

Fine-Grained Concept Indexing of Java
Programming Contents Using

JavaParser

Submitted in fulfillment of the requirement of the
 ISSP 2990 Independent Study course

By:

Roya Hosseini

Advised By:

Peter Brusilovsky

Intelligent Systems Program
 University of Pittsburgh

 Pittsburgh, USA

Fall 2013

Acknowledgments

I would like to thank my advisor, Dr. Peter Brusilovsky for the valuable
advice and support he has given me during my independent study for
fall 2013.

Abstract

The multi-concept nature of problems in the programming
language domain requires fine-grained indexing which is
critical for sequencing purposes. In this paper, we propose
an approach for extracting this set of concepts in a reliable
automated way using the JavaParser tool. To demonstrate
the importance of fine-grained sequencing, we provide an
example of how this information can be used for problem
sequencing during exam preparation.

Contents

1 Introduction .. 5

2 Java Parser ... 8

3 Conclusion ... 9

References .. 10

1 Introduction

One of the oldest functions of adaptive educational systems is guiding students to the
most appropriate educational problems at any time during their learning process. In
classic ICAI and ITS systems, this function was known as task sequencing [1; 6]. In
modern hypermedia-based systems, it is more often referred to as navigation support.
The intelligent decision mechanism behind these approaches is typically based on a
domain model that deconstructs the domain into a set of knowledge units. This do-
main model serves as the basis of a student overlay model and as a dictionary to index
educational problems or tasks. Considering the learning goal and the current state of
student knowledge reflected by the student model, various sequencing approaches are
able to determine which task is currently the most appropriate.

An important aspect of this decision process is the granularity of the domain model
and the task indexing. In general, the sequencing algorithm can better determine the
appropriate task if the granularity of the domain model and the task indexing is finer.
However, fine-grained domain models that dissect a domain into dozens or hundreds
of knowledge units are much harder to develop and to use for indexing. As a result,
many adaptive educational systems use relatively coarse-grained models where a
knowledge unit corresponds to a sizable topic of learning material, sometimes even a
whole lecture. With these coarse-grained models, each task is usually indexed with
only 1-3 topics. In particular, this approach is used by the majority of adaptive sys-
tems in the area of programming [2; 4; 5; 7].

Our prior experience with adaptive hypermedia systems for programming [2; 4]
demonstrated that adaptive navigation support based on coarse-grained problem in-
dexing is a surprisingly effective way to guide students through their coursework, yet
it doesn’t work well in specific cases such as remediation or exam preparation. In
these special situations, students might have a reasonable overall understanding of the
content (i.e., coarse-grained student model registers good level of knowledge), while
still suffering some knowledge gaps and misconceptions that could only be registered
using a finer-grained student model. In this situation, only a fine-grained indexing and
sequencing tool is able to suggest learning tasks that can address these gaps and mis-
conceptions.

To demonstrate the importance of fine-grained indexing, we look to a system
called Knowledge Zoom (KZ). The goal of KZ is to help the students identify their
course knowledge gaps and provide tools to bridge these gaps in an effective way.
The first part of this dual goal is supported by the KE component, a concept-based
hierarchical zoomable open student model.

The second goal is supported by the KM, a concept-based adaptive problem se-
quencing tool. The interface of KZ (Fig.1) provides direct access to the Knowledge
Explorer (KE) model and a button to launch the Knowledge Maximizer (KM). KZ is
based on a concept-level model of knowledge about Java and OOP. This model is
formed by a subset of concepts from the Java ontology-
http://www.sis.pitt.edu/~paws/ont/java.owl built by the PAWs lab. The Java ontology
includes 344 concepts organized into an 8-level tree. The learning content in KZ is
formed by 103 parameterized self-assessment questions that were developed in our

team as a part of an earlier project [4]. Each question is indexed with ontology con-
cepts. The indexing classifies the prerequisite concepts that should be known before
approaching the question and the outcome concepts to be mastered by working with
the question. The number of concepts associated with a single question ranges from 5
to 52 (0 to 41 prerequisites, 1 to 12 outcomes). These questions cover the 188 most
important concepts of Java which form the KZ domain model.

The Knowledge Explorer (KE)
KE is a multi-level open student model visualized with a zoomable Treemap. The
information presented by KE is an overlay model of Java Knowledge based on the KZ
ontological domain model. The overlay student model in KZ is maintained by a user
modeling service, PERSEUS [8], which updates the model after every attempt to
answer a question and changes the knowledge level of concepts related to the ques-
tion.

Fig. 1. The KnowledgeZoom interface showing the top level of the Knowledge Explorer map and a button

to launch Knowledge Maximizer.

Fig. 2. Zooming on the node Expressions (top left corner in Fig. 1) reveals next level of the concept
hierarchy. Now the user can see that the node LogicExpression that has intermediate knowledge as a whole
(shown as yellow) consists of several well learned and several unknown concepts.

A zoomable Treemap was selected to present the student model due to its relatively
large size and hierarchical nature. The Treemap layout shows only four levels of con-
cept hierarchy starting from the current top node and hiding lower-level nodes behind
its ancestor node. The user, however, can zoom in any node. After zooming in, the
node expands becoming the top node and occupying the whole view. Zooming-in
immediately exposes previously hidden levels of hierarchy. For example, Fig. 2
shows the results of zooming into a second level concept, Expression shown in the top
left quadrant of Fig. 1.

In the Treemap layout, each node (a concept in the Java ontology) is shown as a
colored rectangle. A leaf concept of the ontology corresponds to a terminal node of
the Treemap. The size of a node represents the importance of a concept in the context
of Java language and its chance to be checked as part of the exam. We measure it by
counting how many questions are related to the leaf concept corresponding to this leaf
node in the Treemap. Since the number of exercises related to nodes can be quite
different, which leads to a large difference in the node sizes, we use the log2(size) to
moderate the differences. The color of a node represents the level of concept
knowledge demonstrated by a student. We use 10 colors from red to green to repre-
sent the progression from weaker to stronger knowledge.

 In a hierarchical zoomable layout, a leaf node directly represents the importance
and knowledge level of a concept with its size and color respectively, while each in-
termediate node accumulatively aggregates importance and concept knowledge from
its child nodes. As a result of the aggregation, the upper-level views show overviews
of students’ state of knowledge on higher levels (Fig. 1), while being able to explore
detailed knowledge of every concept as zooming into lower levels of the ontology
(Fig. 2). The calculation of the aggregated size and color is important to bridge the
gaps between lower and higher levels of views. In KE, the size aggregation is provid-
ed by Treemap. For the color aggregation, the color of an intermediate node is the
average color of its direct child nodes weighted with their sizes in order to reflect the
importance of the associated concepts.

The Knowledge Maximizer (KM)
Knowledge Maximizer [3] that uses fine-grained concept-level problem indexing to
identify gaps in user knowledge for exam preparation. This system assumes a student
already completed a considerable amount of work: thus, the goal is to help her define
gaps in knowledge and try to redress them as soon as possible. Fig. 3 represents the
Knowledge Maximizer interface. The question with the highest rank is shown first.
The user can navigate the ranked list of questions using navigation buttons at the top.
The right-hand side of the panel shows the list of fine-grained concepts covered by
the question. The color next to each concept visualizes the student’s current
knowledge level (from red to green). Evaluation results confirm that using fine-
grained indexing in Knowledge Maximizer has a positive effect on students’ perfor-
mance and also shortens the time for exam preparation.

Fig. 3. The Knowledge Maximizer interface.

The problem with finer-grained indexing, such as that used by the Knowledge
Maximizer, is the high cost of indexing. While a fine-grained domain model has to be
developed just once, the indexing process has to be repeated for any new question.
Given that most complex questions in our domain involve more than 50 concepts
each, the high cost of indexing effectively prevents an increase in the number of prob-
lems represented in the system. To resolve this problem, we developed an automatic
approach to fine-grained indexing for programming problems in Java based on pro-
gram parsing. This approach is presented in the following section.

2 Java Parser

Java parser is a tool that we developed to index Java programs according to concepts
in a Java ontology developed by our group (http://www.sis.pitt.edu/~paws/ont/java.owl).
This tool provides the user with semi-automated indexing support during the devel-
opment of new learning materials for a Java Programming Language course. This
parser was developed using the Eclipse Abstract Syntax Tree framework. This
framework generates an Abstract Syntax Tree (AST) that completely represents the
program source. AST consists of several nodes, each containing sets of information
known as structural properties. For example, Fig. 4 shows the structural properties for
the following method declaration:

public void start(BundleContext context) throws Exception {
 super.start(context);
}

Navigation Buttons

 Knowledge Level
 Question Concept

 Question Area

http://www.sis.pitt.edu/%7Epaws/ont/java.owl

Fig. 4. Structural properties of a method declaration

Table 1. Sample of JavaParser output

Source Output

public void start(BundleContext context) throws Exception {
 super.start(context);
}

PublicAccessSpecifier,
MethodDefinition, VoidDataType,
FormalMethodParameter,
ThrowsSpecification, ExceptionClass,
SuperReference,
SuperclassMethodCall, ExpressionStatement

After building the tree using Eclipse AST API, the parser performs a semantic

analysis using the information in each node. This information is used to identify fine-
grained indexes for the source program. Table 1 shows the output concepts of Ja-
vaParser for the code fragment mentioned above. Note that the goal of the parser is to
detect the lowest level ontological concepts behind the code as the upper level con-
cepts can be deduced using ontology link propagation. For example, parser detects
“PublicAccessSpecifier” ignoring the upper-level concept of “Modifier”.

We compared the accuracy of JavaParser with manual indexing for 103 Java prob-
lems and determined that our parser was able to index 93% of the manually indexed
concepts. Therefore, an automatic parser can replace the time-consuming process of
manual indexing with a high precision and open the way to community-driven prob-
lem authoring and targeted expansion in the size of the body of problems.

3 Conclusion

Having fine-grained indexing for programming problems is necessary for better se-
quencing of learning materials for students; however, the cost of manual fine-grained
indexing is prohibitively high. In this paper, we presented a fine-grained indexing
approach and tool for the automatic indexing of Java problems. We also explored an

application of fine-grained problem indexing during exam preparation, where smaller
grain size of knowledge units is critical to finding the sequence of problems which
will fill the gaps in student knowledge. Results show that the proposed automatic
indexing tool can offer the quality of indexing that is comparable with manual index-
ing by an expert at a fraction of the cost.

References

1. Brusilovsky, P.: A framework for intelligent knowledge sequencing and task
sequencing. In: Proc. of Second International Conference on Intelligent Tutoring
Systems, ITS'92. Springer-Verlag (1992) 499-506

2. Brusilovsky, P., Sosnovsky, S., Yudelson, M.: Addictive links: The motivational
value of adaptive link annotation. New Review of Hypermedia and Multimedia
15, 1 (2009) 97-118

3. Hosseini, R., Brusilovsky, P., Guerra, J.: Knowledge Maximizer: Concept-based
Adaptive Problem Sequencing for Exam Preparation. In: Proc. of the 16th
International Conference on Artificial Intelligence in Education. (2013) In Press

4. Hsiao, I.-H., Sosnovsky, S., Brusilovsky, P.: Guiding students to the right
questions: adaptive navigation support in an E-Learning system for Java
programming. Journal of Computer Assisted Learning 26, 4 (2010) 270-283

5. Kavcic, A.: Fuzzy User Modeling for Adaptation in Educational Hypermedia.
IEEE Transactions on Systems, Man, and Cybernetics 34, 4 (2004) 439-449

6. McArthur, D., Stasz, C., Hotta, J., Peter, O., Burdorf, C.: Skill-oriented task
sequencing in an intelligent tutor for basic algebra. Instructional Science 17, 4
(1988) 281-307

7. Vesin, B., Ivanović, M., Klašnja-Milićević A., Budimac, Z.: Protus 2.0:
Ontology-based semantic recommendation in programming tutoring system.
Expert Systems with Applications 39, 15 (2012) 12229-12246

8. Yudelson, M., Providing service-based personalization in an adaptive
hypermedia system. PhD Thesis. U. of Pittsburgh, 2010.

	1 Introduction
	2 Java Parser
	3 Conclusion
	References

