number of sets of nodes. The
multi-hop path pattern algorithm is shown as Algorithm 3.
Assume we have determined l, since the number of maximum
available nodes is N = n ∗ l, we can get n = bNl c (line
2). Then, we estimate the dead nodes d during the short time
period 4 = T

l (line 3-4) and find the value for m (line 5-
8, same as Algorithm 2). We can then calculate the attack
resilience Rr and Rd for each value of l. Our objective is to
find the value of l that maximize min(Rr, Rd) from the range
[1 , b5(Tλ + 1)2lgN−3c], where the upper bound of the range
is estimated through simulation in Section IV.

2) Initial package generation: The sender node should first
run algorithm 3 to determine l, n,m and pseudo-randomly
choose non-repeated IDs for the selected nodes. After that, the
sender node can pretend to be the receiver node, which just
recovers the final package containing the encryption key. Then,
the sender node can split the final package into n packages
through erasure coding and assume these n packages are the
parent packages maintained by the nodes in the last set (lth

set), called lth parent packages. Next, the sender node should
split each of the lth parent package into another n packages
received by the node in the 1st set from the n nodes in the
(l − 1)th set. At this stage, the sender node should have n2

packages because there are n nodes in the (l−1)th set and each
of them sends n packages to the lth set of nodes (as shown
in Figure 4). The n packages for each node in the (l − 1)th

set can be merged to generate the parent package maintained
by it so that the sender only need to keep the (l− 1)th parent
packages to save space. By repeating this, the sender node can
get the (l− 2)th parent packages, (l− 3)th parent packages...
and finally the 1st parent packages maintained by the 1st set
of nodes, which are actually the initial packages sent from the
sender node to them.

3) Package routing: Figure 4 shows an example of multi-
hop scheme with l = 3 and n = 3. At start time ts, the
sender node sends three initial packages to the three 1st group
nodes. Each 1st group node gets three contained packages
from the initial package, stores them for a short time period
4T and send the three packages to the three 2nd group nodes
at t1 = ts+4T . Then, each 2nd group node restores a package
from the received packages, gets three contained packages,
holds them for 4T and sends them to the three 3rd group
nodes at t2 = ts+24T . Finally, each 3rd group node restores
a package from the received packages, gets the encryption key
package fragment, holds it for 4T and sends it to the receiver

node at tr to make the receiver restore the encryption key
package.

4) Security analysis: The multi-hop scheme has better
performance when the emerging time T is large. When the
Algorithm 3 gives l = 1, the output pattern is same as the one
generated by the adjusted one-hop scheme. Therefore, we can
consider the adjusted one-hop scheme to be a special case of
multiple-hop scheme.

IV. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance
and security offered by the proposed Emerge protocols. Before
reporting our results, we first present our experimental setup.

A. Experimental setup

We use an Intel Core i7 PC with 16GB RAM to simulate the
Emerge protocols through the Java-based DHT toolkit Overlay
Weaver. We invoke at most 10000 DHT node instances and
repeat each experiment for 1000 times to show the average
results. To evaluate the attack resilience, we mark a DHT
node as malicious with probability p. To evaluate the churn
resilience, we set a lifetime for each DHT node, which follows
exponential distribution suggested by [1].

B. Experimental results

In our experiments, we first evaluate the impact of varying
emerging time period T to the performance and security of
the three Emerge protocols with one-hop scheme (one-hop),
adjusted one-hop scheme (adjusted) and multi-hop scheme
(multi-hop) respectively. Then, we evaluate the impact of the
maximum available nodes N , namely the limited resource to
construct the path pattern, to the Emerge protocols. Finally,
we discuss the selection of the upper bound of l range in
Algorithm 3.

The first set of experiments evaluates the Emerge proto-
cols with varying emerging time period T . The objective of
Emerge protocol is to hold and hide the encryption key in
the DHT network for the emerging time period T . Therefore,
the value of T is an important factor to evaluate it. If the
Emerge protocol can only effectively work for short T , we
do not find its performance to be good enough to satisfy long
emerging times. A longer emerging time period T may result
in more dead nodes, which requires the Emerge protocol to be
both churn-resilient and attack-resilient. To comprehensively
understand the performance of the protocols, we measure their
attack resilience with four representative value of T , namely
short emerging time period T = 0.1λ, medium emerging
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Fig. 6: Varying path construction resource N

time period T = λ, long emerging time period T = 10λ
and very long time period T = 100λ, where λ denotes the
average lifetime of DHT nodes (e.g. three years in [1]). Since
we equally treat the release ahead attack resilience Rr and
drop attack resilience Rd, the measured R = Rr = Rd. The
maximum available nodes N is fixed to 10000. In Figure 5(a),
we measure attack resilience R with varying p for the short
emerging time period T = 0.1λ. All the three protocols show
good R. Even the protocol based on one-hop scheme, which
is most susceptible to T , can maintain quite high R when
p ≤ 0.44. However, even for short T with little churn impact,
we can see the performance of multi-hop scheme is the best.
In Figure 5(b), the emerging time period is 10 times than
the previous one, which makes the churn impact start to be
strong. For the one-hop and adjusted one-hop schemes, since
pdead = 1 − e−1 = 0.63, 63% of the n fragments has been
lost due to churn. As can be seen, since the one-hop does
not adjust n and m for this, its R directly drops to 0. In
contrast, the adjusted one-hop scheme adjusts the value of m
by estimating the number of dead nodes and its R is still
good before p = 0.26. Compared with these two schemes,
the performance of the multi-hop scheme is much better. The
reason for that is the partitioning of the entire emerging time
period T . By dividing it to multiple small pieces, the number
of dead nodes during each small time period can be reduced
and the lost fragments can also be recovered by the iterative
erasure coding. In Figure 5(c), the emerging time period T is
further increased by 10 times. Such a long T makes nearly
100% nodes to be dead for the two one-hop schemes and
results in their R = 0. In contrast, although the multi-hop
scheme is also affected, it still keeps R > 0.99 when p ≤ 0.32.
Finally, even for the very long T in Figure 5(d), the multi-hop
scheme can still maintain R > 0.99 when p ≤ 0.14. As can be
seen, all the three schemes work well for short T . The adjusted
one-hop scheme can keep good performance for medium T ,
but only the multi-hop scheme can work well even for long
and very long T .

The second set of experiments evaluates Emerge protocols
with maximum total available node N to build the path
pattern, namely the path construction resource. Our default
choice of N is 10000, which means the routing path pattern
is constructed by 10000 DHT nodes. This is acceptable for
large-scale DHT network. However, in practice, if a DHT
network is not big enough to support N = 10000, we want
to understand the impact of reduced N to the performance
of Emerge protocols by reducing N to 5000, 1000, and 100.

For this set of experiments, we set the emerging time period
T = 2λ, which has made the attack resilience of the one-hop
attack drop to 0 even for N = 10000, so we mainly focus on
the performance of adjusted one-hop scheme and multi-hop
scheme. In Figure 6(a), N is reduced to 100, which means
the routing path pattern is formed by at most 100 DHT nodes.
We can find that the attack resilience R of one-hop scheme
rapidly drops from 0.866 for p = 0.02 to 0.422 for p = 0.12.
In contrast, the attack resilience R of multi-hop scheme keeps
higher than 0.99 before p = 0.14 and drops lower than 0.5
when p is around 0.29. We can conclude that the multi-hop
scheme can still effectively work for small path pattern with
N = 100 when the probability of node to be malicious p
is not high but the adjusted one-hop scheme does not work
well. In Figure 6(b), we increase N by 10 times. Both the
two schemes have improved attack resilience. Specifically, the
adjusted one-hop scheme can make R > 0.9 for p < 0.08 and
R > 0.5 for p < 0.13, and the multi-hop scheme can make
R > 0.99 for p < 0.30 and R > 0.5 for p < 0.38. Then,
we further increase N by 5 times to 5000 in Figure 6(c). The
adjusted one-hop scheme can make R > 0.9 for p < 0.10 and
R > 0.5 for p < 0.12, and the multi-hop scheme can make
R > 0.99 for p < 0.38 and R > 0.5 for p < 0.42. We find that
the reduction way of the attack resilience R of the adjusted
one-hop scheme along the increasing p changes from a smooth
manner to a steep manner from N = 1000 to N = 5000. We
can consider p = 0.12 as the threshold. When N is small, the
R value for p < 0.12 gradually drops from 1 to 0.5 and the R
for p > 0.12 gradually drops from 0.5 to 0. In contrast, when
N is large, the R keeps close to 1 for p < 0.12 and suddenly
drops to almost 0 after p = 0.12. In Figure 6(d), the attack
resilience of adjusted one-hop scheme has little change. The
multi-hop scheme slightly increases R > 0.99 for p < 0.40.
As can be seen, the value of N can be reduced to 5000 from
10000 without losing big performance.

The goal of the third set of experiments is to reasonably
bound the selection of l in the Algorithm 3 because we have
proved the multi-hop scheme is the most effective one and
the unnecessary loops in l selection can drop the performance
of Algorithm 3. In Figure 7(a), we fix T = 2λ and measure
value of l with varying p for N = 100, 1000, 10000. We can
see that the upper bound of l happens at large p and changes
from 12 to 26 to 41 for N = 102, 103, 104 respectively so
that we can roughly summarize the increment to be twice
when N increases from 10i to 10i+1. In Figure 7(b), we
fix N = 10000 and measure value of l with varying p for
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T = 0.1λ, λ, 10λ, 100λ. We can find the upper bound of l
also happens at large p and can be bounded by 10T

λ +10. We
can then combine the finding from the two figures to conclude
that ( 10Tλ + 10) ∗ 2

lgN
lg 10000 = ( 5Tλ + 5) ∗ 2lgN−3.

V. RELATED WORK

Releasing private data to become available at a future point
in time is a challening problem. It has drawn the attention of
researchers for more than two decades. Most existing works
are based on cryptographical techniques. The most common
approach among them is the Timed-Release Encryption (TRE).
It was first proposed by May [11] in 1993. The traditional TRE
is based on either time-lock puzzle scheme [14] or interactive
trusted third party [11], [14]. Although the later one has been
updated to a non-interactive curious third party [12], [2] and
more efficient models and extensions based on that have been
proposed [4], [6], [9], the central third party still makes the
system suffer from a central point of trust. Besides TRE, some
efforts try to model the time by capturing ‘real-world-time’ [8],
[16]. In [8], the role of time server can be eliminated by
emulating the real-world time in a computational model based
on Block-chain.

Another set of research efforts related to our work is the self
destructing data systems represented by the Vanish system [7].
Vanish sends data to a DHT network, Vuze. Since Vuze
automatically deletes the stored data every 8 hours, the data
can be self destructed. However, because of Sybil attack and
hopping attack, Vanish is not safe, which was shown in [22]
and later improved in [23]. Vanish employs the use of DHT to
delete data, which takes advantage of the decentralization and
large scale features of DHT to provide natural defenses for
various attacks. In our work, we address the inverse problem
of the problem addressed in Vanish, which takes advantage of
those feature of DHT to keep data secure before the release
time and send the data automatically after the release time. Our
preliminary work on this topic [3] has studied the use of onion
routing [13] and conventional whole-package replication [1] to
support self-emergence of data in a DHT. While the approach
presented in [3] provides the basic attack resilience to release
ahead and drop attacks, it results in a significantly low churn
resilience. In this paper, we develop the novel use of nested
erasure coding to ensure a higher level of the churn resilience
of the system. As we demonstrated in the experimental results,
the proposed schemes significantly improve the resilience of
the proposed protocol to churn in DHTs for a wide range of
emerging times.

VI. CONCLUSION

In this paper, we propose Emerge, a self-emerging timed
data release protocol for supporting self-emerging data us-
ing large-scale Distributed Hash Table (DHT) networks. The
proposed schemes allow the data sender to securely hide the
encryption keys of the encrypted private data stored in clouds
such that the encrypted data becomes available for decryption
at the defined release time but remains unavailable prior to the
release time. We present a suite of routing path construction
schemes for securely storing and routing encryption keys in
DHT networks that protect an adversary from inferring the
encryption key prior to the release time (release-ahead attack)
or from destroying the key altogether (drop attack). Our
experimental evaluation using Overlay Weaver DHT emulator
toolkit demonstrates that the proposed schemes are resilient to
both release-ahead attack and drop attack as well as to attacks
that arise due to traditional churn issues in DHT networks.
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