
INFSCI 2950: Independent Study (Systems)

Prof. Peter Brusilovsky
Summer Term 2016-2017

Final Project Report:

Parsons Programming Puzzles for Java Language

Sai Supreetha Varanasi
MSIS - SAIS

sav52@pitt.edu

School of Computing and Information

University of Pittsburgh

INFSCI2950 Sai Supreetha Varanasi (sav52) 2

Table	of	Contents	

Introduction: ... 2	
Software: .. 4	

Project Structure: ... 4	
Database: ... 6	

Application: ... 8	
Scripts: ... 12	

Hackerrank API: .. 14	
Conclusion and Future Scope: ... 16	

References: ... 16	

Introduction:
This project is an extension of the prior work on Interactive Programming Puzzles design and
development that can be found here: http://tinyurl.com/InteractiveJ. The prior work dealt with
the various aspects like the Requirement gathering, Mockup preparation, Design and Task
Analysis of the mockup and iterative improvement, and, Prototype development.

The earlier prototype had three types of programming puzzles called “Example” which is a quiz
like rendering of the program for the user to select the correct code fragments out of 4 options to
satisfy the given goal, “Faded Example” which is similar to the former except there are no hints
while the former had fragment-level hints and the “Problem” which is Parsons programming
puzzles implementation for Java language.

The evaluation of the earlier prototype resulted in the need for an extensible application, specially
for the ‘Problem’ or the Parsons puzzles. This project aims to satisfy that goal of making the
process of creation of Puzzles as well as handling of the compilation and running process entirely
at the application level.

The extensible-ness is made possible in this project by the fact that the entire Parsons puzzle
creation is dependent on the it corresponding fully functional .java file with some additional meta
data as a part of it. This process is majorly automated and requires running a couple of scripts in a
particular sequence.

The application level compiling and running the code after the puzzle has been solved is handled
by the Hackerrank API where a request to the api is posted and the response from it contains the
compilation information is used to provide feedback.

INFSCI2950 Sai Supreetha Varanasi (sav52) 3

Fig[1,2,3]: Earlier prototype of ‘Example’, ‘Faded Example’ and ‘Problem’

INFSCI2950 Sai Supreetha Varanasi (sav52) 4

Software:
The software used to develop this project is the full-stack JavaScript framework, the MEAN stack.
MEAN stands for MongodB, ExpressJS, AngularJS and NodeJS repectively. Node is the
application server which handles the mongodb database and provisions the business logic.
Mongodb is the NoSQL database which is ideal here as this project deals with JSON data.
ExpressJS provides the middle layer logic between the front-end and the back-end. AngularJS is
the front-end framework that is used to handle the data obtained from the middle layer and plug it
into the front-end views. The architecture is as shown in Fig4. The use of these JavaScript
framework also due to the fact that it provides fluidity and responsiveness to this application.

Fig4: Full stack architecture of Parsons Programming Puzzles in Java project

Project Structure:
The project contains various folders for compactness and for general organizing as can be seen
from the Fig5. Descriptions and contents of each folder is given below:

• /view/ contain the front-end html files – gateway to the project.
• /data contains the.java files and their respective .json files along with a bash script.

INFSCI2950 Sai Supreetha Varanasi (sav52) 5

• /node_modules/ folder is created when a new node app is created and its dependencies
are installed using package.json file which can also be seen below.

• /public/ folder contains the static files like images, stylesheets and the js scripts.
• /bower_components/ is created when front-end libraries are installed using bower.json

file.
• /models/ is the folder where the database schema is present and that is used to make calls

to the mongodb database.
• /routes/ folder has the rest api implementation which are rendered as views with the help

of angularjs components.
• /bin/www/ contains the compiled version of the project which is used for starting the

project on local node server.
• Readme.md is an intro to the file for github repository’s sake.
• createJSON.py is a python script that is used to convert the .java files to .json files.
• app.js is the main entry point to this project. It describes the configuration information.

Fig5: Project file structure

INFSCI2950 Sai Supreetha Varanasi (sav52) 6

Database:
As mentioned above, the database being used is mongodb. The steps to be followed to setup a
database for the project and the steps for adding new data to the database are currently same. The
foremost thing to do is to get the working .java file in the format as shown in Fig6.

Fig6: Format of the java file with additional metadata

	
Java	file	and	its	Metadata:		
The file naming follows a convention that:

• Each of the program file is illustrating a Java concept. This is called activityName attribute.
Examples are: ArrayInitialization, Conditionals, DataStrutures, InputOutput, Puzzles etc.,

• Each of the file therefore is named as [activityName][id].java like for example:
ArrayInitialization1.java, Conditionals5.java, Puzzles3.java etc.

The additional information in the .java file apart from the code lines are the metadata attributes.
These attributes start with a single-line comment (//) sign. Care should be taken so as to not include
any quotes in the entire file as having ‘ ’ or “ ” inside the .java file is causes a JSON parsing
error. Also, there should not be any unnecessary empty new lines in the .java file.

The list of attributes are:

• outputDesc: The expected output as per the program author. [required]
• goalDesc: The main goal of the program. The goal is expected to start with “Drag the tiles

from Problem field to Solution field to construct a program . . .” [required]
• isSubgoal: The important line can be flagged with this attribute but should be above that

that important line. These are just like general comments in actual code. [Optional]

[Atleast one line of file should be provided as these attributes below]
• isBlank: This attribute is designed for ‘Example’ & ‘Faded Example’ puzzles for creation

of empty slot in the static blocks. It should be specified beside the line just as shown in
Fig6. [Atleast one fragment should be flagged

• isDistractor: This attribute is also designed for ‘Example’ & ‘Faded Example’ puzzles for
multiple option list creation. It should be specified beside the line just as shown in Fig6.

• helpDesc: This attribute is also designed for ‘Example’ & ‘Faded Example’ puzzles for
hover-for-help implementation. It should be specified beside the line just as shown in Fig6.

INFSCI2950 Sai Supreetha Varanasi (sav52) 7

JSON	structure:	
Below is the example JSON structure that is based on the metadata given above as well as some
extra attributes:

{
"activityName" : Conditionals,
"goalId" : 1,
"correctAnsSet" : [1,2,3,4,5,6,7,8,9],
"goalDesc" : Drag the tiles from Problem code fragments field (right) to
Solution field (left) to construct a program to execute looping using do-
while and print the value of looping variable.,
"outputDesc" : This program should print the looping variable's values in
each iteration of the loop.,
"fragments" : [
/*Auto identification of code lines and creating the fragments list
item*/

{
"fragId" : 1,
"isSubgoal" : false,
"isBlank" : false,
"isDistractor" : false,
"helpDesc" : ,
"fragText" : public class Conditionals1 {

},
{

"fragId" : 2,
"isSubgoal" : false,
"isBlank" : false,
"isDistractor" : false,
"helpDesc" : ,
"fragText" : public static void main(String[] args) {

}
/*And so on .. */
]

}

The extra attributes are those that are generated automatically at script level and need not be
mentioned by the program author in the .java code file.

• activityName: Taken from the name of the .java file.
• goalId: It is the id or number in the name of the .java file.
• correctAnsSet: This auto-generated attribute is for use in the ‘Example’ and ‘Faded

Example’ puzzles where there is no provision for application level compilation and
running.

• fragments: The array of the json representation of code lines auto-generated using the
python script.

o fragId: This is auto-assigned
o fragText: This is the main line of code
o The remaining attributes are author given as described in previous section and are

auto-assigned using the script.
o

The script createJSON.py is run on the command line from the root of the project directory as:

INFSCI2950 Sai Supreetha Varanasi (sav52) 8

/InteractiveJ>$	python	createJSON.py

This automatically parses the /data/ folder, obtains all the .java files and creates a corresponding
.json file and puts them inside /data/ . Adding a new java file implies regenerating all .json files
again. This is done so as to ensure that any changes in other old files are reflected in the database.

Adding	data	to	mongodb	database:	
Once the authoring of .java files and their subsequent .json file generation is done, they are added
to the mongodb database called parsonsdb and the collection called programs.
On terminal window[1]:
$	mongod	

On terminal window[2] go the database server:
$	mongo	

Whether parsonsdb already present or not enter this command. If it was not present then it is
created:
>	use	parsonsdb	 	

If the parsons db already present with json documents inserted in programs collection then, delete
the collection before running the load.sh script:
>	db.programs.remove({})	

On terminal window[3] navigate inside the /data/ folder:
/InteractiveJ>$	cd	data	

The load.sh file inserts the .json files inside programs collection of parsonsdb database.
/InteractiveJ/data>$	sh	load.sh	

On terminal window[2] check if the json documents are inserted:
>	db.programs.find()	

Application:
Once the database setting is done, the next step is to start the parsons programming puzzles
application.
If it is new run of the application, then there will not be node_modules folder and needs to be
generated with all the dependencies mentioned in package.json by doing:
/InteractiveJ>$	npm	install	

If the application has node_modules already installed then simply run:
/InteractiveJ>$	nodemon	

The application can be seen running on localhost:3000

The home page as shown in Fig7 is served by the file /views/home.html. All the programs are
listed out there in a fluid manner so a user can navigate to any programming puzzle that he/she
likes. Currently there are these 14 parsons java programming puzzles in the application.

INFSCI2950 Sai Supreetha Varanasi (sav52) 9

Clicking on the puzzle on the home page takes the view to the puzzle page as shown in Fig8 which
is served by the /views/index.html. This is optimized and responsively changes for mobile or a
screen width of any size.

Fig7: The home page of the parsons Java application

Fig8: On clicking one of the puzzles from home page

It can be seen that an alert-like pop-up is issued on every load of the puzzle to serve as a general-
purpose help for solving parsons programming puzzles and for what needs to done on the interface.
This kind of help is chosen because the user is limited to just drag and drop of code fragments in
this interface. Levels of help based on the fragments selected and their order is beyond the scope
of this project. At present, the application only tries to compile whatever the fragments placed in
the Solution field. If they are correct, then the program executes else, the program returns an error
and it is displayed in the Check solution field. The programs may or may not give outputs on the
console. That case is handled and the Success message changes accordingly.

INFSCI2950 Sai Supreetha Varanasi (sav52) 10

Fig9 depicts the index page of the puzzle after the help disappears. This has 4 major elements:
Goal, Compile&Run, Solution and Problem. The interface follows the same design as is described
in the http://tinyurl.com/ISD-prototype2

Fig9: The parsons puzzle interface

Fig10: Solving the puzzle so the arrangement is wrong

INFSCI2950 Sai Supreetha Varanasi (sav52) 11

Fig11: Solving the puzzle success

Fig12: Console output of Hackerrank Api request and response

INFSCI2950 Sai Supreetha Varanasi (sav52) 12

Fig10 depicts what happens if the fragments are arranged incorrectly. Fig11 depicts what happens
if the fragments are arranged correctly. Fig12 depicts the console output of the request string, the
response string to and from hackerrank api. This console output is logged for every compilation
and run. It provides a more detailed information than is shown on the puzzle interface. This is done
so as to not overwhelm the beginner users who are the target users of the platform.

Scripts:
Since this is a full stack application in Javascript, every major functionality is provided by the
same. The various scripts used along with their functionality code snippets and description are
provided in this section.
app.js:	
This is the starting point of the application and in this file is where the server is initialized, all the
dependencies are declared and configurations are set. This handles the routing mechanism as well
where it says which script should take care of the view if localhost:3000 is navigated to or if
localhost:3000/programs/:id is navigated to. It takes care of calling the hackerrank api with the
request structure needed for the api call to take place successfully. It also establishes the connection
to the database.

Fig12: app.js configurations

	
Programs.js	
This is the schema definition script for our database. This takes the help of the mongoose ORM
which effortlessly handles the JSON documents procurement. As can be seen from Fig13, the
schema is just as given by the JSON structure that was designed and created to suit the application.
In a MEAN stack application the data between the views and business logic are also exchanged
only in the form of JSON. Anything that gets passed or returned is of that format as well, which
makes it difficult if an object relation mapper like mongoose module is not used. The

INFSCI2950 Sai Supreetha Varanasi (sav52) 13

programSchema called programs being exposed to other Express scripts that handles business
logic using the module.exports mechanism.

Fig13: Programs.js schema definition

Fig14: index.js router

Fig15: programs.js router

INFSCI2950 Sai Supreetha Varanasi (sav52) 14

index.js	&	programs.js:	
The Fig14 and Fig15 gives the router scripts that are used to handle the requests from user when
navigated to localhost:3000 or localhost:3000/:id. The index.js route retrieves all the program
documents from the database and renders them on the home.html view. The programs.js routes the
individual program’s specific JSON object and renders it as a parsons puzzle view using
index.html. Note that this programs.js which routes the JSON data specific to a puzzle is different
from the Programs.js that defines the schema.

script.js:	
The script.js is present inside the /public/javascripts/ folder of the project. The main task of this
script is to handle the functionality when the ‘Compile & Run’ button on the puzzle page is clicked.
After user drags and drops the code fragments to solve a parsons puzzle, and when the button is
clicked, the code fragments in the solution field are converted to a string. A jQuery ajax call is
used to post this string to the node server. Since our node server is provided by app.js, that itself
handles this ajax post request by the client.

Fig16: script.js

Hackerrank API:
Before the ajax call is made, the request data is prepared by appending the Hackerrank api
corresponding information. The api url is api.hackerrank.com/checker/submission.json and the
code related information needs to be POSTed to this api to successfully compile and run it. As can
be seen from Fig18, source code, language, testcases and the apikey are the required parameters
to be sent with the POST request.

INFSCI2950 Sai Supreetha Varanasi (sav52) 15

Hackerrank is a programming competitions platform. The testcases parameter is important in that
sense. As the api is being used to compile and run the static code obtained from code fragments
(the parsons problems do not accept the user input nor can the code be changed), a dummy testcases
parameter is provided. The platform also provides numerous programming language choices, but
since the language here is java, only its corresponding language code “3” is sent with the request.
The apikey is also hardcoded along with testcases and language code.

Fig17: app.js ajax post request handler

Fig17: Hackerrank Api parameters

INFSCI2950 Sai Supreetha Varanasi (sav52) 16

Conclusion and Future Scope:
This interactive programming problems developed in the format of parsons puzzles are targeted
towards the beginner users of Java programming language. The static examples of textbooks can
be transformed to jumbled puzzles to suit a specific goal which is then solved to get the result.
Currently this only has 14 puzzles which can be extended to any number of static programs. The
aim is to make it extensible so as to not write program specific views and make just one view adopt
to any kind of java program with any number of lines.

Since the hackerrank api accepts the testcases, one improvement of this platform is to make these
puzzles more dynamic so the user can provide input and solve a particular problem while retaining
the puzzle structure instead of going for a quiz like structure as that of ‘Example’ or ‘Faded
Example’.

A future scope for an application like this is to extend this to maintain session and gamify the
solving process by awarding/deducting points based on the number of attempts taken to correctly
solve the puzzle. Further extension would be to maintain the past trials of the users by allowing
them to create an account and save that information as part of the profile to determine what
concepts are the strong point of the user.

Further more improvement would be to forgo the hackerrank api and use a docker based sandboxed
environment deployed on cloud to compile and run the code derived from solution code fragments.

References:
1. Hackerrank API docs [https://www.hackerrank.com/api/docs]
2. Mongodb http interfaces [https://docs.mongodb.com/ecosystem/tools/http-interfaces/]
3. Mongodb REST API app [https://www.mongodb.com/blog/post/building-your-first-

application-mongodb-creating-rest-api-using-mean-stack-part-1]
4. Working with IDE One API [https://tareq.co/2011/07/working-with-ide-one-api/]
5. Online Code Editor with Node js and Hackerrank API

[http://code.runnable.com/V436x_gKK2FxZB2t/online-code-editor-for-node-js-api-and-
hacker-rank]

6. Angular drag & drop with HTML5 [https://marceljuenemann.github.io/angular-drag-and-
drop-lists/demo/#/simple]

7. How we used Docker to compile and run untrusted code
[https://blog.remoteinterview.io/how-we-used-docker-to-compile-and-run-untrusted-
code-2fafbffe2ad5]

8. Ideas and code-snippets from stackoverflow.com

