Unix Scripts and Job Scheduling

Michael B. Spring
Department of Information Science and Telecommunications
University of Pittsburgh
spring@imap.pitt.edu
http://lwww.sis.pitt.edu/~spring

Overview

2 Shell Scripts

= Shell script basics

= Variables in shell scripts
Korn shell arithmetic
Commands for scripts
Flow control, tests, and expressions
Making Scripts Friendlier
Functions
Pipes and Shell Scripts
Scripts with awk and/or sed

2 Job Scheduling
= pbg and at
= Cron

RUANINga Shell'Script

2 First three forms spawn a new process, So new variable
values are not left when you return
= sh < filename — where sh is the name of a shell
— does not allow arguments
= sh filename

= filename
— Assumes directory in path
— Assumes chmod +x filename
= . filename
— Does not spawn a new shell.
— Changes to system variables impact the current shell

2 you may exit a shell script by
= Getting to the last line
= Encountering an exit command

= Executing a command that results in an error condition that causes
an exit.

Structure ofia Shell'Script

o Basic structure
= #! Program to execute script
= # comment
= Commands and structures
2 Line continuation
= | at the end of the line is an assumed continuation
= \ at the end of a line Is an explicit continuation
2 #In a shell script indicates a comment to \n

2 Back quotes in command cause immediate
execution and substitution

Debugging a script

2 Use the command set —x within a script

2 You can also activate the following set options

= -N read commands before executing them — for testing
scripts

= -U make It an error to reference a non existing file
= -V print input as it Is read
= - disable the —x and —-v commands

o Set the variable PS4 to some value that will help -
e.g. ‘SLINENO:

Calculations with'expr

2 Executes simple arithmetic operations
= EXpr 5+ 2 returns 7
= Expr 7 +9/2returns 11 — order of operations
= Spaces separating args and operators are required

= expr allows processing of string variables, e.g.:
= var=expr $var + n’
= n.b. Korn shell allows more direct arithmetic

2 Meta characters have to be escaped. These include
(), * for multiplication, and > relational operator, and
| and & In logical comparisons

Other Operations with expr

2 exprargl rel_op arg2 does a relational comparison
= The relational operators are =, I=, >, <, >=, <= --<
= return Is either O for false or 1 if true
= argl and arg2 can be string

2 exprargl log op agr2 does a logical comparison
= argl | arg2 returns argl if it is true otherwise arg2
= argl & arg2 returns argl if argl and arg2 are true else 0

2 exprargl : arg2 allows regular pattern matching
= The pattern is always matched from the beginning

= [f arg2 is in escaped ()’s, the string matched is printed,
else the number of characters matched

Korn Shell’Arithmetic (review)

2 Assumes variables are defined as integers

2 Generally, we will use the parenthetical form in
SCripts:
= $((var=arith.expr.))
= $((arith.expr))
> Generally we will explicitly use the $ preceding the
variable -- although it can be omitted
2 An example:
= $(($1%($2+$3)))

Variables in'Shell'Scripts

2 Variables are strings
> To Include spaces in a variable, use quotes to
construct it
= varl="hi how are you”

2 To output a variable without spaces around it, use
curly braces

= echo ${varl}withnospaces

2 SHELL variables are normally caps

= A variables must be exported to be available to a script

= The exception Is a variable defined on the line before the
script invocation

Command Line Variables

2 command line arguments
= $0 is the command file
= arguments are $1, $2, etc. through whatever

o they are expanded before being passed

2 Special variables referring to command line
arguments
= $# tells you the number
= $* refers to all command line arguments

2 When the number of arguments Is large, xarg can
be used to pass them in batches

Handling Variables

2 Quoting In a shell script aids in handling variables

= “ “--$interpreted and * ~ executed
= * ‘—nothing is interpreted or executed

2 Null variables can be handled two ways

= The set command has switches that can be set
— Set —u == treat all undefined variables as errors
— Set has a number of other useful switches

= Variables may be checked using ${var:X}
— ${var:-word} use word if var is not set or null — don’t change var
— ${var:=word} sets var to word if it is not set or null
— ${var:?word} exits printing word if var is not set or null
— ${var:+word} substitutes word if var is set and non null

Commands for SCripts

= Shell script commands include
= Set
= read
= “Here” documents
= print
= Shift
= exit
= trap

2 set also has a number of options
= -3 automatically export variables that are set
= -e exit Immediately if a command fails (use with

caution)

= -k pass keyword arguments into the environment
of a given command

= -{ exit after executing one command

= -- SaYs - IS not an option indicator, I.e. —a would
now be an argument not an option

Read and“here”documents

2 read a line of input as In
= read var
= read <4 var (where 4 has been defined in an exec <4 file

2 “here” documents

= In a shell script, input can come from the script using the
form
¢ <<symbol
* input
+ symbol

= pasically, it means read input for the command
= reading stops when symbol is encountered

Example ofia “here document”

a stupid use of vi with a here file
Vi -S $1 <<*cannedinput**

G

dd

dd

dd

'W(Q

**cannedinput*

Print, sAIft exit, and trap

2 print
= preferred over echo in shell scripts
= the —n option suppresses line feeds

2 shift
= moves arguments down one and off list
= does not replace $0

2 exit
= exits with the given error code

2 trap
= tfraps the indicated signals

An example of trapand shirft

trap, and in our case ignore ~C
trap 'print "dont hit control C, Im ignoring it™ 2
a little while loop with a shift
while [[-n $1]]
do
echo $1
sleep 2
shift
done

Shell'script Flew Control

2 Generally speaking, flow control uses some test as
described above.
If sometest
then
some commands

else
some commands

fi
2 Atest is normally executed using some logical,
relational, string, or numeric test

Tests

= The test command allows conditional execution
based on file, string, arithmetic, and or logic tests

2 test is used to evaluate an expression
= |[f expr Is true, test returns a zero exit status

= |f expr is false test returns a non-zero exit status

2 [is an alias for test
= | IS defined for symmetry as the end of a test
= The expr must be separated by spaces from [|

2 test 1s used in if, while, and until structures
2 There are more than 40 test conditions

File Tests

-b block file -L symbolic link
-c character special file -p named pipe
-d directory file -r readable
-f ordinary file -S bigger than 0 bytes
-g checks group id -tis it a terminal device
-h symbolic link -u checks user id of file
-k Is sticky bit set -W writeable

-X executable

String, Logical, and Numeric Tests

2 Strings
= -n If string has a length greater than 0
= -z If string 1s 0 length
= 51 = s2 if string are equal
= 51 = s2 if strings are not equal

= Numeric and Logical Tests
=-eg -gt -ge -It -ne -le numerical comparisons
=! -a -0 are NOT, AND, and OR logical comparisons

Shell'Script Control Structures

2 Structures with a test
= If [test | then y fi
= If [test | then y else z fi
= While [test] do y done
= until [test] do y done

o Structures for sets/choices

= for X in set do y done
=case X In x1)y;; x2) z ;; *) dcommands ;; esac

2 If [test] then {tcommands} fi
2 If [test] then {tcommands} else {ecommands} fi
2 If [test] then {tcommands} elif [test | then

{tcommands} else {ecommands} fi

= Commands braces are not required, but If used:
— Braces must be surrounded by spaces
— Commands must be ; terminated

= Test brackets are optional, but if used must be
surrounded by spaces

Sampleirf

If [$# -t 3]
then

echo "three numeric arguments are
required”

exit;
fi
echo $(($1*($2+$3)))

whrle'and untrl

2 while
= While test do commands done

2 until
= Until test do commands done

= like while except commands are done until test
IS true

sSamplewnile

count=0;
while [count -t 5]
do
count="expr $count + 1
echo "Count = $count”
done

2 for var In list do commands done
= var iIs instantiated from list
ISt may be derived from backquoted command

ISt may be derived from a file metacharacters

ISt may be derived from a shell positional
agumment variable

Samplefor

for Ifile in 'Is t*.ksh

do
eChO Thkkkkkk $|f||e *kkkkk!!
cat Slfile | nl

done

2 The case structure executes one of several sets of
commands based on the value of var.

case varin
vl) commands;;

v2) commands;;
*) commands;;

esac
= var is a variable that is normally quoted for protection

= the values cannot be a regular expression, but may use
fllename metacharacters
— *any number of characters
— ? any character
— [a-s] any character from range

= values may be or'd using |

select

o Select uses the variable PS3 to create a prompt for the
select structure

2 The form is normally
PS3="A prompt string: ”
Select var in a x “z space”
Do
Case “$var” in
a|x) commands;;
“z space”) commands;;

*) commands;;
Esac
Done

2 To exit the loop, type "D
2 Return redraws the loop

Sample select

PS3="Make a choice ("D to end): "
select choice in choicel "choice 2" exit
do
case "$choice" in
choicel) echo $choice;;
"choice 2") echo $choice;;
exit) echo $choice; break;;
*) echo $choice;;
esac

done
echo "you chose $REPLY"

Sample Scripts

= All of our scripts should begin with
something like this:

#!/bin/ksh

the first line specifies the path to the shell
the two lines below are for debugging

PS4="$LINENO:

set —x

2 In working with a script, functions are
defined before they are invoked

SCriptstofind'and st files

#!/bin/ksh

the reviewfiles function would normally be defined here
printf "Please enter the term or RE you are looking for: "
read ST

FILES="egrep -l $ST *.ksh’

If [S{#FILES} -gt 0]
then

reviewfiles
else

echo "No files found"
fi

Reviewtfrles function

2 reviewfiles()
{

PS3="Files contain $ST, choose one("D or 1 to exit): "

STIME=$SECONDS

select choice in "ENTER 1 TO EXIT THE LOOP" $FILES

do

case "$choice" in

"ENTER 1 TO EXIT THE LOOP") break;;
*) echo "You chose ${REPLY}. $choice";
cat $choice | nl;
FTIME=$SECONDS;
echo “Process took $((SFTIME-$STIME)) secs";;

FTP Eunction(1)

dfine the host as a variable for more flexibility
ftphost=sunfire2.sis.pitt.edu
grab a password out of a carefully protected file

consider a routine that would search for a password
for $host

exec 4< ${HOMEY}/.ftppass

read -u4 mypass

this could be read from a file as well

print -n "Enter your username for $ftphost: "
read myname

FTP EUnction(2)

prepare the local machine

this could have been done from within ftp
cd ${HOME}/korn/ftpfolder

rm access_log.09%,

rm *.pl

rm sample.log

FTP FUnction(3)

start an ftp session with prompting turned off
use the "here file" construct to control ftp

ftp -n $ftphost <<**ftpinput**

user $myname $mypass

hash

prompt

cd weblogs

mget access_log.09*
mget *.pl

get sample log
*ftpinput+

FIPEUnction(4)

output to a log file and the screen

print " date : downloaded 'Is access_log.* |
wc -I" log files" | tee -a work.log

print " date : downloaded 'Is *.pl | wc -I" analysis files" |
tee -a work.log

Jol Scheduling

= Multiple jobs can be run in Unix interactively
2 The can be grouped, piped, made conditional
= To run a job in the background, issue the command

In the following form:
= job&
2 Alternatively, run the job normally and then:
= N/ to suspend the job

= bg at the command prompt to move the job to the
background

Process control'commands

2 nice - runs a command (with arguments) at a lower
priority
nice —15 myscript
= The default priority is 10
= Higher numbers represent lower priority

2 ps - lists processes giving their process id
2 kill — stops a process

= kill 23456 - kills the process with ID 23456
= kill =9 Is an absolute kill and should be used with caution

Jol scheduling pestiogout

2 nohup - allows a command to be run even if the
user logs

= nohup myscript&
2 at - runs a command at a specified time
= at 19:00 —-m < cmndfile
= Executes cmndfile at 7:00pm and sends mail when done
s At -k —-m —f xyz.ksh 7pm
= Execute xyz.ksh @7pm using korn and send mail

2 atg, atrm - atq check the queue and atrm removes a
given scheduled job

Crontab

2 crontab Is a utility for managing the tables that the
process “cron’” consults for jobs that are run
periodically

= crontab allows a user who has the right to add jobs
to the system chronological tables
= crontab —e allows the user to edit their entries
= crontab -l allows a listing of current entries
= crontab -r removes all entries for a given user
= crontab file adds the entries in file to your crontab

Format off crontab entries

2 A normal crontab entry looks as follows
= Min Hour DoM MoY DoW command
s 5 **** Jusr/bin/setclk

= This will run setclk at 5 minutes past the hour of every
day, week, etc.

= * means every possible value

= Multiple values of one type can be set , separted with no
space

= 0,5,10,15,20,25,30,35,40,45,50,55 * * * * would run the
command every five minutes

Allowable values

= Minute 0-59

2 Hour 0-23

= Day of month 1-31

2 Month of year 1-12

= Day of week 0-6 with 0 being Sunday

