Access Control Model
Foundational Results

Lecture 3
Jan 20, 2015
Objective

- Understand the basic results of the HRU model
 - Safety issue
 - Turing machine
 - Undecidability
Protection System

- State of a system
 - Current values of
 - memory locations, registers, secondary storage, etc.
 - other system components

- Protection state (P)
 - A system state that is considered secure

- A protection system
 - Captures the conditions for state transition
 - Consists of two parts:
 - A set of generic rights
 - A set of commands
Protection System

- **Subject** (S: set of all subjects)
 - Eg.: users, processes, agents, etc.
- **Object** (O: set of all objects)
 - Eg.: Processes, files, devices
- **Right** (R: set of all rights)
 - An action/operation that a subject is allowed/disallowed on objects
 - Access Matrix A: $a[s, o] \subseteq R$
- **Set of Protection States**: (S, O, A)
 - Initial state $X_0 = (S_0, O_0, A_0)$
State Transitions

\[X_i \xrightarrow{\tau_{i+1}} X_{i+1} \text{ : upon transition } \tau_{i+1}, \text{ the system moves from state } X_i \text{ to } X_{i+1} \]

\[X \xrightarrow{*} Y \text{ : the system moves from state } X \text{ to } Y \text{ after a set of transitions} \]

\[X_i \xrightarrow{c_{i+1} (p_{i+1,1}, p_{i+1,2}, \ldots, p_{i+1,m})} X_{i+1} \text{ : state transition upon a command} \]

For every command there is a sequence of state transition operations
Primitive commands (HRU)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create subject s</td>
<td>Creates new row, column in ACM; s does not exist prior to this</td>
</tr>
<tr>
<td>Create object o</td>
<td>Creates new column in ACM o does not exist prior to this</td>
</tr>
<tr>
<td>Enter r into $a[s, o]$</td>
<td>Adds r right for subject s over object o</td>
</tr>
<tr>
<td></td>
<td>Ineffective if r is already there</td>
</tr>
<tr>
<td>Delete r from $a[s, o]$</td>
<td>Removes r right from subject s over object o</td>
</tr>
<tr>
<td>Destroy subject s</td>
<td>Deletes row, column from ACM;</td>
</tr>
<tr>
<td>Destroy object o</td>
<td>Deletes column from ACM</td>
</tr>
</tbody>
</table>
Create subject s

- Creates new row, column in ACM;
- s does not exist prior to this

Precondition: $s \notin S$

Postconditions:

- $S' = S \cup \{ s \}$, $O' = O \cup \{ s \}$

- $(\forall y \in O')[a'[s, y] = \emptyset]$ (row entries for s)
- $(\forall x \in S')[a'[x, s] = \emptyset]$ (column entries for s)
- $(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$
Primitive commands (HRU)

Enter \(r \) into \(a[s, o] \)

Adds \(r \) right for subject \(s \) over object \(o \)

Ineffective if \(r \) is already there

Precondition: \(s \in S, \ o \in O \)

Postconditions:

\[S' = S, \ \ O' = O \]

\[a'[s, o] = a[s, o] \cup \{ r \} \]

\[(\forall x \in S')(\forall y \in O') \]

\[((x, y) \neq (s, o) \rightarrow a'[x, y] = a[x, y]) \]
System commands

- [Unix] process p creates file f with owner read and write (r, w) will be represented by the following:

 Command $create_file(p, f)$
 Create object f
 Enter own into $a[p,f]$
 Enter r into $a[p,f]$
 Enter w into $a[p,f]$
 End
System commands

- Process p creates a new process q

 Command *spawn_process(p, q)*

 Create subject q;
 Enter *own* into *a[p,q]*
 Enter *r* into *a[p,q]*
 Enter *w* into *a[p,q]*
 Enter *r* into *a[q,p]*
 Enter *w* into *a[q,p]*

 End

 Parent and child can signal each other
System commands

- Defined commands can be used to update ACM

 Command `make_owner(p, f)`
 Enter `own` into `a[p,f]`
 End

- Mono-operational:
 - the command invokes only one primitive
Conditional Commands

- Mono-operational + mono-conditional

Command $grant_read_file(p, f, q)$

- If own in $a[p,f]$
 - Then
 - Enter r into $a[q,f]$
- End
Conditional Commands

- Mono-operational + biconditional

Command `grant_read_file(p, f, q)`

If \(r \) in \(a[p,f] \) and \(c \) in \(a[p,f] \)

Then

Enter \(r \) into \(a[q,f] \)

End

- Why not “OR”??

Executing command: `grant_read_file`

is equivalent to executing commands:

`grant_read_file1; grant_read_file2`
Fundamental questions

- How can we determine that a system is secure?
 - Need to define what we mean by a system being “secure”
- Is there a generic algorithm that allows us to determine whether a computer system is secure?
What is a secure system?

- **A simple definition**
 - A secure system doesn’t allow violations of a security policy

- **Alternative view: based on distribution of rights**
 - **Leakage of rights**: (unsafe with respect to right r)
 - Assume that A representing a secure state does not contain a right r in an element of A.
 - A right r is said to be leaked, if a sequence of operations/commands adds r to an element of A, which did not contain r
What is a secure system?

- Safety of a system with initial protection state \(X_o \)
 - Safe with respect to \(r \): System is *safe with respect to \(r \)* if \(r \) can never be leaked
 - Else it is called *unsafe with respect to right \(r \).*
Safety Problem: formally

- Given
 - Initial state $X_0 = (S_0, O_0, A_0)$
 - Set of primitive commands c
 - r is not in $A_0[s, o]$

- Can we reach a state X_n where
 - $\exists s, o$ such that $A_n[s, o]$ includes a right r not in $A_0[s, o]$?
 - If so, the system is not safe
 - But is “safe” secure?
Undecidable Problems

- Decidable Problem
 - A decision problem can be solved by an algorithm that halts on all inputs in a finite number of steps.

- Undecidable Problem
 - A problem that cannot be solved for all cases by any algorithm whatsoever
Decidability Results

(Harrison, Ruzzo, Ullman)

- **Theorem:**
 - Given a system where each command consists of a single *primitive* command (mono-operational), there exists an algorithm that will determine if a protection system with initial state X_0 is safe with respect to right r.
Decidability Results

(*Harrison, Ruzzo, Ullman*)

- **Proof:** determine minimum commands k to leak
 - **Delete/destroy:** Can’t leak
 - **Create/enter:** new subjects/objects “equal”, so treat all new subjects as one
 - No test for absence of right
 - Tests on $A[s_1, o_1]$ and $A[s_2, o_2]$ have same result as the same tests on $A[s_1, o_1]$ and $A[s_1, o_2] = A[s_1, o_2] \cup A[s_2, o_2]$

- If n rights leak possible, must be able to leak $k = n(|S_0|+1)(|O_0|+1)+1$ commands

- Enumerate all possible states to decide
Create Statements

Create s_1; Create s_2

Discard these

Delete/destroy

...... But the condition of c_m needs to be changed

After execution of c_b
Create Statements

If Condition
Enter statement

Initially, \(A[s_1, o_2]\) is empty. After two creates of \(s_1\), the relation becomes:

\[r \in A[s_1, o_1]\]

\[r \in A[s_2, o_2]\]

Thus, \(A[s_1, o_2] = A[s_1, o_2] \cup A[s_2, o_2]\)

After two creates

Just use first create
Decidability Results
\textit{(Harrison, Ruzzo, Ullman)}

- **Proof**: determine minimum commands k to leak
 - **Delete/destroy**: Can’t leak
 - **Create/enter**: new subjects/objects “equal”, so treat all new subjects as one
 - No test for absence of right
 - Tests on $A[s_1, o_1]$ and $A[s_2, o_2]$ have same result as the same tests on $A[s_1, o_1]$ and $A[s_1, o_2] = A[s_1, o_2] \cup A[s_2, o_2]$

- If n rights leak possible, must be able to leak $k = n(|S_0|+1)(|O_0|+1)+1$ commands

- Enumerate all possible states to decide
Decidability Results

(Harrison, Ruzzo, Ullman)

- It is undecidable if a given state of a given protection system is safe for a given generic right
- For proof – need to know Turing machines and halting problem
Turing Machine & halting problem

The **halting problem**: Given a description of an algorithm and a description of its initial arguments, determine whether the algorithm, when executed with these arguments, ever halts (the alternative is that it runs forever without halting).
Turing Machine & Safety problem

- Theorem:
 - It is undecidable if a given state of a given protection system is safe for a given generic right

- Reduce TM to Safety problem
 - If Safety problem is decidable then it implies that TM halts (for all inputs) – showing that the halting problem is decidable (contradiction)

- TM is an abstract model of computer
 - Alan Turing in 1936
Turing Machine

- TM consists of:
 - A tape divided into cells; infinite in one direction
 - A set of tape symbols M
 - M contains a special blank symbol b
 - A set of states K
 - A head that can read and write symbols
 - An action table that tells the machine how to transition
 - What symbol to write
 - How to move the head ('L' for left and 'R' for right)
 - What is the next state

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>...</th>
</tr>
</thead>
</table>

Current state is k
Current symbol is C
Turing Machine

- Transition function \(\delta(k, m) = (k', m', L) \):
 - In state \(k \), symbol \(m \) on tape location is replaced by symbol \(m' \).
 - Head moves one cell to the left, and TM enters state \(k' \).
- Halting state is \(q_f \)
 - TM halts when it enters this state.

Let \(\delta(k, C) = (k_1, X, R) \) where \(k_1 \) is the next state.
Let $\delta(k, C) = (k_1, X, R)$ where k_1 is the next state.

Current state is k
Current symbol is C

Let $\delta(k_1, D) = (k_2, Y, L)$ where k_2 is the next state.
TM2Safety Reduction

Proof: Reduce TM to safety problem

- Symbols, States \Rightarrow rights
- Tape cell \Rightarrow subject
- Cell s_i has A \Rightarrow s_i has A rights on itself
- Cell s_k \Rightarrow s_k has end rights on itself
- State p, head at s_i \Rightarrow s_i has p rights on itself
- Distinguished Right own:
 - s_i owns s_{i+1} for $1 \leq i < k$

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td></td>
<td>B</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td></td>
<td></td>
<td>C</td>
<td>k</td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>
Command Mapping
(Left move)

\[\delta(k, C) = (k_1, X, L) \]

If head is not in leftmost command

\[c_{k,C}(s_i, s_{i-1}) \]

if own in \(a[s_{i-1}, s_i] \) and \(k \) in \(a[s_i, s_i] \) and C in \(a[s_i, s_i] \) then

delete \(k \) from \(a[s_i, s_i] \);
delete C from \(a[s_i, s_i] \);
enter X into \(a[s_i, s_i] \);
enter \(k_1 \) into \(a[s_{i-1}, s_{i-1}] \);
End

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>A</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>(s_2)</td>
<td>B</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>(s_3)</td>
<td>C</td>
<td>(k)</td>
<td>own</td>
</tr>
<tr>
<td>(s_4)</td>
<td>D</td>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>
Command Mapping (Left move)

\(\delta(k, C) = (k_1, X, L) \)

If head is not in leftmost

- Command: \(c_{k,C}(s_i, s_{i-1}) \)
 - If own in \(a[s_{i-1}, s_i] \) and \(k \) in \(a[s_i, s_i] \) and \(C \) in \(a[s_i, s_i] \)
 - Delete \(k \) from \(a[s_i, s_i] \);
 - Delete \(C \) from \(a[s_i, s_i] \);
 - Enter \(X \) into \(a[s_i, s_i] \);
 - Enter \(k_1 \) into \(a[s_{i-1}, s_{i-1}] \);

End

If head is in leftmost both \(s_i \) and \(s_{i-1} \) are \(s_1 \).
Command Mapping (Right move)

Current state is k

Current symbol is C

\[\delta(k, C) = (k_1, X, R) \]

command \(c_{k,C}(s_i, s_{i+1}) \)

if own in \(a[s_i, s_{i+1}] \) and \(k \) in \(a[s_i, s_i] \) and \(C \) in \(a[s_i, s_i] \)

then

delete \(k \) from \(a[s_i, s_i] \);
delete \(C \) from \(a[s_i, s_i] \);
enter \(X \) into \(a[s_i, s_i] \);
enter \(k_1 \) into \(a[s_i+1, s_{i+1}] \);
end

\begin{array}{|c|c|c|c|c|}
\hline
s_1 & s_2 & s_3 & s_4 \\
\hline
s_1 & A & own & & \\
\hline
s_2 & B & own & & \\
\hline
s_3 & C & k & own & \\
\hline
s_4 & & D & end & \\
\hline
\end{array}
Command Mapping
(Right move)

\[\delta(k, C) = (k_1, X, R) \]

command \(c_{k,C}(s_i, s_{i+1}) \)

if own in \(a[s_i, s_{i+1}] \) and \(k \) in \(a[s_i, s_i] \) and \(C \) in \(a[s_i, s_i] \)

then

delete \(k \) from \(a[s_i, s_i] \);
delete \(C \) from \(a[s_i, s_i] \);
enter \(X \) into \(a[s_i, s_i] \);
enter \(k_1 \) into \(a[s_i, s_{i+1}, s_{i+1}] \);

end

Current state is \(k_1 \)
Current symbol is \(C \)

\[\delta(k, C) = (k_1, X, R) \]
Command Mapping (Rightmost move)

Current state is k_1
Current symbol is C

$\delta(k_1, D) = (k_2, Y, R)$ at end becomes

```
command crighthost_{k, C}(s_i, s_{i+1})
if end in a[s_i, s_i] and $k_1$ in a[s_i, s_i]
and D in a[s_i, s_i]
then
delete end from a[s_i, s_i];
create subject $s_{i+1}$;
enter own into a[s_{i+1}, s_{i+1}];
enter end into a[s_{i+1}, s_{i+1}];
delete $k_1$ from a[s_i, s_i];
delete D from a[s_i, s_i];
enter Y into a[s_i, s_i];
enter $k_2$ into a[s_i, s_i];
end
```

$\delta(k_1, C) = (k_2, Y, R)$
Current state is k_1

Current symbol is D

$\delta(k_1, D) = (k_2, Y, R)$ at end becomes

```markdown
\[ \delta(k_1, D) = (k_2, Y, R) \]
```

Command Mapping (Rightmost move)

- **Command Mapping**
- **Rightmost move**

\[
\delta(k_1, D) = (k_2, Y, R) \quad \text{at end becomes}
\]

```
command crightmost_{k,C}(s_i, s_{i+1})
if end in a[s_i, s_i] and $k_1$ in a[s_i, s_i] and $D$ in a[s_i, s_i]
then
  delete end from a[s_i, s_i];
  create subject $s_{i+1}$;
  enter own into a[s_{i+1}, s_{i+1}];
  enter end into a[s_{i+1}, s_{i+1}];
  delete $k_1$ from a[s_i, s_i];
  delete $D$ from a[s_i, s_i];
  enter $Y$ into a[s_i, s_i];
  enter $k_2$ into a[s_i, s_i];
end
```

```
<table>
<thead>
<tr>
<th></th>
<th>$s_1$</th>
<th>$s_2$</th>
<th>$s_3$</th>
<th>$s_4$</th>
<th>$s_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_1$</td>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_2$</td>
<td>B</td>
<td>own</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_3$</td>
<td>X</td>
<td>own</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_4$</td>
<td></td>
<td></td>
<td>$Y$</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>$s_5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$b; k_2; \text{end}$</td>
</tr>
</tbody>
</table>
```
Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 \textit{end} right in ACM
 - Only 1 right corresponds to a state
 - Thus, at most 1 applicable command in each configuration of the TM

- If TM enters state q_f, then right has leaked

- If safety question decidable, then represent TM as above and determine if q_f leaks
 - Leaks halting state \Rightarrow halting state in the matrix \Rightarrow Halting state reached

- Conclusion: safety question undecidable
Other results

- For protection system without the create primitives, (i.e., delete *create* primitive); the safety question is complete in P-SPACE.

- It is undecidable whether a given configuration of a given monotonic protection system is safe for a given generic right
 - Delete *destroy, delete* primitives;
 - The system becomes monotonic as they only increase in size and complexity

- The safety question for biconditional monotonic protection systems is undecidable

- The safety question for monoconditional, monotonic protection systems is decidable

- The safety question for monoconditional protection systems with *create, enter, delete* (and no *destroy*) is decidable.
Summary

- HRU Model
- Some foundational results showing that guaranteeing security is a hard problem