

E-speak Revisited

Michael B. Spring, Marut Buranarach, Todd Schrubb, and Yanina Zatuchnaya
Department of Information Science and Telecommunications

University of Pittsburgh
spring@imap.pitt.edu

http://www.sis.pitt.edu/~spring

Table of Contents

Introduction...2
Overview ..3
What is e-speak...4

E-speak as a component transaction monitor4
E-speak is a distributed service..5
E-speak is a support structure..6
E-speak is an extensible system with decentralized control:7
Terminology ..9
Standards... 10

E-speak Envisioned ... 10
The System in Overview ... 11

The Design of a Marketplace... 13
Setting up the Project.. 13
Functional Architecture... 14
Structural Architecture... 16
Project Terminology.. 17
Clarifying Assumptions.. 18
Simplifying Assumptions and Mechanics... 18

Implementation of a Marketplace... 19
Vocabulary Design... 19
Interfaces and Objects.. 20
Components.. 22
Components.. 23

Producer Components.. 23
Consumer components... 24

Next Steps.. 24
Q&A Service... 24

Q&A extensions... 25
Notes Service.. 25

Notes service extensions... 25
Marketplace Components ... 26

Conclusions.. 26
Reference... 27

E-SPEAK REVISTED

MBS 2 MAY 7, 2001

Introduction

This paper describes design considerations for a distributed computing application, a
marketplace, using the e-speak infrastructure developed by Hewlett-Packard. The
University of Pittsburgh, along with a dozen other colleges and universities, received a
grant of equipment and funds for graduate student support to design applications for this
new technology and help students understand how to use the technology.1 A web site
was developed to provides information on how to write e-speak applications. The site also
explores the design process and considerations.2

The first group of students involved were those in a course on client server system design.
This course exposed students to the various paradigms for client/server design. It
included discussion of various protocol designs and exposed the students to XDR, RPC,
and RMI. A voice annotated slide presentation on e-speak and the project was developed
to help orient students. Despite our best efforts, our first experiences with e-speak missed
some important points. Based on that experience, a new annotated slide set was
developed that captured more of what we had learned. This paper is based on that
presentation.3

The marketplace design was for an “e’instruction” marketplace in the belief that students
would need minimal orientation to the problem area. Students understand instructional
processes and can work on the formalization of these processes more easily than they
could if they had to come to grips with understanding the application area first. The design
shares common elements with the design of a help desk or a knowledge management
system.

The terminology, concepts. architecture, API, and utilities of e-speak were new and
required time to learn. Hewlett Packard(HP) provided a lot of information and assistance.
At the same time, we found that even core HP staff sometimes used one term to mean
two different things and different terms to mean the same thing. The problem of
terminology and definition is compounded by the fact that e-speak is still evolving. Finally,
even if e-speak were stable and unequivocally described, it is difficult sometimes to
understand the import of e-speak because it requires a new way of thinking, a new
mindset. A recent paper by Alan Karp provides a clear and consistent overview of e-
speak.[Karp2001]

What was learned in the process of designing an application? One of the first things that
became clear was that e-speak is not a typical 2 or 3 tier client-server system. It has some
similarities to RPC and RMI. Probably, if the students had had more experience with
CORBA like architectures they would have been more ready for e-speak. The fact is that
e-speak is a non-deterministic n-tier model where n gets large very quickly. The number of

1 We would like to acknowledge the support of HP in the development of this effort. The ideas expressed in the
slide set are those of the author and do not imply the endorsement or concurrence of Hewlett-Packard.
2 The site bazaar.sis.pitt.edu provides a review of our design efforts as well as orientations to e-speak and a series
of tutorials A companion site, talad.sis.pitt.edu provides information on distributed computing generally.
3 This paper is based on a voice annotated slide show presentation providing an orientation to e-speak. The two
presentations done on e-speak are available on the web at the following addresses:
http://bazaar.sis.pitt.edu/es_ppt_over/AIntrotoESpeak.htm
http://bazaar.sis.pitt.edu/es_ppt_over/AESpeakRevisited.htm

E-SPEAK REVISTED

MBS 3 MAY 7, 2001

components and services that are interacting with each other is much higher than in
traditional client-server environment. That takes a little bit of time to get used to.

The importance of very precise interface definition became clear. The modules to be
developed were defined in terms of methods, parameters, and return values. In
retrospect, the specification was rather sloppy. It became clear as the implementation got
underway that the number of interfaces would grow dramatically. Failing to define them all
absolutely in advance for the programmers assuming they would come to agreement as
they moved forward was a mistake. Rather than converging the various components
began to diverge in functionality. We discovered toward the end, and probably should
have discovered earlier that to define those interfaces both for objects and for methods is
incredibly easy using the E-Speak Interface Definition Language (ESIDL). I am sure we
were told about ESIDL early on, but we failed to note that it was the RPCgen like utility that
facilitates the implementation.

The critical nature of the vocabulary became clear. The e-speak literature talks about the
centrality of the distributed extensible vocabulary for e-speak. It clearly is one of the more
important and attractive components of e-speak. However, most of the examples we
were exposed to involved little more than hand waving when it came to the design of the
vocabulary. We learned that vocabulary was not nearly as easy to define as one might
think. It is easy to wave your hands at problems of vocabularies early on, but there are a
series of very difficult choices that need to be made related to the vocabulary. Early on in
our efforts, working with one of our colleagues in business, we had written on the
whiteboard the phrase “The vocabulary defines the marketplace”. Nothing could be more
true. The phrase remains on the whiteboard today and will stay a while longer. If you are
going to become involved in e’services, keep in mind that next to the interfaces and the
objects passed across them, the vocabulary design is a critical component that will tell you
a lot about the rest of the design -- if you do it right.

Lastly, related to the n-tier nature of the model, it was not easy to conceptualize a service.
Interfaces to services are not straightforward. As we came to understand the nature of this
kind of marketplace, service were split into subservices, recombined into singular services,
and otherwise redefined. These new services not only had their own set of interfaces but
sometimes required a new vocabulary. It became clear that a taxonomy of services was
emerging. What was found will be described later in this paper. Beyond the taxonomy set
out in this paper, a broader taxonomy of services will emerge from best practices and
academic analysis. As examples of the various types of services emerge, the task of
modular design of those services will become much easier. For now, it will be a hard part
of the task.

Overview

It is hard to understand the significance of e-speak without a sense of the kinds of
problems it might solve. At the same time, not knowing what e-speak can do, it is hard to
define a problem for solution. Thus, getting started with e-speak presents a problem.
Should we talk about the e-speak technology and what kinds of things it might do, or
should we describe a problem that needs a new solution. The dilemma is very closely
related to the difficulty Tim Berners Lee describes in talking about the semantic web.
[Berners-Lee1999, pp 157-175]

This paper begins with a conceptual overview of e-speak. The reader would be well
served to envision the problem as one where there are 1000s of parties distributed across

E-SPEAK REVISTED

MBS 4 MAY 7, 2001

a network interacting on a distributed loosely coordinated task. In a sense it is similar to
web pages and web browsers. Maybe more to the point, consider a web site that has
pictures of an office. The cameras snap a picture when someone visits. The pages also
activate CGI scripts that look at the contacting browser and get some information. This
information is passed to another server that looks up the IP address and resolves it to a
domain name. Finally yet another program sounds a chime and displays the information
on a screen. This interaction between browsers, web servers, scripts, personal servers
and other programs provides a little better sense of what e-speak may lead to. We
imagine that ultimately many similar services, having identical interfaces, would be
provided in a marketplace where consumers having the appropriate consumer portion of
the interface would come to shop. Like the visitors to the web page, the connection would
not be constrained by prior agreement and will involve a number of programs working in
close coordination. It will be a free and open marketplace for obtaining services in much
the same way that the WWW is a free and open marketplace for obtaining pages or nodes
of information. As a corollary to this, try to imagine that the service exchanges will tend to
be micro transactions and small unit services rather than large long term connections.

The paper is divided into four parts as shown below:

n Understanding e-speak

n Designing a marketplace

n Implementing a marketplace

n Next steps – marketplaces and services revisited

What is e-speak

There are any number of ways to describe e-speak. It would seem to make the most
sense to talk about it simply at first and then add information about its functionality. E-
speak is first a component transaction monitor. In addition, it is a distributed system, a
service providing system, and a system with decentralized controls.

It is easiest to talk about e-speak in the context of a particular engine or core. However,
the most important points relate to the functionality of sets of engines and attached
services interacting as a whole. The situation is similar trying to describe the World Wide
Web(WWW) in the context of a single server with a couple of static pages. Based on
experience it is easy to conceptualize the WWW because we have a lot of experience with
it. Keep in mind that it took several years after Tim Berners-Lee had built the initial
servers, clients, and protocols, before people actually began to use them in ways we
consider obvious today. In those early days, before there were examples of what could be
done, describing the technological components was not enough to help with the
vision[Berners-Lee1999, p.31]. A similar problem exists here.

E-speak as a component transaction monitor

An e-speak engine provides access to a service. As such it is a component transaction
monitor. This means that a consumer program is able to connect to the e-speak engine,
select a vocabulary, and search using attributes and values of the vocabulary to find a
handle to one or more services. The consumer program selects a particular service, and
an interface of that service to which it is going to attach. Obviously, the consumer and
service will share that interface. Once that connection is made, the consumer can engage

E-SPEAK REVISTED

MBS 5 MAY 7, 2001

in a dialog with that service monitored by the e-speak engine. When that dialog is
completed, a monitored component transaction has occurred between the consumer and
service through the e-speak engine. This allows the e-speak engine to enable flexible
security mechanisms and permit better management of services, i.e. auditing and
accounting. This mediation is a feature that makes e-speak distinct from other distributed
computing infrastructure [HPProgCh3, p20]. As Figure 1 shows, e-speak is a component
transaction monitor.

E-speak is a distributed service

It may well be that the service is not on the local engine to which the consumer is
connected, but on some remote engine. E-speak provides a mechanism that allows the
consumer to find a service located on a remote machine. This mechanism permits
scalability for service lookups [HPProgCh5, pp 97-103]. From the consumer point of view
the service is immediately present. No knowledge about its actual location is needed.
Figure 2 shows a directory conforming to the Lightweight Directory Access
Protocol(LDAP) [RFC1777]. This LDAP service is the mechanism that e-speak uses to
locate services residing on remote machines that have “advertised” their availability. In
reality there are a couple different mechanisms by which remote services might be found.

E-speak Engine

E-speak Services

Consumer

Figure 1: E-speak is a component transaction monitor

Figure 2: E-speak is a distributed service

Consumer

LDAP E-speak Services

E-speak Engine

E-speak Services

E-speak Engine

E-speak Services

E-speak Engine

E-speak Services

E-speak Engine

E-SPEAK REVISTED

MBS 6 MAY 7, 2001

The key point is that a consumer can connect to a particualr engine and find services
located on other engines. It can then access those services and use them as if they were
local services. This makes e-speak is a distributed service.

E-speak is a support structure

Like CORBA, e-speak provides a variety of services that support the development of
e’services. There is some debate as to whether any services should be marked as
special and differentiated from externally provided services. The goal, as put forward by
Karp[Karp2001] is to minimize the set of special services. E-speak provides support for
registration, advertising and finding based on vocabularies. It also has an extensive set of
utilities that allow it to operate as a certificate authority and subsequently, using these
certificates to provide for authentication and authorization. E-speak also provides for
secure communications between engines and for access to the engines through servlets
or other CGI type technologies operating as attachments to web servers. Each of these is
described in a little more detail below.

Advertising and finding based on vocabularies are two sides of the negotiation process.
As shown in Figure 3, when an e-speak service registers, it defines itself in terms of values
of attributes of a vocabulary. The vocabulary and the attribute value pairs associated with
a service may be stored in a local repository on a single engine or they may be advertised
to other engines in a community using a Lightweight Directory Access Protocol(LDAP)
service. A consumer may go to a local e-speak engine and use the local repository to find
a service (the dashed line). If LDAP is used to share knowledge about service availability,
the request to the local engine will use LDAP to access a directory server. Using the
information obtained, the local engine can connect the consumer to the engine with the
desired service and make access to that service available. The consumer, through
multiple engines, then connects to and uses the service.

Engines, services, and consumers all have certificates. The service is provided with a
certificate that allows it to connect to an engine and register or advertise itself. The
consumer is provided with a certificate that allows it to find a service on an engine. A
consumer will have certificates signed by the service that allow them to use the service.

Interestingly, one e-speak service might be an authorization service that would provide

LDAP E-speak Services

E-speak Engine

E-speak Services

E-speak Engine

Certificates

 Consumer

Figure 3: E-speak is a support structure for advertising, finding, and authentication

E-SPEAK REVISTED

MBS 7 MAY 7, 2001

certificates to consumers. Services could indicate to the authorization service that they will
trust individuals authorized by it. Services would then trust certificates from the
authorization service as having legitimate access to their particular service. Thus, every
service would not need to authorize every individual user. They could simply agree to
trust the users certified by some centralized authority. This may help the reader to get a
sense of how the n-tiered client server architecture begins to approach a large n. It should
be noted that there are ways in which all consumers might be allowed to connect to an
engine making it a public engine. Similarly all attached services might provide all
consumers authorization to connect to them. So e-speak can be run, as it is at the
University of Pittsburgh, as a very open environment. Or it can be run in a very controlled
environment where only selected consumer programs can connect to certain engines and
then only connect to certain services, and further only to selected interfaces of those
services.

If a consumer is connecting to the service on a remote engine (as shown by the dashed
line in Figure 4), the exchange between the e-speak engines is secured in an SSL fashion
such that communications that cross firewalls are encrypted while traveling through
unprotected parts of the internet.

Finally, the fact that requests are encapsulated as XML documents makes it possible to
locate and access services using a web browser connected to a web server that has an
adapter to the e-speak engine in the form of a servlet[HPProgSec4, pp 195-286]. This so
called loosely coupled model for e-speak is still not full defined, but it provides a sense of
the kind of connection flexibility provided by e-speak

E-speak is an extensible system with decentralized control:

With these fundamentals in mind, it is important to talk about how e-speak provides an
extensible system. Given the distributed certificates authority utilities, e-speak engines can
be grouped in any number of formal and informal ways, with whatever level of secure

LDAP

Secure

E-speak Services

E-speak Engine

Web Server
with Servlets

E-speak Services

E-speak Engine

E-speak Services

E-speak Engine

 Consumer

Figure 4: E-speak is a support service for secure transactions and open access

E-SPEAK REVISTED

MBS 8 MAY 7, 2001

authentication is desired. Further, the vocabularies used for registration, finding, and
advertising in an e-speak environment may be defined on an individual, group, large
community, national, or international level. There is a standard vocabulary, basically the
vocabulary for defining vocabularies. Communities can use few or many vocabularies to
advertise their services. As a result, the markets may be simple or complex, small or
large. This is one of the most significant benefits of e-speak, but as with any form of
decentralization, it represents a potential for fragmentation rather that coalescence.

One important way in which e-speak is extensible is in the dynamic composition of
services. It is easy to imagine basic services that people wish to access. This is the
simplest form of e-speak. It is also easy to imagine that someone might write a service
that would coordinate the access to two or more basic services. It is also not hard to
imagine that someone else might write a service that would make the job done by several
basic services easier, even though it would never be used directly by a consumer. These
services could be provided by the market maker or by third parties.

The dashed line on Figure 5 shows a consumer connecting to the e-speak engine,
querying the repository, which may be connected to a LDAP server working as a joint
repository for multiple engines, and finding a particular service. The consumer is given a
handle to a service and accesses the service through the e-speak engine. The solid line
on Figure 5 shows a consumer connecting through some sort of front-end service to a
basic service. This might be an enhanced rating service. The consumer finds the particular
service they want through the front-end service. The consumer then interacts with the
basic service, which may in turn use a back-end service. This back-end service might be
some kind of document delivery or translation service. The service returns the object to the
basic service. In this case, the consumer does not even know that the back-end service
existed. It need only be known to the basic service. And the basic service might respond
directly back to the client, or as the case in the example that we show here, it is
responding back to the client through the front-end service. So vocabularies, and services,
infrastructure, and marketplace that are supported are all extensions of the e-speak, are
all ways in which it may be extended. In the implementation section, a more precise
definition of these service categories will be provided along with some thoughts about their
design and implementation.

E-speak Services

Repository

E-speak Engine

Basic Services Back-end Services

Front-end Services

Client

Figure 5: E-speak is decentralized and extensible

E-SPEAK REVISTED

MBS 9 MAY 7, 2001

Terminology

The terminology used to describe e-speak can be confusing to someone trying to get a
hold of all these new concepts at once. The following terms are important to understand
and distinguish.

E-speak engine The e-speak engine is the basic unit of e-speak platform. The engine is
the component transaction monitor. It is roughly parallel to an ORB in
CORBA or to the web server in the WWW.

Repository The repository is attached to the engine locally or through a directory
server and holds the vocabularies, attributes, and values used for both
registration and for finding.

Service Bus The Service Bus is the distributed collection of engines, repositories, and
services. The engines may be located behind firewalls with the ability to
securely connect to other engines and communicate. Given the
decentralized nature of e-speak, those collaborations are defined on an
engine-by-engine basis. The service bus is a virtual bus; that is to say
that it’s a bus across which consumers connect to providers. There is no
requirement that those be on the same physical e-speak engines. There
may be multiple separate e-speak engines that provide, from the
consumer’s point of view, a singular service bus for identifying services.

SFS The Service Framework Specification(SFS) specifies the nature of
conversations in which consumers and the producers will be engaged.
Keep in mind that the line on the various figures between consumers and
services may well represent an extended dialog, or multiple interchanges
between a consumer and a provider. The structure of these dialogs is
defined by the SFS of e-speak or some other dialog convention such as
UDDI.

Registration Registration is a core service of the engine. It allows a service to make
itself known so that it can be found.

Advertising Advertising is a core service related to registration. When registering, a
service may choose to advertise itself, which uses LDAP to make itself
known to other engines. There are various forms of advertising.

Finding Finding is a core service used by a consumer who would like to find a
registered service. Services are found in terms of attribute-value pairs in
the vocabulary and in terms of the nature of the interface that is
supported by that service. Like registration, there are variations on
finding. From the e-speak perspective, a group is formed when a set of
engines use a shared LDAP environment to allow each other to know
about services. In this case, the user does not necessarily know where
the service actually resides. It is possible for a user to identify a series of
e-speak engines or groups which are to be checked for given service. In
e-speak terminology, such a collection of engines, defined by the
consumer, is referred to as a community.

E-SPEAK REVISTED

MBS 10 MAY 7, 2001

Standards

E-speak’s communication protocol (ESIP) interoperates with the traditional transmission
protocols, i.e. TCP, IP, or HTTP and wireless communication protocols, i.e. WAP or IrDA
[HPArchCh1, p13]. The messages exchanged via these protocols may be market defined
or they may conform to some existing message format such as EDI or BizTalk. These
messages may be enclosed within envelopes as simple as mail or more appropriately
something like SOAP. The structure of the dialog, as we have already suggested would be
defined by such protocols as UDDI or SFS.

The security model of E-speak bases on the Simple Public Key Infrastructure (SPKI) and
Session Layer Security (SLS) Protocol. SPKI provides authorization mechanism using
certificates. SPKI certificate [RFC 2692, RFC 2693] can also interoperate with the ISO/IEC
X.509v3 certificate [RFC 2459]. The SLS protocol provides secure communication
between clients, e-speak cores and resource handlers [HPArchCh5, pp121-139]. The SLS
protocol is based on Transport Layer Security Protocol (TLS) [RFC 2246].

The role of XML is multiple. Obviously, it plays a role in things like document translation
and document transformation, but it also plays the role of being the basic syntax in the
exchange of data structures that are to be moved back and forth, consistent with the
growing use of XML as a Data Definition Language (DDL).

E-speak Envisioned

The preceding section offers a technically correct introduction to the e-speak technology.
There is much more behind each of the points made and the interested reader is referred
to the architectural specification of e-speak and to the JESI API for more details. While the
description provided is reasonable, it is incomplete. The limits of the language and the
graphics we have used may have simplified the picture too much. Keeping the following
eight points in mind will help to expand the vision.

First, an accurate vision of e-speak is one where there are millions of machines engaged
in thousands of marketplaces: Thousands of machines will be providing services in
individual marketplaces consisting of hundreds or thousands of servers at varying levels of
coordination. Tens of thousands of users connecting to the services will engage in
millions of transactions. If you can adopt this mindset, it is a little bit easier to see that
whether decentralized services come or go, given that there are hundreds or thousands of
similar services will insure continued access. Thus, the system is meant to help negotiate
relationships between tens of thousands of users of services and thousands of providers
of services, where many of those services are similar. This is different conceptually from a
mindset that views Amazon.com as a single critical service provider. Rather, imagine that
bookstores on the service bus are like gas stations on your way to work, except that the
ones on the service bus are all equally convenient to access. If one or another closes,
there are always more to access.

Second, if this is to come about, it is essential that someone structure the marketplace in
which service consumers and services providers can meet. If the marketplace is poorly
constructed consumers and providers will find rendezvous difficult and will shun the
marketplace. If that marketplace is well constructed and easy to use, a lot of people will
come and use it.

E-SPEAK REVISTED

MBS 11 MAY 7, 2001

Third, it is important to understand that there will be competing service providers, not a
single monolithic provider. Move aside Amazon.com; enter lots of smaller specialized e-
tailers who can now efficiently compete because they can make use of marketplace and
infrastructure services as needed. Although there are situations in which we can imagine
e-speak working well with only a single service provider, the technology is not very
compelling when there are not competing service providers.

Fourth, the offerings will be dynamic. Given a well defined interface across which a
transaction occurs, the processes that are engaged behind that interface, can be changing
on a very dynamic basis, that new players can be coming in offering better services
because of behind the scene processes.

Fifth, it is important to understand that every e-speak marketplace can operate under a
distributed certificate authority. This is in contrast to the current model, which has a limited
set of recognized certificate authorities such as VeriSign. Distributed certificate
authoritiess, within marketplaces will become commonplace. E-speak allows communities
to be developed, and if they decide that there is a need for authentication, that e-speak
community can become its own certificate generating authority. With time, this small
community may distribute certificates that will be trusted by another community. In this
way, e-speak will contribute to the “web of trust” conceptualization. The central notion here
is that we now have the capability of securing an environment in which local communities
have the capability to authenticate their own members and further to act as trusted
partners within a “web of trust.”

Sixth, envision many intermediaries in the process. Where one of the visions of the WWW
has been disintermediation, as Brown and Duguid have suggested, there is likely to be a
reintermediation on the web.[Brown2000] E-speak is one mechanism that might allow for
intermediaries of this new form. The market place maker is one form of the intermediary.
But others can define intermediary services between consumers and providers. So, there
are multiple layers that might be imagined. We have already suggested the notion of rating
services as intermediaries.

Seventh, think about smart devices as consumers. As hand-held and embedded devices
populate the web, they can connect to the marketplace and access services that enhance
their capabilities.

Eight, and finally, it is important to imagine an environment populated with knowledgeable
consumers. The process of working in the World Wide Web today has been a process of
asking for information, simply asking for a document. And much of what is going on in this
environment has been a matter of simply browsing pages. The e-speak environment
imagines that consumers are somewhat more aware of what they are looking for and of
their ability to conduct transactions. A smart consumer wants a particular service, knows
how this service is defined, knows the transaction will be secure, and is willing to go out
into environment and find and use it. This is a little bit different from a casual browsing that
we image in many of the World Wide Web situations.

The System in Overview

Figure 6 attempts to show e-speak in its totality. Beginning at the far left, a consumer
exists behind a firewall. This consumer may be an individual looking for a service via an
interactive program or a program triggered by an event in an Enterprise Resource
Planning System that is looking for a product. The consumer makes a connection to the
local e-speak engine. That e-speak engine, like the consumer program, resides on a

E-SPEAK REVISTED

MBS 12 MAY 7, 2001

machine behind a firewall – indicated by the heavy dotted line. If they are looking for a
service, which does not happen to be on that engine, the engine seeks information
provided by an LDAP server. The request is transferred securely as an XML document
through the Internet and across the other firewall to another e-speak engine. In the center,
in addition to the centralized directory, there may be some form of open marketplace. The
light-green circle through which the solid line is going suggests that the consumer is
making use of some kind of marketplace service to access the basic service. It may
indeed be in a process of actually connecting to a remote service based on the LDAP

information. Via the marketplace service, the consumer again securely traverses the
firewall and transfers information across the Internet in a secure fashion to the e-speak
engine that has the actual service that user wants to engage. Notice that centralized e-
speak engine, as well as remote e-speak engine on the far right, have certificate
authorities (CA) attached. In order to register, find, and engage services, both the provider
and the consumer will use certificates and webs of trust to establish their right to undertake
actions.

Finally, It is important to understand that once that secure connection is made through the
firewalls to the remote engine, the single line may represent a whole series of interactions
between the consumer and the provider. This set of interactions represents a dialog or
conversation that will be defined in some framework. Note that there are many e-speak
engines, some of which are not engaged in this particular transaction, that may have
consumers attached to them and that may go through some centralized kind of
marketplace. The marketplace may provide any number of different kinds of services. It is
possible to imagine basic services that consumers are attaching to on the engine on far
left and it is possible that services that are advertised might come from multiple engines in

LDAP

E-speak
Engine

CA

E-speak

CA

E-speak
Engine CA

E-speak
Engine

Figure 6: The Big Picture

E-SPEAK REVISTED

MBS 13 MAY 7, 2001

a community; some of which are selected for a given transaction or conversation and
some of which are not. This is the broad vision of e-speak.

The Design of a Marketplace

Setting up the Project

The goal of this effort was to build a marketplace and core services. The project
constituted the final assignment in a client server course. Because it would take place as
a group project, and because a high degree of coordination was required, it was decided
to structure it along the lines of a software engineering project. The instructor would serve
as the architect, the graduate students supported by HP as designers, and the students in
the course as implementers in groups. The architect spent time prior to the term building a
vision for the project including both a functional and structural model. A number of
potential projects were considered and the capabilities and requirements of e-speak
system were explored. As the fall term began, the graduate students who were to design
the system began to define particular interfaces in terms of the vision set out by the
architect. This was more difficult than we imagined for two reasons.

n It wasn’t clear that the architect’s vision was correct. In essence the vision was one
where the vast majority of services were representations of individual students or
documents. Thus, a student could post a document that would reside as methods for
delivering the document, translating it, billing for it, streaming it, etc. Similarly,
students would connect to the service bus as available and share their expertise
interactively. Assuming that 100’s of students were involved, there would always be
some subset of the possible services attached to be found.

n It took a long time to communicate this vision to the graduate students who had to do
the design. It is not clear that the graduate students internalized the vision. For one
thing, they were focused on very immediate problems of getting code to function. The
system as it finally emerged had many more “brokers” than the architect imagined. In
essence what the instructor had imagined as producer services accessed by
consumer services became consumers of a broker service. The broker service was
then also the provider of service to the consumer. In essence, the vision of a very
decentralized system of service providers and consumers was transformed step by
step into a more conventional monolithic database application. The DBMS and the
repository began to provide duplicate functions.

The vision also had to be communicated to the graduate students who would actually
implement the code. Building a vision, communicating it, and implementing it, present real
challenges in terms of communication, particularly in an environment where the vision is
based on a new mindset. The reader is invited to assess our introduction to e-speak (see
reference in the introduction). While the feedback on this presentation has been positive,
we conclude that it was lacking in communicating the mindset needed for e-speak and the
essential vision of the marketplace.

The designers and coders tended to build the kinds of systems they built in the past. The
vision of the architect, which we believe is consistent with the new capabilities provided by
the e-speak, was not adequately communicated to the participants.

Despite the problems, the plan to have architects, designers, and implementers appears
sound. A single individual serving as an architect can bring clarity to the project and

E-SPEAK REVISTED

MBS 14 MAY 7, 2001

resolve questions about the modification of the design. The designers should focus on the
interfaces, objects, and persistent stores. As will be described below, the use of javadoc
and the ESIDL compiler greatly simplify this task. The high level vision for the project set
out here is tempered by experience over the first iteration of the effort. The insight gained
by hindsight is significant. While it was clear that the task was to build a marketplace, it
was not as clear that marketplace development was more involved than simply defining
services and vocabularies.

The initial vision for the system was one with many micro transactions. They are micro
transactions in two ways. They are transactions between individual consumer and
provider – not between collectives. Second, the services are as small as possible. Rather
than extended interfaces, to huge monolithic services, we wanted small focused services
that could be combined in different ways to provide more significant services. Even in the
third iteration of the design, we are struggling to make the services less monolithic. At
every turn, the designers find another reason to create brokers rather than individual
services. The logic is compelling, but the result is that the design gravitates to big
monolithic brokers rather than sets of services that compete.

The marketplace envisioned was one made up of programs representing a set of talented
graduate students. Surrounding the traditional classroom experience these students
constitute an expertise marketplace. Students help each other on a regular basis to do
things, so the expertise of the individual students creates a new kind of the market place
for the exchange of that expertise. Students create programs, they create notes, they
create papers. These are all artifacts that may have value to other students.

There are additional services that we can envision for this marketplace, but basically, it is a
marketplace of experts and consumers of that expertise. From a design perspective,
students and their expertise are no different than vendors in a broader marketplace. The
various artifacts that students produce, answers to questions and notes they make, are
like products.

Given this vision of the marketplace, the next step is to provide the support services. The
support services might involve transaction monitoring, with the marketplace monitoring the
cost of a question and answer session and inputting that information into a billing service.
The assessment could be based on the amount of time it took, or the number of words
exchanged, etc. The marketplace also needs to provide a billing service and along these
lines, might provide for anonymity through escrow services.

Functional Architecture

Figure 7 shows a functional overview of the system. The system surrounds and
supplements a traditional classroom environment. It consists of a collection of services
grouped roughly into four classes – Q&A, Notes, Whiteboard, and Auction.

E-SPEAK REVISTED

MBS 15 MAY 7, 2001

The first service, the flagship service of the marketplace, is the Q&A service. It is based on
the simple notion that students do ask each other questions all the time. The goal was to
make what happens in same time/same place situations work across space, and
potentially across time. A student would attach to the e-speak bus and advertise
themselves as an expert able to answer selected questions. When they answer a
question, some form of exchange will take place representing a charge. Related to the
service is another for storing the transaction – i.e. questions and answers might be stored
for the future use. Thus there might be knowledge base service built on the Q&A service
that would allow a question to be answered from the store if an expert were not available
on line.

Down at the bottom left-hand corner is Library service. This represents a collection of
individual Note services. We imagined that some forms of presentation might be so
compelling as to cause students to buy them. The instructor, by way of experimentation
took a half dozen powerpoint presentations and voice annotated them. He then invited
students to look at them and assess how much they were worth. As we explored this
notion, we found all sorts of ideas. Some students make batter class notes than others --
these might be exchanged. Some students take class notes in their native language –
these might be of value to some. As we explored this notion it began to expand – format
translations on the fly, streaming presentation of notes, etc.

Students might want a Chat-Whiteboard service focused on their academic area or area of
personal interest. A Calendar service provided an opportunity to begin to explore how
general failures of group calendaring might be overcome through a brokering system.

Finally, the vision imagined a local Auction service where the graduate population, which
involves many international students, might use the service to buy apartment furniture

Classroom
Instruction

Q& A Service

Auction Service

Knowledge Base
Service

Calendar Service

Chat –Whiteboard
Service

Library
Service

E-speak

Figure 7: Functional Architecture for an E’instruction Marketplace

E-SPEAK REVISTED

MBS 16 MAY 7, 2001

when they first arrive and to sell it when they leave. Such a limited auction might allow
students to exchange items at low cost.

Structural Architecture

Given this basic functionality, the structural architecture defines the arrangement of
infrastructure and marketplace services needed to support them. The design process
failed to structure the dependencies and the information needed so that essential services
were defined first allowing the system to be constructed efficiently. Despite the failure to
define construction dependencies, the structural vision was correct.

As shown in Figure 8, consumers (students) would attach to basic services like Q&A or
Notes through the core. Notes services and Q&A services registered in terms of the area
of expertise, the nature of the service (interactive, mail, etc.) The student connects to the
core. The core, in one case, connects to the given Q&A service. A student at the lower left
is shown connecting to one of the Q&A services. The Q&A Service then connects to
another individual who provides the answer. Note that the Q&A service makes a
connection to the banking service to record the transaction.

Another student (brown) makes a connection through the core to one of the Notes
services (tan). The Note service makes use of a Delivery Service to provide the document
to the consumer. In this case, the Delivery service is an infrastructure service for the Note
service. Again, like the Q&A service, the Note service makes use of the Banking service
to record the transaction.

It should be noted that the full extent of the interactions is not shown here. In
implementation, the consumers would also use the banking service to authorize transfers
to the Notes service and the Q&A Service. Indeed, as the system now stands, there are
more than a dozen services to assist, broker, support and transform basic services.

Students

Delivery
Service

Banking
Service

Q&A
Service Note

Service

Core

Figure 8: Structural Architecture for an E’instruction Marketplace

E-SPEAK REVISTED

MBS 17 MAY 7, 2001

Project Terminology

It is difficult do talk about those things for which you do not have language. This is surely
the case in the development of a marketplace. Beyond the terminology provided by HP, it
was useful to define some additional terms for the project.

Marketplace The marketplace is the collection of basic services and the services they
make use of. The marketplace is best associated conceptually with the
service bus – i.e. it may span multiple physical machines.

Market Services The marketplace services include those provided by the market maker
as well as those provided by third parties. Marketplace services are
required to make basic services work. Without them, the marketplace
cannot function. While marketplace services will normally be essential
services, they may in some cases be optional. The banking or credit
exchange system for the use of services is a good example of a
marketplace service.

Infrastructure Infrastructure services may be provided by the marketplace or third
parties. They support basic services but are not required by them. The
distinction between marketplace and infrastructure services is twofold.
First, marketplace services are owned by the market maker. Second,
infrastructure services can not be essential to the operation of the
marketplace. Infrastructure services are the services that enhance the
marketplace but are not required to make basic services work. At this
point in time, we have distinguished two forms of infrastructure services –
front-end and back-end. Back end services are those used by the basic
services and as such are generally invisible to consumer programs.
Front-end services are those that are accessible to the consumer. They
may broker or dynamically compose basic services. From a consumer
perspective, a front end infrastructure service may appear as a basic
service.

Basic Services A basic service is one that is responsible for producing a product or a
service to be acquired by a consumer.

Consumer A consumer program is the mechanism through which a basic service is
obtained by the consumer. It may be directly accessed by a human in
which case the consumer program consists of a graphical user interface
for interaction with a person, some kind of business logic to manage the
conversation, and a series of network interfaces to connect to the e-
speak service bus, and find and engage services. We believe that in
most e-speak applications this consumer program will attach to an
internal system within an organization, such as an Enterprise Resource
Planning System. The interaction will be triggered by some event –
either internal to the organizational system or on the service bus.

Producer Producer programs are in essence programs that produce basic
services. In our project, in order to generate a critical mass of basic
services, we imagined services that differed only on vocabularies. In
recognition of this, we defined a “producer program” as a program that
could generate hundreds of different basic services where the difference
in those basic services was the values of the attributes in the vocabulary

E-SPEAK REVISTED

MBS 18 MAY 7, 2001

used in registration. There is no reason why producer programs might
not produce basic services that differ in functionality but still use some
defined interface. With this in mind, we initially defined producer
programs as programs that would query a user and based on the inputs
generate code that could be compiled and registered as a service. In the
final analysis, we simply used a single piece of code that used different
values for the vocabulary attributes to register a service. Thus, many
basic services were actually producer programs that were differentiated
by the files they read at start-up time.

Clarifying Assumptions

It may still not be clear how things actually work. How is the software distributed? Where
do the services actually exist? How are the interactions fostered. The reality is that it will
operate in many different ways. Exactly how is something that will only be known with
time. However, for purposes of orienting people to the system, we will make a series of
assumptions that we hope will clarify at least one way in which the system might work.
First, there will be sets of services. When a consumer attaches to an engine, and thus the
service bus, they will find a whole set of services by querying the repository using a
vocabulary. The services will have identical interfaces because they will all have been
produced by the same producer program. (There is no reason why various services could
not be hand tooled to comply with a defined interface.) In this case, having a single
program produce all the basic services guarantees interoperability.

A consumer program is capable of attaching to any one of the basic services – sets of
which differ only in terms of their attribute – value pairs. But how does the consumer get
the software? We assume that they connects to a web site associated with an e-speak
engine and download a signed jar that contains the application. Thus, the consumer side
is a thin client. When a user wants to access services, they download a program that has
the right interface and access the service bus through a local engine to access the
services. We are currently toying with services (marketplace or infrastructure) that would
allow the consumer to dynamically update itself as new interfaces are defined.

The vocabulary provides the basis on which the marketplace exists. The vocabularies are
known either through web access, for semantics and explanation, or through consumer
software that has been downloaded.

One way to think about this environment is as a rich RPC/RMI like environment that uses
http for support and software distribution. Once the services are found and the software
distributed, the browser and web server move to the background and the more specific
software takes over the dialog.

Simplifying Assumptions and Mechanics

A series of simplifying assumptions and standard operating procedures were also
adopted. One of the great capabilities of e-speak is that it can deal with Internet appliances
and Wireless Access Protocols. We chose in this first iteration not to include any of these.
Plans were made, for example via the translation service, to allow them to be developed in
the future as they are important long-term applications of this technology.

We decided not to use the web interface for finding. This mechanism is well defined in e-
speak, and it will be is a very convenient function in the long run, but we felt that at this

E-SPEAK REVISTED

MBS 19 MAY 7, 2001

point it was important to simplify the task. Given the plan to use a tightly coupled e-speak
application to invoke the services, we decided to run the whole process in a tightly coupled
mode rather than complicating the situation by having to develop some steps in a loosely
coupled mode and others in a tightly coupled mode.4

As indicated, to overcome the problem of producing enough services that have the same
interface we chose to engage the notion of producer programs that will be used by
individuals to produce services. This greatly simplifies the process of producing the
service, taking away much if not all of the coding. The individual who wishes to mount a
service simply defines the service in terms of the vocabulary. As indicated consumers will
be thin clients that a given user can simply download from a web site.

Implementation of a Marketplace

To implement the marketplace, we needed to specify the vocabulary, define the interfaces,
and build the components. Defining the vocabulary, the attributes, and the range of the
values for those attributes was assumed to be an easy task until we started the process.
Defining the interfaces also seemed easy – simply define the input parameters and the
return values for each of the methods defined by the service. With these defined, the
components could be coded and the system would be up and running. While we
imagined these steps as an easy sequence, implementation required a system of rapid
prototypes that allowed iteration through the three steps several times in order to work out
the kinks. The vagaries of each of these interwoven activities are described in the
sections that follow.

Vocabulary Design

Vocabulary design involves the resolution of a number of issues. Existing examples of
vocabularies tend to be simplistic – e.g. finding a cab in New York City or accessing a
printer. There are several issues that need to be answered in defining a vocabulary. The
ones that seem most important at this point in are the following.

A market place is made up of a number of classes of services. It is possible that there will
be an overlap in the vocabularies for these services. Should each service class have its
own vocabulary, or should a combined vocabulary be developed for the services? If a
shared vocabulary is used, how should attributes not relevant to a given service be
handled?

The size of the vocabulary needs to be determined. This issue involves two questions.
How large should the attribute set be and how large should the value set for an attribute
be? What should the attribute to value ratio be? Should there be many attributes with few
values, or few attributes with many values?

All of these questions have impact both on service design and on the interaction with the
consumer. Will users want to obtain unique services based on a search or will they want
to obtain a set of possible services from which they can select the best. Will users be

4 In e-speak terminology, access to the engine using programs written in conformance to the Java E-speak
Interface (JESI) API is tightly coupled. Access using a web server and XML exchanges is loosely coupled. As of
this writing, only selected aspects of interactions are provided for under the loosely coupled model.

E-SPEAK REVISTED

MBS 20 MAY 7, 2001

allowed to search on partial subsets of the attributes or will they have to specify all of the
attributes?

Lastly, and probably the most important issue has to do with the nature of the values used.
This begins to focus on the semantics of the vocabulary. At the simplistic level, consider
the issue of single or multiply valued attributes. In the example we propose, area of
expertise is a potential attribute. The values of the attribute might be the areas in which a
person is expert. Should we have one value for each area and have the attribute define
the extent of expertise, or should be have expertise as the attribute and allow the area to
be defined as a value? Should the values of a multi-valued attribute such as expertise be
predefined or should providers and consumers be allowed to use free form strings? How
easily extensible is each approach for the provider and the consumer. What are the
impacts on usage?

It is possible in e-speak to change the values of attributes. This begs the question of
whether the values should be static or dynamic. For example, it is possible that a user
would want to use a service that has been used by lots of consumers. A service could
update a value related to its usage each time it is used. Should the data in the values be
restricted to data used to find a service? Or can they be used to tell us something more
about a service? So for example, a cumulative rating of a given service could be included
as an attribute-value pair. This involves each service regularly updating a value associated
with an attributes of the service. In the last analysis dynamic data values were deemed
inappropriate for the uses we imagined. Separate services should be defined for them.
Indeed, a trusted independent service to provide ratings would probably be the only way
that consumers would trust the ratings.

Interfaces and Objects

The single biggest mistake made in the first effort to define a marketplace was the failure
to use ESIDL (E-speak Interface Definition Language) to define the interfaces. Initially,
methods, parameters and outputs were specified using a modeling language. While this
is essentially the same process, it does not allow use of the ESIDL compiler to simply and
quickly generate the framework code. It was only after we went well through the initial
design when we realized that the compiler (the Interface Definition Language compiler for
e-speak) did a marvelous job of defining serialization of the objects across the interfaces,
defining the methods that would be used on the interfaces, and of providing easy access
to javadoc to provide documentation.5

Despite the benefits of using ESIDL, it is still going to be true that there is an iterative
process in design of the interfaces. There are two forces that pull at the definition of these
interfaces. The first is the optimization of DBMS tables that support the services operating
in the marketplace. If there are DBMS needs in the marketplace and not just at the
consumer and provider ends, the functionality of the DBMS and its structure will impact the
nature of the interfaces. As we went back and forth, we found that there was an intimate
relationship between interfaces and DBMS tables. We also found that as the interfaces
were defined, we noted places where services we had seen as separate had to be
combined and other services needed for one reason or another to be split apart.

5 Given our experience with RPCGEN and rmic, it is not at all clear how we missed this step and it is rather
embarrassing to admit it here, but if it saves others from making the same mistake the embarrassment may be
worth it.

E-SPEAK REVISTED

MBS 21 MAY 7, 2001

The E-Speak Interface Definition Language provides the kind of specification required to
allow teams to write basic services or consumer programs that work together. In addition,
ESIDL, because it is simply defining a java class or java interface, allows the user to make
use of javadoc, which provides documentation of an interface and its functionality.

E-speak uses its own form of serialization for objects that are exchanged across the
various interfaces. If you have a series of object classes in a directory along with the
interface class that makes use of those objects, the ESIDL compiler not only compiles the
main class also automatically processes all of the classes that have been defined as
objects to be passed across those interfaces. For this reason the ESIDL compiler is a very
powerful utility, especially when used in connection with javadoc.

The text box below shows a simple ESIDL file. It defines the imports and a public interface
to the banking service. You can see some of the javadoc comments that have been
included, and you can see down at the bottom that this interface provides a single method

called fundTransfer, with the defintion of the exceptions it throws.

The definition is run through the ESIDL compiler to produce the Java classes that make up
the framework for the service. The same file, run through javadoc, provides the kind of
documentation shown in Figures 10 and 11. It defines the parameters, return value, and
the kinds of exceptions that are thrown. This definition, supplemented for developers with
business processing logic, coding suggestions, and information about DBMS tables and
inputs, provides programmers with a very clear definition of what is required.

Figure 10: Javadoc ouput

/**
* BankingServiceIntf is one of Banking Service's interfaces. Acting as a back office,
* this interface provides methods for Service Brokers such
* as QAService, NoteService and RatingService. @author Ganokporn Rungsritampanya
@version %I%, %G% @since JDK1.2.2 */
import net.espeak.jesi.ESService;
import net.espeak.infra.cci.exception.ESInvocationException;
import net.espeak.infra.cci.exception.ESServiceException;
import java.sql.*;
import java.util.*;
public interface BankingServiceIntf extends ESService {
 /**
 * Transfers money from one account to another.
 * @param fromAccId The account from which the money is transferred.
 * @param toAccId The account to which the money is transferred.
 * @param transAmount The amount to be transfered.
 * @param serviceName The broker, QAService or RatingService, who call the method.
 * @return <code>refNo</code> if the transfer is done successfully;
 * <code>an error code</code> otherwise. Error code example:
 * -101 Receiver account not found,
 * -102 Sender account not found,
 * -201 Receiver account closed,
 * -202 Sender account closed
 * -300 Not enough balance.
 * @exception <code>ESInvocationException</code> If an invocation exception occurred.
 * @exception <code>BankException</code> If a bank exception occurred. */
 public int fundTransfer(String fromAccId, String toAccId, float transAmount, String serviceName)
 throws ESInvocationException, BankException;}

Figure 9: ESIDL File

E-SPEAK REVISTED

MBS 22 MAY 7, 2001

Figure 10: Javadoc output

Figure 11: Javadoc output

E-SPEAK REVISTED

MBS 23 MAY 7, 2001

Components

It is clear now – to the point of being painfully obvious, that not all services are created
equal. There are services that support the basic services. They may be provided by the
market maker or by third party vendors who are attempting to enhance the basic services
– either on the back-end or the front-end. (One infrastructure service might help a basic
service by doing something at the request of the basic service – back-end; another service
might allow the consumer to coalesce several basic services or select one from a set of
basic services – front-end.) And finally, there are marketplace services. These are
services that cannot reasonably be eliminated without destroying the marketplace. The
bank is an example of a marketplace service.

It also became clear that infrastructure services, such as translation and rating, and
marketplace services, such as authentication, authorization, and banking need to be
carefully defined and finalized before defining basic services. There is tremendous utility
in classifying your services and working on some before others. While a taxonomy of
services will be expanded and refined over the coming years, for now, the following
taxonomy seems to offer some guidance for ordering development of components. It also
specifies the order in which the services should be developed:

1. Marketplace services
2. Backend Infrastructure Services
3. Basic Services
4. Front-end Infrastructure Services
5. Consumers

Until the marketplace and backend infrastructure services are stable, it is of little use to
begin development of the basic services. The one exception to this is services that may
be stubbed because they provide a completely isolated service that is only used at one
point. A login service might be an example of this. On the other hand, marketplace
services such as a banking or escrow service, which have intimate exchanges among
consumers and providers, need to be developed early on.

The prototype basic services that are produced by producer programs need to be
produced in advance of the backend services they will use.

As design proceeded, it was necessary for a number of reasons to reconceptualize basic
services as consumers of brokering services. Thus, it may be that the definitions
proposed need to be further refined to define a basic service as one that is used by two
kinds of consumers. Consider for example a note broker service that accepts a note and
charges the note maker a storage and advertising fee. The same broker has another
interface which allows a note buyer to access and acquire the stored note. Despite efforts
to avoid this kind of monolithic service, there are times when such a consolidation just
can’t be avoided. We found a similar situation related to the Q&A services. All of the
experts use a single routing service to manage email exchanges. Thus, basic services
could be micro transaction oriented either for themselves or they could manage micro
transactions for a number of different providers outside the e-speak engine environment.

Producer Components

A basic service is a piece of software that provides some service. Basic services quickly
become very complex in terms of the multiple interfaces required. Not only is there an
interface to the consumer but to all of the other backend and marketplace services needed
to provide the service. Given this complexity, it is useful to try to reduce the load on those

E-SPEAK REVISTED

MBS 24 MAY 7, 2001

who have to produce services by reducing the amount of code they need to write. Ideally
they only need to write the code that specifically relates to their core competency. To this
end, we looked to a generalized piece of software; a producer program, that attaches a
specific remote service when it is run and that is differentiated by the vocabulary input form
a file or interactively at the time it is run.

A producer component could also be a piece of software that writes another piece of
software that then could be compiled as an differentiated service when it is run. This
would allow the individual writing the code to modify specific methods or classes as
appropriate to make the resulting code more consistent with needs.

Consumer components

The consumer program, which might be downloaded from a web site as a signed jar
makes a connection to the core, has a mechanism for user input, and for selection to allow
finding a service and selecting it, and then for executing that service. Consumer programs
should be written to conform to the published interface, they should be available for
download from the web. In the final design, all of the consumer interfaces for the
marketplace were integrated into a single package. The user downloads the framework
from the web which in turn downloads and activates the specific service interfaces that
they wish to use. These interfaces can then be updated dynamically by the framework.

Next Steps

Having defined the classes of services and rigorously defined the interfaces, we are now
at the point of opening a marketplace. Despite significant efforts the marketplace that has
emerged seems rather anemic. A sense of the scope of the effort to develop even a toy
marketplace has begun to take shape. As best practices for marketplace development
emerge, it is likely that ideas and maybe whole infrastructures will simply be copied to
create new marketplaces more quickly. It is useful to reflect on what we think needs to be
done to complete even this toy marketplace. We do that by taking a closer look at how
marketplace services and the two primary functional services in our marketplace might
evolve.

Q&A Service

As originally envisioned, Q&A services registered as an expertise and held a live
connection. A consumer connected to the engine, searched for expertise. The core
responds with zero or more experts that have been found. If one or more is found, the
user selects an expert and dispatches a question. The expert answers the question and
returns it to consumer. There is then some accounting for the transaction.

The Q&A service, as it is currently defined, has multiple sub-interfaces that create the
potential for a marketplace that might be used by any class of professionals to provide
answers to questions posted by clients. Patients could connect to Q&A service supported
by a group of physicians, and with appropriate anonymity, or authentication, get answers
to questions that they might have. As currently conceived, the Q&A interfaces are the
following:

n QAArchiveManager

E-SPEAK REVISTED

MBS 25 MAY 7, 2001

n QAConfigurationManager

n QAQueryAgentConfigManager

n QAQueryManager

n QAResponseManager

Q&A extensions

Beyond these basic functions, imagine a variety of add on services. An “operations”
service might allow experts to register their services providing multiple contact options:
interactive services; emergency paging services, mail contact, etc.. It might be that basic
service would say there are people who would be able to answer your questions, but they
normally answer them between 8 and 10 at night. And that information might be generated
based on collected data about when the services are open, or on advertised data about
when the services are open.

There is a whole opportunity for selection and bidding here to allow a consumer to ask
experts to bid on the question. So, rather than having a user choose the cheapest or the
most expensive service based on static data, services could allow the consumer to
provide a question on which experts would do a reverse auction.

Billing as imagined is currently based on a fixed price. For a given question, there would
be a charge, and that charge would be so much money. But this billing system could be
extended and enhanced in a variety of ways such that it was done based on the amount of
time, or the number of words that were used.

Additional services could address the process of submitting a question to multiple experts,
handling “concurrency and locking” of experts when more than one is invited to respond.
Who would pay what, particularly if people are engaged in partial answers, would also
have to be addressed.

The current version has an e-mail option. Should the system develop a reminder service
that tells experts they have been asked a questions and promised to answer it in 24 hours
and 24 hours are now have passed. This capability would build on the store and forward
capability already built into the email manager.

Notes Service

The original conception was that a document would be registered. The consumer would
then search for a document. If the document that met their requirements was found, that
document would be delivered, and there would be some accounting for the transaction.

Notes service extensions

The Notes Service might be enhanced is by providing a monitoring service. This would be
an infrastructure service that might provide any number of different kinds of functions. For
example, it could take a document from the Notes Service and stream it to the users billing
them only by the minute connected. It could also control the users’ ability to capture
documents, such that they might be able to view only, view and annotate, or view,
annotate, and edit.

E-SPEAK REVISTED

MBS 26 MAY 7, 2001

Documents exist in a particular format. Another service could transform them as needed.
A transformation service might be used to convert documents or dialogs from one form to
another. It might select a document out of the library, and convert it to meet the bandwidth
need of a connection. It might provide services that would convert documents in one form
to some other form. So, it might convert a power-point presentation to PDF.

A rating service might create additional value for service consumers. This service would
provide collaborative assessment of notes in either an active or passive way.

Marketplace Components

While the certificate authority capability of e-speak will be used for authentication, as has
been suggested in examples provided by HP, we believe that we should develop a
marketplace service that serves as the centralized certificate authority for the marketplace.
We developed a rudimentary accounting service to allow for payment for services. This
accounting service might be extended in a variety of ways that we are beginning to
explore; such as escrow services that provide e-money like capabilities. In particular, we
are toying with a scheme that allows for anonymous and secure funds transfer based on
tokens providing a guarantee of anonymity in the marketplace.

Conclusions

The design of an e-marketplace has a better understanding of e-speak? Probably the
most important thing is that this requires a whole new mindset. In a design effort, great
care has to be taken to communicate and educate those involved about what this new
technology is and can do. It is a vision of millions of consumers and thousands of
providers, even if that is not how it starts out on day one. It is about the creation of a
marketplace and the infrastructure needed to support that marketplace. Because there
will be hundreds of competing service providers, the existence of one or two particular
services, which is how the marketplace will be initialized, is generally unimportant. This
mindset is very difficult to adopt. The problem of mindset is compounded by the fact that
the service marketplace involves a number of different categories of services that are
interacting with basic services using infrastructure services and marketplace services in
order to respond to a user. The decomposition and dynamic composition of services is
something that requires a new way of thinking.

The project emphasized the importance of three steps in the design process. The first is
that the architect’s vision of this new way of doing business has to be very carefully
communicated to the designers and implementers. There are all sorts of reasons why
people want to have a more traditional notions of how components should interact. The
e-speak approach is a little bit of a stretch for most coders and most designers, and so a
lot of time has to be spent communicating this vision.

Secondly, there is an intimate relationship between the interfaces and database
management systems that control persistent data in the marketplace. Further the E-speak
Interface Definition Language is a very important tool for defining the methods and the
objects to be exchanged by those methods. The ESIDL compiler eases the process of
coordinating the interrelationships between various ESIDL classes and does a solid job of
producing all of the appropriate structures required based on those definitions. In addition,
extensive use of javadoc comments within the ESIDL definitions is a very powerful tool for
helping coders implement that code.

E-SPEAK REVISTED

MBS 27 MAY 7, 2001

Finally, the difficulty of defining vocabularies was underestimated. It seemed easy early on
to define those vocabularies. In some cases, it will be easy. But there are a number of
questions that need to be asked about the breadth, depth, and semantics of vocabularies.

Reference

[Berners-Lee1999] Berners-Lee, T. Weaving the Web. San Francisco: Harper Collins, 1999.

[Brown2000] Brown, J.S. and Duguid, P, The Social Life of Information. Boston: Harvard Business
School Press, 2000.

[HPProgCh3] Hewlett-Packard, "J-ESI Basics," E-speak Programmer's Guide: Documentation
Release A.03.11.00 January 2001 2001, pp. 19-30.
< http://e-speak.hp.com/media/a0/programmers_guidea0.pdf>

[RFC2459] Housley, R., Ford, W., Polk, W., and Solo, D. Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. RFC 2459 . 1999. IETF Network Working Group.
<http://www.ietf.org/rfc/rfc2459.txt>

[HPArchCh1] Hewlett-Packard, "Architecture Overview: Standards," E-speak Architectural
Specification: Documentation Release A.03.11.00 January 2001 2001, pp. 13.
<http://e-speak.hp.com/media/a0/architecturea0.pdf>

[RFC2246] Dierks, T. and Allen, C. The TLS Protocol Version 1.0. RFC 2246 . 1999. IETF
Network Working Group. <http://www.ietf.org/rfc/rfc2246.txt>

[RFC2692] Ellison, C. SPKI Requirements. RFC 2692 . 1999. IETF Network Working Group.
<http://www.ietf.org/rfc/rfc2692.txt>

[RFC2693] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., and Ylonen, T. SPKI
Certificate Theory. RFC 2693 . 1999. IETF Network Working Group.
<http://www.ietf.org/rfc/rfc2693.txt>

[HPArchCh5] Hewlett-Packard, "Communication: Session Layer Security (SLS) Protocol," E-speak
Architectural Specification: Documentation Release A.03.11.00 January 2001 2001,
pp. 121-139. <http://e-speak.hp.com/media/a0/architecturea0.pdf>

[HPProgCh5] Hewlett-Packard, "Extended Services: Communities," E-speak Programmer's Guide:
Documentation Release A.03.11.00 January 2001 2001, pp. 97-103.
< http://e-speak.hp.com/media/a0/programmers_guidea0.pdf>

[HPProgSec4] Hewlett-Packard, "Gateway Usage Model," E-speak Programmer's Guide:
Documentation Release A.03.11.00 January 2001 2001, pp. 195-286.
< http://e-speak.hp.com/media/a0/programmers_guidea0.pdf>

[RFC1777] Yeong, W. and Kille, S. Lightweight Directory Access Protocol. RFC 1777 . 1995.
http://www.ietf.org/rfc/rfc1777.txt

[Karp2001] Karp, A. H. E-speak E-xplained. Draft paper, Hewlett-Packard Laboratories, 2001.
http://www.hpl.hp.com/techreports/2000/HPL-2000-101.pdf

