
Adaptive access to examples in NavEx-2

Michael V. Yudelson

School of Information Sciences

University of Pittsburgh

1. NavEx-1
NavEx-1 (Navigation to Examples) is a system that explores the idea of providing

adaptive navigation support for accessing programming examples. NavEx helps the

student in selecting the "right" example by applying adaptive prerequisite-based

annotation, a specific adaptive navigation support technology [1]. This technology was

first explored in ISIS-Tutor system [2] and found very efficient. Since that, it was used in

ELM-ART [3], InterBook [4], ACE [5], and other systems. With this technology, each

learning object is described in terms of domain concepts. Some concepts serve as

learning goals and others as prerequisites to understanding the object. Tracking the

student current level of knowledge, an adaptive system can dynamically classify

examples as being relevant or not (i.e., to simple or not ready to be studied). The status of

each object is shown by adaptive annotation using a traffic light metaphor.

1.1 NavEx-1 interface

The interactive window of the NavEx system is divided into 3 frames (Figure 1). The

leftmost frame contains a list of links to all examples/dissections available for a student in

the current course. The links are annotated with colored bullets. Red bullet means that the

student has not mastered enough prerequisite concepts to view the example. The link

annotated with the red bullet is thus disabled. Green bullet means that the student has

enough knowledge to view the example. Green check mark denotes example that has

already been seen by the student. Green “play” bullet denotes the example that is

currently being viewed. The order of links to examples is fixed, so that students can find

them at the same place in spite of their progress in the course.

Figure 1. The interface of NavEx-1

The upper frame displays the name of the current example. Underneath are two links: one

loads the source code of the example to the central frame (to be copied, compiled, and

explored), the other – loads interactive example dissection (served directly by the WebEx

system that is now a component of NavEx). Dissection is the same source code

commented by the author. These comments address the meaning and the purpose of this

line of the code and help the student to understand the example better. Extended

comments are shown to the left form the code and can be activated by clicking on the

bullet next to the line of the code. If the comment is available the bullet is green and is

white otherwise.

NavEx interface is implemented as a server-side solution written in Java. All knowledge

and data are stored in a relational database. NavEx is considered as a value-added service

of the KnolwedgeTree architecture [6] and implements several common protocols

including student modeling and transparent authentication.

1.2 Semantic indexing of examples in NavEx-1

To provide learning material for the student in adaptive way, a system needs to have

knowledge about the material itself. Indexing learning material with domain knowledge

is a time-consuming process requiring expertise in both the domain of learning and

knowledge engineering [7]. In NavEx we explored an alternative automated approach.

All examples in the scope of the course are indexed in terms of used concepts, after then

the concept taxonomy, based on inter-concept-example relations “prerequisite-outcome”

is built. Current section describes this process in details.

There are no universally accepted recommendations on which level it is better to define a

concept in programming domains. Some authors suppose that it has to be done on the

level of programming patterns or plans [8], other believe, that the concepts is to be closer

to the elementary operators [9]. From the first point of view the notion of pattern is more

adequate to what is the real goal of learning programming and what programmers really

use. However, the second way is more straightforward and makes the burden of indexing

more feasible. With a notable exception of ELM-PE [10], all adaptive sequencing

systems known to us work with operator-level concepts. Current implementation of the

indexing algorithm for NavEx also uses operator-level approach.

Traditionally the extraction of a grammatically meaningful structure from programming

code and determination of a concept on its basis is the task for the special class of

programs named parsers. For NavEx system we have developed the indexing component,

which parses C code of each example and generates the list of used concepts. This

component is build with the help of UNIX well known utilities lex and yacc.

Fifty-one concepts have been determined for the subset of C language learnt during the

course. Each programming structure in an example can be indexed by one or more

concepts depending on the amount of knowledge student needs to involve for its

understanding.

It is necessary to mention that each concept here represents not simply a keyword, found

in code, but a grammatically complete programming structure. For instance, concept

while is recognized by the indexing algorithm only after the whole loop structure,

including the keyword while, the iteration condition and the loop body, is found. This is

why concept while in the index list above follows concepts not_equal_expression and

pre_increment.

The next stage is dividing concepts related to each example into prerequisite and outcome

concepts. Prerequisites are the concepts that the student needs to master before starting to

work with the example. Outcomes denote concepts that the example helps to learn, i.e.

the pedagogical goals of the example. As any automatic knowledge extractor, our

grammar-based extractor is unable to distinguish prerequisites and outcomes - it simply

produces the list of all concepts. For adaptive sequencing and navigation support,

however, clear separation of prerequisites and outcomes is vital.

NavEx uses an original algorithm for automatic identification of outcome concepts

(Figure 2). This algorithm adapts to an instructor-specific way of teaching the course. The

source of knowledge for this algorithm is a sequence of example groups. Each group is

formed by examples introduced in the same lecture. Groups are ordered according to the

order of lectures in the course. The design of our prerequisites/outcomes division

algorithm is based on the following assumptions:

− While analyzing examples from some lecture, concepts corresponding to examples

from all preceeding lectures are considered to be already learnt.

− In each example, all concepts introduced in the previous lectures are considered as

prerequisites while the concepts first introduced in the current lecture as outcomes

− The set of new concepts found in all examples associated with the lecture is the

pedagogical goal of the lecture

 1

{

 1

 {

learnt_concepts

for i to no_of_chapters

for j to chapter[i].no_of_examples

 chapter[i].example[j].prereq learnt_concepts chapter[i].example[j].all_concepts

chapter[i].exampl

= ∅

=

=

= ∩

\

 }

 1

}

e[j].outcome chapter[i].example[j].all_concepts learnt_concepts

for j to chapter[i].no_of_examples

learnt_concepts learnt_concepts chapter[i].example[j].all_concepts

=

=

= ∪

Figure 2. Pseudocode for prerequisites/outcomes identification.

The direct outcomes of this algorithm are a fully indexed set of lecture examples and a

sequence of learning goals associated with the course lectures. This sequence represents a

specific approach to teaching C programming employed by the instructor [7]. Once the

course examples are indexed and the goal sequence is constructed, any programming

example can be properly indexed by the algorithm and even associated with a specific

lecture in the course. More exactly, an association with a specific lecture is the first step

in this process. The example is associated with the last lecture that introduces example

concepts (i.e., the lecture with the largest number that has at least one example concept in

its pedagogical goal). After that, the example is indexed as belonging to this lecture. It is

important to stress again that outcome identification is adapted to a specific way of

teaching a course "mined" from the original sequence of examples. I has been known for

a long time that different instructors presenting the same programming language may use

very different orders of concept presentation [11]. Naturally, example sequencing in a

course has to be adapted to the instructor's way of teaching.

Although, the described indexing approach using parsing component is specific for the

programming, we believe that the proposed general idea is applicable for the broad class

of domains. In less formalized domains, where concepts do not have salient grammatical

structure, classic information retrieval approach could be used instead of parsing. Current

evaluation shows that implemented indexing algorithm along with the NavEx mechanism

of building inter-concept-example hierarchies provide meaningful recourse for adaptive

example navigation support.

1.3 Adaptive navigation support in NavEx-1

Adaptation of navigation in NavEx is done on the basis of the overlay user model [12].

User knowledge is represented as a binary vector k, where ki=1 means that the user has

successfully mastered concept i, and ki=0 means the opposite.

When the user logs into the system a new session is created and information about current

state of his/her knowledge is retrieved from the user records. This information contains

concepts the user has mastered and examples the user has reviewed.

Knowing the user knowledge of each domain concept and the prerequisite-outcome

profile of examples, the sequencing mechanism can dynamically compute current

educational status for each example. The current status of each example is presented to

the user in the leftmost frame of the system window (Figure 1) in the form of adaptive

annotations. Already mastered examples are annotated with green check marks, available

examples are annotated with green bullets, unavailable – with red bullets.

When user clicks on example link and reviews the example code the outcome concepts of

the example change their state to “learned” (ki=1). The changes in the knowledge state of

the user are then propagated to the user records. The availability of new examples is

determined by checking whether any of the previously unavailable examples now have

all of their prerequisite concepts mastered. As user reviews examples more new examples

become available. The knowledge-based adaptive annotation approach used in NavEx is

a variation of a popular adaptive annotation approach introduced originally in ISIS-Tutor

system. This approach is known to be very efficient [2].

1.4 Identified problems in NavEx-1

1.4.1 ‘Clicked–knows’ problem

One of the most serious NavEx-1 problems is that the user is considered to “know” the

example as soon as s/he clicks on it. This oversimplification does not take into

consideration many factors such as: whether user just clicked on the example or

thouroughly went through it, whether this is user’s first visit or user returns to an

example. Besides, clicking once on an example is surely not enough. Some of the

examples have many lines of code and a single click wouldn’t be sufficient for the

example to be considered known and the according concepts learnt.

1.4.2 Adaptive annotation problem

The adaptive annitation bullets used in NavEx-1 have some room for improvement. The

existing set of green ball, red ball, green check mark does not reflect the progress of the

user with an individual example. Besides icons are not suitable for color blind or partially

color blind persons.

1.4.3 Navigation constraint

Navigation through examples in NavEx-1 is cosntained: examples that do not have all of

the prerequisite concepts learned are not available for viewing. This is not quite correct

since such constraint doesn’t allow users make their own decisions. Adaptive navigation

is should provide only guidance and users should me their own judges in making

decisions whether to follow that guidance.

2. NavEx-2
NavEx-2 is a further development of the ideas of adaptive guidance to the code examples

indroduced in NavEx-1. NavEx-2 is a deep modification of its predecessor designed to

overcome the shortcomings discussed above.

2.1 NavEx-2 interface

The interface of NavEx-2 sticks to the same 3-frame design. The design of the frames,

however, is a bit changed (Figure 3).

Figure 3. The interface of NavEx-2

Each link to an example in the left frame is supplied with an icon that conveys

information about (1) ‘readiness’ of the student to browse the example, and (2) the

student’s progress within the example. If the student is ‘not ready’ to browse the example

then a red X bullet is displayed (Figure 4). If the student is ‘ready’ to browse the example

then a green round bullet is shown. Depending on the student’s progress, the green bullet

will be empty, partially or wholly filled. There are 5 discreet progress measures from 0%

to 100%, with 25% increments (Figure 4). An empty green bullet denotes examples that

are available, yet not browsed by the student. The relevance of the example is marked by

the font style. If the example is relevant its link is displayed in bold font, otherwise it is in

regular font (Figure 3). The fact that the example is ‘not ready’ or ‘not recommended’

doesn’t prevent the user from actually browsing it. All of the annotated examples are

available for exploration and it is up to a student as to whether to follow the suggestions

expressed by annotations or not.

Not ready to be browsed

Ready to be browsed

Figure 4. Annotation of the examples

2.2 Adaptive navigation support in NavEx-2

The annotation of examples is compiled, based on the domain model concepts. Each of

the examples is indexed with such concepts before it is added to the system. The indexing

goes through two stages. First, concepts are extracted from each of the examples by a

fully-automatic operation-level parser. Second, for each of the examples, the set of

concepts is split into prerequisite concepts and outcome concepts. The splitting algorithm,

besides example-concept pairs, requires examples to be grouped by lecture. Indexing

algorithms are discussed in more detail in [13]. Supplying each example with two sets of

concept - prerequisites and outcomes – plays a two-fold role. First, the concept separation

helps to define the learning goals (focus) of the examples in terms of outcomes. Second,

concept separation is used for partial ordering of the examples. Thus, an example that has

a certain concept as a prerequisite will be placed after an example that has the said

concept as outcome.

Once the example is in the system, its annotation for the current user is determined by

counting whether or not the current user has mastered the prerequisite concepts. If all of

the prerequisite concepts are mastered (or the example simply has no prerequisite

concepts) – the example is considered ‘ready to be browsed.’ If the prerequisite concepts

are not mastered – the example is marked as ‘not ready to be browsed’. The progress of

the student within the example is measured by counting the number of clicks on

annotated lines of code example code the user has done with the example.

The relevance of the examples is calculated based on the ‘threshold’ parameter. The

‘threshold’ (calculated for each of the examples individually) is the amount of clicks that

has to be done by student for the system to conclude that s/he ‘knows’ the example and

declare all of concepts corresponding to example to be mastered. The threshold amount

of clicks is calculated as:

threshold = 0.8*[(all_concepts – mastered_concepts)/all_concepts]*clicks_possible

Namely, the total number of clicks possible (for current example) is multiplied by the

ratio of currently not-mastered concepts (of the current example) to all concepts (of the

current example). This gives the number of clicks 'left' for user to do and he has to make

80% of those to ‘master’ the example. Only clicks on distinct code lines are counted. E.g.

if there are 10 clicks possible on the lines of the code example and there are 10 concepts

assigned to the example: 5 prerequisite (all mastered) and 5 outcomes (none mastered),

then the user has to make 0.8 * (5/10) * 10 = 4 clicks to ‘master’ the example. As soon as

some concepts are declared mastered the ‘readiness’ of all other examples is recalculated

and the mastery of the concepts is propagated further.

The threshold is only used to determine the minimal amount of work the student has to do

with the individual example to learn the underlying concepts. The annotation of the

examples reflects the absolute amount of student’s work and is not related to the

threshold. Since all of the examples share the pool of concepts, it might turn out that at

some point there will be one or more examples whose concepts are mastered, yet the

student has never browsed those. As mentioned in a previous section, students can

browse examples that are annotated as ‘not ready to be browsed’. In extreme cases, the

student can browse an example, which contains only concepts that are not yet mastered.

To master those concepts while browsing such an example, the student will have to do an

extensive amount of clicks, as determined by the threshold.

The NavEx interface is implemented as a server-side solution written in Java. All

knowledge and data are stored in a relational database. NavEx is considered to be a

value-added service of the KnowledgeTree architecture [14], and uses several protocols,

including student modeling and transparent authentication. As a typical value-added

service, NavEx resides between E-Learning portals and reusable content objects,

providing additional value for teachers and students who use this content through the

portal. Unlike other kinds of value-added services, such as annotation services, the value

added by NavEx is the ability to adapt to the course goals and student knowledge. With

NavEx, teachers can bypass the time-consuming process of selecting examples for each

course lecture that meet goal and prerequisite restrictions. Students receive adaptive

guidance in selecting examples that are most relevant to their learning goals and

knowledge.

3. Classroom study of NavEx-2
A classroom study of NavEx was performed in the context of an undergraduate

programming course in the Fall 2004 semester in the School of Information Sciences at

the University of Pittsburgh. NavEx was made available to all students taking this course

in the second half of the semester, after the midterm exam. Before the introduction of

NavEx the students were able to explore code examples with the original WebEx (i.e.,

without adaptive guidance) directly through the Knowledge Tree portal. After the

introduction, they were able to use both methods of access – with adaptive navigation

support through NavEx and without it through the portal and WebEx. User activity

collection procedures does not depend on the way students access code examples. Student

work with both WebEx and NavEx was equally considered for user modeling.

3.1 Log Analysis

Our main source of data for the study was the user activity log. The log recorded every

user click (i.e., every example and code line accessed). Note that the log data gave clear

evidence as to whether a student accessed a specific example through NavEx or through

WebEx. Since students used WebEx and NavEx in parallel (the use of NavEx was not

enforced), a natural way to evaluate the influence of adaptation was to compare the usage

profiles of WebEx and NavEx. Analysis of the data showed that NavEx, though

introduced late in the course, was considered as a strong alternative to WebEx. After the

introduction of NavEx, 56% of example browsing activity was generated by NavEx

users. Only 30% of the students didn’t use NavEx at all.

Since different students used different “mixtures” of WebEx and NavEx through the

course, we decided to assess the added value of the adaptive navigation support by

comparing these two systems on a session-by-session basis. A session is counted as a

sequence of examples browsed by the student without any sizeable break. The result of

this comparison demonstrated clearly the value of adaptive navigation support in

increasing the amount of student work with examples.

First, the average session of non-NavEx users was 9.4±0.97 clicks, while NavEx users

made an average of 29.6±4.65 clicks per session. That means that navigation support

provided by NavEx encouraged students to click on 3.14 times more annotated code

lines. Second, the average number of examples browsed per session of non-NavEx users

was 1.78±0.15, while NavEx users browsed 2.95±0.46 examples per session. Thus

NavEx motivates students to see an average of 1.66 examples more per session. And

thirdly, the average length of the non-NavEx user session is 225±33 seconds, while

NavEx users have average session length of 885±266 seconds. Hence NavEx keeps

students focused on examples 3.9 times longer.

Further evidence can be derived by comparing the example browsing statistics of Fall

2004 semester, when students could use adaptive guidance and Spring 2004 when they

could not. Examples set in the Spring 2004 semester had only minor differences from the

set of examples available in the Fall 2004 so we can assume that the students had the

same external (i.e., tool-independent) motivation to use the tool. The only significant

difference was that in the Fall 2004 semester students were able to use NavEx.

The comparison of student activity data of the two semesters demonstrated that the

introduction of NavEx boosted the motivation of the students to work more with

annotated code examples. The number of code lines accessed per session increased by

about 11% from 14.22 in the Spring 2004 semester to 15.8 in the Fall 2004 semester (if

we consider only NavEx users the number of clicks per session almost doubled). The

average number of line accesses by students over a semester grew by 35% from 323.3

lines in the Spring 2004 semester to 435.9 in the Fall 2004 semester.

Thus, adaptive navigation support succeeded as a tool that encourages the students to

work more with examples. It appears that the students were simply more motivated to

work with examples when adaptive navigation support was provided. We think that such

increase of students’ motivations can be attributed to the following reasons. First,

navigation support allows students to see ‘the big picture’ – visualize their current

progress with all of their examples and estimate whether the progress they made is

enough to move further. Second, since students had all the examples grouped together,

they were able to switch from one example to another in fewer clicks and were interested

in exploring more examples.

3.2 Survey results and analysis

The user survey was conducted using a questionnaire containing 13 multiple choice

questions, 1 multiple answer question and 1 open ended question. The goal of the

questionnaire was to judge the effectiveness and the usabilityof the system in providing

adaptive guidance and to judge the effectiveness of the interface design features

implemented.

The questionnaire was largely based on the questionnaire used to evaluate the WebEx.

New questions were added to evaluate the features of NavEx. The system was evaluated

by the students of the C Programming class offered at the School of Information Sciences

at University of Pittsburgh. Out of the 15 students that took the class, 12 used WebEx, 11

used NavEx, and 10 of those students responded to the survey.

3.2.1 Survey results ‘in-the-raw’

Below is the detailed summary of the survey results.
Question 1 Multiple Choice Average Score: 0 point(s)

Annotated examples can significantly improve my understaning of class material

Answers Percent Answered

Strongly agree 50.00%

Agree 40.00%

No opinion 0.00%

Disagree 10.00%

Strongly disagree 0.00%

 Unanswered 0.00%

Question 2 Multiple Choice Average Score: 0 point(s)

I think that interface of the annotated examples was good

Answers Percent Answered

Strognly agree 30.00%

Agree 70.00%

No opinion 0.00%

Disagree 0.00%

Strongly disagree 0.00%

 Unanswered 0.00%

Question 3 Multiple Choice Average Score: 0 point(s)

The content of annotations in the examples was good and helpful

Answers Percent Answered

Strognly agree 30.00%

Agree 50.00%

No opinion 10.00%

Disagree 10.00%

Strongly disagree 0.00%

 Unanswered 0.00%

Question 4 Multiple Choice Average Score: 0 point(s)

The interacivity of the dissections (ability to click on selected lines and see

comments for those lines) was important for me.

Answers Percent Answered

Strognly agree 50.00%

Agree 50.00%

No opinion 0.00%

Disagree 0.00%

Strongly disagree 0.00%

Unanswered 0.00%

Question 5 Multiple Choice Average Score: 0 point(s)

For every lecture of the course I want to have:

Answers Percent Answered

Dissections of all classroom examples 10.00%

Dissections of all classroom examples and a few extra
dissections 10.00%

All of the above and dissections of howework solutions 80.00%

I do not need any dissections 0.00%

 Unanswered 0.00%

Question 6 Multiple Answer Average Score: 0 point(s)

If I would have a handheld computer with wireless internet access, I'd be interested
to work with example dissections

Answers Percent Answered

when I am doing my homework 60.00%

right in class during the lecture when examples are
presented 70.00%

whenever I have some spare time 50.00%

when I meet and talk with other students from my class 50.00%

I am not interested to work with dissections on a
handheld computer 20.00%

Question 7 Multiple Choice Average Score: 0 point(s)

Imagine that dissections adapt to your current level of knowledge (similar to the way
WADEIn does) by highlighting the lines with comments that are most important to
you to read (thus decreasing the amount of comments to explore). This feature
would be very useful.

Answers Percent Answered

Strognly agree 50.00%

Agree 40.00%

No opinion 10.00%

Disagree 0.00%

Strongly disagree 0.00%

Unanswered 0.00%

Question 8 Multiple Choice Average Score: 0 point(s)

What do you think about an idea of students to be able to create some dissections
using a good Web interface?

Answers Percent Answered

I don't like this idea at all 10.00%

The idea is interesting, but I do not think anyone will be
interested in it 10.00%

The idea is interesting and this can even be offered as
an extra credit assignment 70.00%

The idea is interesting and this can even be offered as
one of the regular assignments 10.00%

 Unanswered 0.00%

Question 9 Multiple Choice Average Score: 0 point(s)

What do you think about an idea to let students add their own comments to lines of
examples' code and view comments of other students?

Answers Percent Answered

This isn't a good idea at all 0.00%

The idea is interesting, but I doubt anyone in class will
do this 20.00%

The idea is good and this option can be offered as an
extra credit assignment 70.00%

The idea is great and should be offered as a regular
assignment 10.00%

 Unanswered 0.00%

Question 10 Multiple Choice Average Score: 0 point(s)

I think that interactive program dissections should become one of the key tools in
programming classes (including IS12)

Answers Percent Answered

Strognly agree 30.00%

Agree 50.00%

No opinion 20.00%

Disagree 0.00%

Strongly disagree 0.00%

 Unanswered 0.00%

Question 11 Multiple Choice Average Score: 0 point(s)

The ability to access all dissections from all the lectures using the joint list of

dissection on the left side of NaveEx interface was helpful

Answers Percent Answered

Strognly agree 50.00%

Agree 50.00%

No opinion 0.00%

Disagree 0.00%

Strongly disagree 0.00%

Unanswered 0.00%

Question 12 Multiple Choice Average Score: 0 point(s)

The ability to see my own progress in NavEx (the percentage of each example that I
have already analyzed that was shown using fillable green bullets) was helpful

Answers Percent Answered

Strognly agree 30.00%

Agree 40.00%

No opinion 10.00%

Disagree 10.00%

Strongly disagree 0.00%

 Unanswered 10.00%

Question 13 Multiple Choice Average Score: 0 point(s)

NavEx estimated whether you were ready to understand a specific example and
warned you about not ready to be explored examples using a red X icon. I think that
NavEx estimation was mostly correct (i.e., examples shown with red X were, indeed,
too complicated, while examples shown with a green bullet were just right)

Answers Percent Answered

Strognly agree 20.00%

Agree 40.00%

No opinion 10.00%

Disagree 10.00%

Strongly disagree 10.00%

 Unanswered 10.00%

Question 14 Multiple Choice Average Score: 0 point(s)

NavEx estimated whether you were ready to understand a specific example and
warned you about not ready to be explored examples using a red X icon. Regardless
of the correctness of this estimation in the current version of NavEx, I think that it is
useful to see "not ready" warning next to too complicated examples.

Answers Percent Answered

Strongly agree 20.00%

Agree 30.00%

No strong opinion 20.00%

Disagree 10.00%

Strongly disagree 10.00%

Unanswered 10.00%

Question 15 Essay Average Score: 0 point(s)

Please add any comments or suggestions regarding functionality or interface of both
WebEx or NavEx.
Add your concerns here too.

Given Answers

0 Unanswered Response(s)

I did not use the NavEx program so I was not able to
complete those multiple choices.The WebEx programs
were quite useful however.From all the abundant tools
in class I did not feel that I had to use the NavEx
program as the others were quite useful and plentiful at
that.Comments added to dissections could be useful
from students who are on the same level and
pace however these would have to be monitored to
make sure a faulty comment isn't placed that could
possibly lead someone astray.Personally, I used the
WebEx a bit to analyze and further understand the
examples that I did not fully grasp in class so I felt that
it complimented the class-room examples quite
well.Interactive programming dissections worked best
for me when I had trouble understanding a specific
program but otherwise I would rarely use them so
I personally don't think they should become a center
tool for the IS12 class but more so as help for
the various examples and assignments.Also, I'm sure
many students would benefit if there was a homework
section added as well to the WebEx with the previous
homeworks dissected.

Possibly a slightly cleaner interface would be useful,
although the simplistic approach is quite effective.
Retaining simplicity, but maybe adding a way to
aggregate(by lecture or content similarity) examples
together and then expand them somewhat like the
quizGuide, at least for improved navigation.

IN ANSWER TO THE QUESTIONS ABOVE ABOUT
LETTING STUDENTS ADD THEIR OWN
DISSECTIONS I THINK THAT IS A EXCELLENT
BECAUSE ANY BODY CAN JUST COPY SYMBOLS
FROM LECTURE IN A PROGRAM BUT
UNDERSTANDING WHAT THOSE SYMBOLS DO
AND HOW THEY ARE USED IS WHAT IS
IMPORTANT IN PROGRAMMING SO I THINK THAT
WOULD BE AN EXCELLENT EXTRA CREDIT
PROJECT TO DO LETTING STUDENTS DO THEIR
OWN DISSECTIONS

I think that interface should have been incorporated
into the classroom a long time ago. For example, the
beginning of the semester could have been the focus
area for reading and learning "C" through the lessons
that were online. Then having us do dissections would
be a very good idea for extra credit, as well as for
learning too!

i felt that it helped me out alot

The webEx and Naxex provided me with a good what
of seeing how the prgrams ran by dissecting them.

they were also good tools

the only other suggestion I would have is just to break
them up from topic to topic or break up the programs
by the principals they use instead of from lecture to
lecture, at least have this as a sorting option.

It works pretty good.However, disections of the
homework would be extremely helpful

I think it would be helpful to have computers in the
classroom to work through some of the dissections
together.

3.2.2 Survey results analysis

Our secondary source of evaluation data was a non-mandatory questionnaire

administered at the end of the term that solicited students’ opinions about key features of

the system. Out of 15 students in the class, 10 completed the questionnaire.

Figure 5. Subjective student evaluation of different features of NavEx

Some of the data obtained from processing the answers is shown in Figure 5. As it can be

seen, 90% of students considered annotated examples with or without adaptive guidance

helpful. 80% percent of students feel positive or strongly positive about the need for such

a tool in general. All of the respondents positive or strongly positive evaluated the

convenience to have all of the annotated code examples together. 100% of students

positively or strongly positively evaluated the interface and the interactive nature of

examples.

Two principal features of NavEx: progress indicator and the scope of availability

(‘readiness’) were evaluated positively or strongly positively by a solid fraction of the

students (80% for progress indicator and 60-70% for the scope of ‘readiness’). The slight

downfall of positive response about the scope of ‘readiness’ of examples’ annotation we

account to the fact that students started with NavEx in the middle of semester. At the time

of their first logon, all of the examples were ‘not ready to be browsed’, yet at that time

students were already familiar with almost half of them and had literally to ‘get through’

the red X’s. Nevertheless, they did appreciate the scope of ‘readiness’ on the whole.

Students also had a chance to express their suggestions about the future use and

development of the system. The idea of students being able to create their own

dissections or add their own annotations to the code lines was supported by 70% of

respondents (when such activity is an extra credit assignment), and strongly supported by

10% (when such activity is a regular assignment). 90% students expressed strong and

very strong support for adding a social navigation feature. A substantial amount of

students have also expressed certainty that NavEx should remain as one of the class tools

available for students.

4. Conclusions and future work
The NavEx system implemented adaptive navigation support to encourage the students to

work more with program examples. Our classroom study confirmed that adaptive

navigation support can visibly increase student motivation to work with non-mandatory

educational content. NavEx boosted the overall amount of work and the average length of

a session. In addition, various features of NavEx were highly regarded by the students.

Among two kinds of adaptive navigation support, performance-based annotation was

appreciated more than zone-based annotation. However, it may have been influenced by

the late introduction of the system.

We plan to perform further studies with NavEx to achieve a better understanding of the

value of adaptive navigation support. In addition, we plan to extend the scope of adaptive

annotation by providing an annotation of every commented line in an example – not only

an example as a whole. To make it possible, we will apply social navigation techniques

that we are currently exploring in the course of another project.

5. References
[1]. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling

and User-Adapted Interaction 6, 2-3 (1996) 87-129.

[2]. Brusilovsky, P. and Pesin, L.: Adaptive navigation support in educational

hypermedia: An evaluation of the ISIS-Tutor. Journal of Computing and Information

Technology 6, 1 (1998) 27-38.

[3]. Weber, G. and Brusilovsky, P.: ELM-ART: An adaptive versatile system for Web-

based instruction. International Journal of Artificial Intelligence in Education 12, 4

(2001) 351-384, available online at

http://cbl.leeds.ac.uk/ijaied/abstracts/Vol_12/weber.html.

[4]. Brusilovsky, P., Eklund, J., and Schwarz, E.: Web-based education for all: A tool for

developing adaptive courseware. Computer Networks and ISDN Systems. 30, 1-7 (1998)

291-300

[5]. Specht, M. and Oppermann, R.: ACE - Adaptive Courseware Environment. The

New Review of Hypermedia and Multimedia 4 (1998) 141-161.

[6]. Brusilovsky, P. and Nijhawan, H.: A Framework for Adaptive E-Learning Based on

Distributed Re-usable Learning Activities. In: Driscoll, M. and Reeves, T. C. (eds.) Proc.

of World Conference on E-Learning, E-Learn 2002, Montreal, Canada, AACE (2002)

154-161

[7]. Brusilovsky, P.: Developing Adaptive Educational Hypermedia Systems: From

Design Models to Authoring Tools. In: Murray, T., Blessing, S. and Ainsworth, S. (eds.):

Authoring Tools for Advanced Technology Learning Environments: Toward cost-

effective adaptive, interactive, and intelligent educational software. Ablex, Norwood

(2003).

[8]. Lutz, R.: Plan diagrams as the basis for understanding and debugging pascal

programs. In: Eisenstadt, M., Keane, M. T. and Rajan, T. (eds.): Novice programming

environments. Explorations in Human-Computer Interaction and Artificial Intelligence.

Lawrence Erlbaum Associates, Hove (1992) 243-285.

[9]. Barr, A., Beard, M., and Atkinson, R. C.: The computer as tutorial laboratory: the

Stanford BIP project. International Journal on the Man-Machine Studies 8, 5 (1976) 567-

596.

[10]. Weber, G. and Bögelsack, A.: Representation of programming episodes in the ELM

model. In: Wender, K. F., Schmalhofer, F. and Böcker, H.-D. (eds.): Cognition and

Computer Programming. Ablex, Norwood, NJ (1995) 1-26.

[11]. Moffatt, D. V. and Moffatt, P. B.: Eighteen pascal texts: An objective comparison.

ACM SIGCSE bulletin 14, 2 (1982) 2-10.

[12]. Greer, J. and McCalla, G. (eds.):Student modelling: the key to individualized

knowledge-based instruction. NATO ASI Series F, Vol. 125, Springer-Verlag, Berlin

(1993) p.

[13]. Sosnovsky, S., Brusilovsky, P., and Yudelson, M. (2004) Supporting Adaptive

Hypermedia Authors with Automated Content Indexing. In: Proceedings of Second

International Workshop on Authoring of Adaptive and Adaptable Educational

Hypermedia at the Third International Conference on Adaptive Hypermedia and

Adaptive Web-Based Systems (AH'2004), Eindhoven, the Netherlands, pp. in press.

[14]. Brusilovsky, P. (2004) KnowledgeTree: A distributed architecture for adaptive e-

learning. In: Proceedings of The Thirteenth International World Wide Web Conference,

WWW 2004 (Alternate track papers and posters), New York, NY, 17-22 May, 2004,

ACM Press, pp. 104-113.

