IS 2150 / TEL 2810
Information Security & Privacy

James Joshi
Associate Professor, SIS

Mathematical Review
Objective

- Review some mathematical concepts
 - Propositional logic
 - Predicate logic
 - Mathematical induction
 - Lattice
Propositional logic/calculus

- Atomic, declarative statements (propositions)
 - that can be shown to be either TRUE or FALSE but not both; E.g., “Sky is blue”; “3 is less than 4”

- Propositions can be composed into compound sentences using connectives
 - Negation $\neg p$ (NOT) highest precedence
 - Disjunction $p \lor q$ (OR) second precedence
 - Conjunction $p \land q$ (AND) second precedence
 - Implication $p \rightarrow q$ q logical consequence of p

- Exercise: Truth tables?
Propositional logic/calculus

- **Contradiction:**
 - Formula that is always false: $p \land \neg p$
 - What about: $\neg(p \land \neg p)$?

- **Tautology:**
 - Formula that is always True: $p \lor \neg p$
 - What about: $\neg(p \lor \neg p)$?

- **Others**
 - Exclusive OR: $p \oplus q$; p or q but not both
 - Bi-condition: $p \iff q$ [p *if and only if* q (p iff q)]
 - Logical equivalence: $p \iff q$ [p is logically equivalent to q]

- **Some exercises...**
Some Laws of Logic

- Double negation
- DeMorgan’s law
 - \(\neg(p \land q) \iff (\neg p \lor \neg q) \)
 - \(\neg(p \lor q) \iff (\neg p \land \neg q) \)
- Commutative
 - \((p \lor q) \iff (q \lor p) \)
- Associative law
 - \(p \lor (q \lor r) \iff (p \lor q) \lor r \)
- Distributive law
 - \(p \lor (q \land r) \iff (p \lor q) \land (p \lor r) \)
 - \(p \land (q \lor r) \iff (p \land q) \lor (p \land r) \)
Predicate/first order logic

- Propositional logic
- Variable, quantifiers, constants and functions
- Consider sentence: *Every directory contains some files*
- Need to capture “every” “some”
 - $F(x)$: x is a file
 - $D(y)$: y is a directory
 - $C(x, y)$: x is a file in directory y
Predicate/first order logic

- Existential quantifiers \exists (There exists)
 - E.g., $\exists x$ is read as There exists x

- Universal quantifiers \forall (For all)

- $\forall y \ D(y) \rightarrow (\exists x \ (F(x) \wedge C(x, y)))$

- read as
 - for every y, if y is a directory, then there exists a x such that x is a file and x is in directory y

- What about $\forall x \ F(x) \rightarrow (\exists y \ (D(y) \wedge C(x, y)))$?
Mathematical Induction

- Proof technique - to prove some mathematical property
 - E.g. want to prove that M(n) holds for all natural numbers
 - **Base case OR Basis:**
 - Prove that M(1) holds
 - **Induction Hypothesis:**
 - Assert that M(n) holds for \(n = 1, \ldots, k \)
 - **Induction Step:**
 - Prove that if M(k) holds then M(k+1) holds
Mathematical Induction

- Exercise: prove that sum of first n natural numbers is
 \[S(n): 1 + \ldots + n = \frac{n(n + 1)}{2} \]

- Prove
 \[S(n): 1^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \]
Lattice

- Sets
 - Collection of unique elements
 - Let S, T be sets
 - Cartesian product: $S \times T = \{(a, b) \mid a \in A, b \in B\}$
 - A set of order pairs

- Binary relation R from S to T is a subset of $S \times T$

- Binary relation R on S is a subset of $S \times S$
Lattice

- If \((a, b) \in R\) we write \(aRb\)

- Example:
 - \(R\) is “less than equal to” (\(\leq\))
 - For \(S = \{1, 2, 3\}\)
 - Example of \(R\) on \(S\) is \{(1, 1), (1, 2), (1, 3), \ldots\)\)
 - \((1, 2) \in R\) is another way of writing \(1 \leq 2\)
Lattice

- Properties of relations
 - Reflexive:
 - if \(aRa \) for all \(a \in S \)
 - Anti-symmetric:
 - if \(aRb \) and \(bRa \) implies \(a = b \) for all \(a, b \in S \)
 - Transitive:
 - if \(aRb \) and \(bRc \) imply that \(aRc \) for all \(a, b, c \in S \)
 - Which properties hold for “less than equal to” \((\leq)\)?
 - Draw the Hasse diagram
 - Captures all the relations
Lattice

- **Total ordering:**
 - when the relation orders all elements
 - E.g., “less than equal to” (≤) on natural numbers

- **Partial ordering (poset):**
 - the relation orders only some elements not all
 - E.g. “less than equal to” (≤) on complex numbers; Consider (2 + 4i) and (3 + 2i)
Lattice

- **Upper bound** $(u, a, b \in S)$
 - u is an upper bound of a and b means $a Ru$ and $b Ru$
 - Least upper bound: $\text{lub}(a, b)$ closest upper bound

- **Lower bound** $(l, a, b \in S)$
 - l is a lower bound of a and b means $l Ra$ and $l Rb$
 - Greatest lower bound: $\text{glb}(a, b)$ closest lower bound
A lattice is the combination of a set of elements S and a relation R meeting the following criteria:

- R is reflexive, antisymmetric, and transitive on the elements of S
- For every $s, t \in S$, there exists a greatest lower bound
- For every $s, t \in S$, there exists a lowest upper bound

Some examples:

- $S = \{1, 2, 3\}$ and $R = \leq$
- $S = \{2+4i; 1+2i; 3+2i; 3+4i\}$ and $R = \leq$
Overview of Lattice Based Models

- Confidentiality
 - Bell LaPadula Model
 - First rigorously developed model for high assurance - for military
 - Objects are classified
 - Objects may belong to Compartments
 - Subjects are given clearance
 - Classification/clearance levels form a lattice
 - Two rules
 - No read-up
 - No write-down