
Cross	Domain	Recommender	

For	Conference	Attendees	

Kehao	Xu	
School	of	information	sciences	

University	of	Pittsburgh	
Pittsburgh	PA	15260,	USA	

kex3@pitt.edu	

Abstract	

This	 recommendation	 system	 is	 for	 people	who	 are	 in	 the	 same	 conference.	 The	 system	
adopted	 Google	 custom	 search	 API	 to	 get	 information	 that	 uses	 to	 calculate	 a	 score	 for	
recommendation.	The	information	is	separated	into	five	domains,	Google	Scholar,	Researchgate,	
Twitter,	Wiki	and	general	 search	 result.	 The	 score	consists	of	 two	parts,	 content	 similarity	and	
network	similarity.	User	can	view	a	recommendation	list	for	a	certain	person	and	the	dashboard	
that	consist	of	what	system	get	from	Google	search	for	everyone	in	the	list.	

1. Introduction

It	is	a	challenge	to	do	people	recommendation	task	based	on	various	uncertain	data	sources	
or	 lack	 of	 data.	 In	 this	 system,	we	 try	 to	 build	 up	 a	 system	 that	 query	 user	 information	 from	
Google	search.	Based	on	the	search	result,	the	system	can	retrieve	the	user's	 information	from	
multiple	source,	like	Google	Scholar,	 	 Researchgate.	With	certain	and	rich	information,	it	will	be	
easier	to	do	people	recommendation	task.	
	 To	 achieve	 this	 goal,	 the	 system	will	 get	 the	 attendee	 list	 from	Conference	Navigator	 3[1]	
(CN3)	and	use	the	name	of	attendee	as	a	query	to	search	in	Google	search.	This	search	result	will	
be	 processed	 to	 five	 different	 domains	 then	 modeling	 the	 processed	 data	 to	 get	 the	 final	
recommendation.	 	

In	this	paper,	we	will	 introduce	the	system	structure,	the	method	to	process	the	data,	the	
model	 to	 make	 the	 recommendation,	 the	 interface	 of	 website	 and	 the	 evaluation	 of	 the	
recommendation.	 	

2.	Related	Works	 	

	 In	cross-domain	recommendation,	the	goal	 is	to	use	various	source	domain	information	to	
recommend	 items	 in	 the	 target	 domains[2].	 However,	 even	 there	 are	many	method	 to	 do	 the	
recommendation,	how	to	get	various	source	information	is	a	problem.	To	solve	this	problem,	we	
choose	Google	search	do	this	job.	People	now	is	using	and	more	relying	on	the	Internet	for	many	
years.	It	makes	the	Internet	a	huge	information	source	in	various	domain,	and	Google	search	is	a	
good	tool	that	can	retrieve	the	related	information	from	the	Internet.	
	 First	 of	 all,	 we	 need	 to	 decide	 what	 the	 target	 domains	 is	 and	 what	 the	 various	 source	
domains	are.	The	target	domains	is	to	make	the	recommendation	for	the	attendees	in	the	same	
conference.	The	attendee	list	is	got	from	the	CN3[1]	website.	Various	source	domains	are	Google	
scholar,	Researchgate,	which	are	the	most	famous	and	complete	academic	source,	Twitter,	the	
most	popular	social	tool,	Wiki,	the	richest	information	website	and	general	search	result,	which	
means	the	other	results	which	are	not	that	special	but	relative.	 	 	 	 	
	 After	 retrieving	 the	 information	 for	 the	 system,	 there	 need	 to	 be	 some	 algorithms	 and	
models	 to	 make	 the	 recommendation.	 The	 score	 that	 used	 to	 make	 the	 recommendation	 is	
linear	combined	with	content	similarity	and	network	similarity	in	the	same	weight.	The	content	
similarity	uses	the	Vector	Space	Model[3]	(VSM)	to	calculate	the	score.	The	data	to	be	calculated	
is	 from	 the	 character	 data	 in	 those	 five	 domains.	 The	 network	 similarity	 uses	 the	 Jaccard's	
coefficient[4].	 The	 data	 is	 from	 the	 network	 information	 like	 coauthor	 or	 friends	 in	 those	 five	
domains.	All	the	sub	scores	in	those	two	parts	are	also	linear	combined	in	the	same	weight.	 	
	 To	provide	this	cross	domain	recommendation	system	to	users,	we	make	the	system	a	web	
application.	The	front	end	 is	based	on	the	HTML5	and	the	 interface	 is	using	the	template	from	
HTML5UP[5]	 .	 In	a	conference,	the	attendee	may	not	contact	with	his	computer	all	 the	time,	so	
providing	 a	 website	 with	 a	 good	 display	 in	 smart	 phone	 is	 important.	 The	 HTML5	 and	 this	
template	are	good	at	this.	 	 	

3.	Approach	

3.1	System	Structure	

	

Figure	1	:	The	Structure	Of	System	
	 To	make	recommendation,	there	should	be	a	score	to	rate	people.	To	get	people	been	rated,	
it	needs	information	that	related	to	them.	The	system	consists	of	three	subsystems,	the	picture	1	
is	 showing	 the	 whole	 structure	 of	 the	 system.	 Out	 of	 the	 system,	 there	 is	 CN3,	 which	 is	 the	
attendee	 list	 coming	 from.	 For	 the	 subsystems,	 the	 first	 is	 data	 processing,	 using	 the	 Google	
search	to	get	the	related	information	and	separating	and	parsing	the	search	result	to	five	special	
domains,	Google	 Scholar,	 Researchgate,	 Twitter,	Wiki	 and	 general	 search	 result,	 the	 second	 is	
modeling,	using	 the	processed	data	 to	 calculate	 the	 score	between	each	person	by	using	VSM	
and	Jaccard's	coefficient,	the	third	is	interface,	show	the	recommendation	list	and	dashboard	to	

user	by	website.	 	 	
	

3.2	Design	

3.2.1	Data	process	

	 The	system	uses	Google	search	to	get	a	top	100	result	 to	get	the	original	data.	At	start,	 it	
used	a	web	spider	to	get	the	search	result.	However,	after	about	100	times	request,	Google	will	
return	503	error	and	refuse	the	HTTP	request	because	it	regards	the	system	as	a	robot.	To	solve	
this	problem,	the	method	changed	to	use	the	Google	custom	search	API	to	get	the	search	result.	
	 	 	 	 The	 Google	 custom	 search	 API	 is	 called	 by	 html	 get	 function.	 The	 URL	 is	
https://www.googleapis.com/customsearch/v1?.	The	parameters	are:	1)	Num:	means	how	many	
result	return,	maximize	is	10;	2)	Key	and	Cx:	the	authorize	parameters;	3)	Q:	the	query	that	you	
want	to	search;	4)	Start:	the	 index	of	the	records	that	the	result	starts	with.	One	response	 just	
contains	 maximize	 10	 records,	 so	 one	 collecting	 needs	 10	 requests.	 The	 response	 from	 the	
Google	custom	search	API	is	in	JSON	format.	 	 	
	 	 	 After	getting	search	result,	the	system	will	process	the	search	result	one	by	one	to	separate	
them	 into	 five	 special	 domains,	 which	 are	 Google	 Scholar,	 Researchgate,	 Twitter,	 Wiki	 and	
general	search	result.	The	separating	is	based	on	the	URL.	The	search	results	is	not	guaranteed	as	
unique,	 for	 example,	 there	 could	 be	more	 than	 one	 result	 from	Google	 Scholar	 in	 one	 search	
results.	 The	 system	 just	 use	 the	 first	 matched	 result	 because	 Google	 supposed	 to	 return	 the	
result	in	order	of	relative.	
	

Wiki {“content”:””, (Other parameters are dynamic, it depends on what does the page contain, but all the
things are String, no JSONArray) }

Google
Scholar

{“name”:””, “position”:””, “interests”:[], “citations”:””, “h-index”:””, “i10-index”:””, “coauthors”:[],
“titles”:[] }

Researchgate { “institution”:””, “name”:””, “skills”:[], “topics”:[], “publications”:[], “topcoauthors”:[] }

Twitter { “timelines”:[], “favorites”:[], “friends”:[] }

Other [{"index":"", "title":"", "content":"" },......]

Table	1	,	JSON	structure	of	parsed	data	
	

	 	 	 To	parse	 the	search	 result	 to	 the	data	 that	system	can	calculate,	 there	 is	a	parse	class.	For	
five	different	domains,	 there	are	 five	different	parse	method.	Twitter	data	 is	using	 the	Twitter	
API[6]	 to	 get	 accurate	 data.	 The	 system	 gets	 the	 Twitter	 name	 from	 the	URL	 and	 by	 using	 the	
Twitter	name,	 the	Twitter	API	will	 return	what	 the	system	need.	Google	Scholar,	Researchgate	
and	Wiki	 are	 parsed	 by	 the	 web	 spider	 which	 has	 special	 designs	 for	 their	 structures.	 Other	
search	results	are	parsed	by	readability	API[7]	which	can	get	the	main	text	from	a	web	page.	The	
readability	API	is	called	by	HTML	get	function.	Using	the	URL	of	the	web	page	as	the	parameter	
to	get	the	main	text.	The	structures	of	the	JSON	that	stores	the	parsed	data	shows	in	table	1.	The	
online	 version	 API	 just	 allow	 the	 free	 user	 to	 call	 1000	 times	 in	 one	 day.	 Finally	 the	 system	

change	to	use	a	local	version	API	to	get	the	main	text.	 	 	 	
	 	 	 The	whole	data	been	processed	can	be	cached	in	JSON	format	and	store	in	the	hard	disk	to	
make	sure	that	if	the	calculate	method	change	the	original	data	is	the	same.	At	first,	the	system	
does	 not	 cache	 anything	 in	 hard	 disk.	 However,	 when	 the	 first	 time	we	 run	 the	 system	 for	 a	
person's	recommendation,	it	took	more	than	20	minutes	to	get	the	result.	This	long	time	will	not	
meet	 the	 require	of	users.	 To	provide	a	better	user	experiment,	we	decide	 to	 cache	all	 of	 the	
data	 in	hard	disk.	The	structure	of	the	storage	 is	that	the	name	of	top	folder	 is	the	conference	
number,	 in	 the	 folder,	 there	 are	 folders	 that	 named	 by	 the	 people	 who	 will	 attend	 this	
conference	 and	 their	 affiliation.	 In	 the	 person's	 folder,	 there	 are	 files	 that	 cached	 the	 Google	
search	results,	parsed	data	of	five	different	domains	and	the	web	page	which	gets	from	the	URL	
of	each	search	result.	 	

3.2.2	Model	

	 After	getting	all	the	data	in	JSON	format,	the	system	will	use	the	data	to	calculate	the	score	
between	 each	 attendee	 in	 the	 conference.	 The	 total	 score	 consists	 of	 content	 similarity	 and	
network	similarity,	the	weights	of	each	similarity	are	0.5.	
	 The	content	similarity	is	using	the	VSM,	which	uses	cosine	distance	between	two	space	
vectors	that	are	consist	of	the	words	from	parsed	data.	The	meta	data	that	this	part	uses	is	the	
data	in	the	table	1	expect	the	"coauthors"	in	Google	Scholar,	the	"topcoauthors"	in	Researchgate	
and	the	"friends"	in	Twitter.	Before	the	term	is	been	put	into	the	vector,	it	will	be	normalized,	
which	means	change	all	the	characters	to	lowercase,	and	remove	all	the	stop	words.	After	
processing,	the	terms	will	consist	a	vector	that	present	the	information	of	one	person.	
Calculating	the	cosine	distance	could	show	the	potential	relation	between	those	two	persons.	 	
	 The	network	similarity	is	using	Jaccard's	coefficient,	which	uses	the	number	of	the	
intersection	of	the	sets	of	people	that	they	know	dived	the	number	of	the	union	of	the	sets	of	
people	that	they	know.	Not	all	of	the	five	domains	have	the	network	information,	just	Google	
Scholar,	Twitter	and	Researchgate	have	those	data,	which	are	"coauthors",	"topcoauthors"	and	
"friends".	This	similarity	will	show	the	actual	relation	between	those	two	persons.	
	 	 	 	 Each	domain	with	two	parts	will	have	a	sub	score,	if	this	domain	has	the	information	for	this	
domain,	and	it	is	very	important	to	save	all	of	the	sub	scores	because	the	user	can	sort	the	
recommendation	list	by	any	sub	scores	or	total	scores	that	he	wants.	The	total	score	of	content	
similarity,	the	total	score	of	network	similarity	and	the	total	score	will	be	calculated	at	final.	All	
the	sub	scores	are	linear	combined	and	the	weight	of	different	parts	is	the	same.	When	all	of	the	
scores	have	been	calculated,	the	recommendation	list	is	also	created.	The	recommendation	list	
will	be	stored	in	hard	disk	in	JSON	format	to	make	the	display	faster.	 	
	

3.2.3	Interface	

	 In	 the	 system,	 there	 is	 much	 data	 that	 has	 been	 cached	 in	 hard	 disk,	 what	 and	 how	 to	
display	to	user	 is	 important.	The	system	is	using	web	page	to	display	the	recommendation	and	
the	 information.	 There	 are	 three	 parts,	 attendee	 list,	 dashboard,	 recommendation.	 All	 of	 the	

three	parts	can	link	to	the	other	two	parts.	 	
	 The	home	page	displays	the	attendee	list.	The	background	of	the	whole	web	page	is	hazy,	so	
that	users	will	 focus	on	the	 function	on	the	web	page.	At	 the	start	of	opening	the	home	page,	
there	is	an	animation	that	the	title	which	is	the	name	of	the	system	will	first	come	out	and	there	
will	be	two	lines	easing	into	the	upward	and	downward	side	of	the	title.	This	animation	will	draw	
users'	attention	to	the	page	and	the	title.	After	this	animation,	other	object	will	come	out.	There	
is	 a	 selector	 under	 the	 tile	 for	 users	 to	 select	 which	 conference	 do	 they	 attend.	 Under	 the	
selector,	 there	 is	 a	 hyperlink	 text	 tell	 users	 to	 "Get	 the	 Authors	 List".	 This	 hyperlink	 has	 an	
underscore	with	it	to	let	users	know	that	this	is	clickable.	After	you	click	the	hyperlink,	the	page	
will	be	scrolled	down	to	second	section	that	contains	the	list	of	attendees.	At	the	top	of	the	list,	
there	is	a	paragraph	tells	users	the	name	of	the	conference.	Under	this	paragraph,	there	is	a	text	
to	tell	users	how	to	use	this	page.	The	list	has	three	section,	name,	affiliations,	recommendation.	
The	 names	 are	 all	 hyperlinks	 that	 link	 to	 the	 dashboard	 page	 for	 this	 attendee.	 The	
recommendations	are	all	hyperlinks	that	link	to	the	recommendation	page	for	the	attendee.	
	 The	 dashboard	 page	 displays	 the	 information	 that	 the	 system	 gets	 from	 Google	 search.	
There	are	five	sections,	which	according	to	the	special	domain	when	processing	the	data,	Google	
scholar,	 Researchgate,	 Twitter,	 Wiki,	 other	 search	 result.	 The	 data	 from	 Google	 scholar,	
Researchgate	 and	 Twitter	 is	 formatted	 and	 easy	 to	 display	 by	 list,	 so	 those	 three	 section	 are	
displayed	by	 list.	The	data	of	Wiki	 is	not	 that	 formatted	because	 the	wiki	 is	made	by	users.	To	
make	the	page	neater,	this	section	nest	the	wiki	web	page.	The	data	of	other	search	result	is	too	
much	to	display	all	of	it	in	the	web	page,	so	that	there	are	just	the	titles	of	each	search	result	and	
the	titles	are	also	hyperlinks	to	their	result	website.	At	the	top	of	the	page,	there	is	a	paragraph	
tells	users	who	is	the	dashboard	for.	There	 is	also	a	hyperlink	to	the	recommendation	page	for	
this	 person.	 All	 the	 data	 in	 each	 sections	 are	 displayed	 in	 a	 two	 column	 list.	 To	 make	 the	
elements	 in	the	list	can	be	distinguished	with	others,	the	alpha	of	the	background	color	will	be	
increased	one	by	one.	It	can	make	the	border	obvious	without	using	a	line.	 	 	 	
	 The	 recommendation	page	display	 the	 information	of	 the	 recommendation	 that	made	by	
the	system.	The	recommendation	list	is	ordered	by	the	total	score	between	this	user	and	others.	
However,	 the	 list	 is	not	only	display	 the	 final	 total	 score.	 It	also	display	 the	sub	scores	of	each	
domains.	It	can	allow	users	to	sort	the	list	by	their	decision.	The	list	also	support	search	function	
to	find	the	certain	person	in	the	list.	 	
	
	

4.	Scenario	and	Evaluation	

	 The	 first	 page	 is	 the	 attendee	 list	 page.	 Users	 can	 select	 which	 conference	 they	 are	
attending	(Figure	2).	Here	we	select	"UMAP	2015"	as	an	example.	After	selecting,	users	can	click	
the	"Get	the	Attendee	List"	to	get	the	attendee	list(Figure	3).	In	the	attendee	list,	users	can	click	
the	name	in	the	"The	Name"	column	to	go	to	the	dashboard	page	of	this	attendee.	The	page	of	
dashboard	 contains	 five	 domains'	 information(Figure	 4).	 For	 the	 general	 search	 result	 part,	 all	
the	title	that	listed	can	be	click	and	link	to	the	search	result	page.	If	some	of	the	domain	is	absent	
in	Google	Search	result,	the	web	page	will	show	link	figure	5.	To	go	to	the	recommendation	page,	
users	 can	 click	 the	 list	 at	 the	 end	 of	 each	 record	 in	 attendee	 list	 or	 click	 the	 "Get	 the	

recommendation	 for..."	 in	 the	 dashboard	 page.	 In	 recommendation	 page,	 users	 can	 click	 the	
column	name	to	sort	 the	recommendation	 list	by	the	column	they	clicked(Figure	5).	Users	also	
can	click	the	name	in	the	"Name"	column	to	go	to	the	dashboard	page	of	this	attendee.	 	 	 	 	

	

Figure	2:	Scenario	1	:	the	start	page	of	Cross	Domain	Recommender	

	
Figure	3:	Scenario	2	:	The	attendee	list	

	
Figure	4:	Scenario	3	:	The	dashboard	

	

Figure	5:	Scenario	4	:	Absent	information	

	
Figure	6:	Scenario	5	:	Recommendation	list	

	
	 To	evaluate	the	recommendation,	we	choose	one	attendee's	recommendation	and	
analyzing	the	attendees	that	the	system	recommend	to	him.	It	can	be	seen	that	in	this	
recommendation	list	,which	sorted	by	the	total	score,	"Giuseppe	Sansonetti"	has	the	highest	
total	score(Figure	7).	The	reason	that	this	attendee	is	recommended	to	the	user	is	that	the	scores	
in	Google	Scholar	and	Researchgate	are	very	high.	After	reading	the	information	in	the	
dashboards,	we	find	that	they	are	coauthors	in	some	paper	and	also	have	some	common	
coauthors.	However,	if	the	user	want	to	get	the	recommendation	by	one	specific	domain	like	
Twitter,	he	can	sort	the	list	then	get	 	 the	new	recommendation.	It	can	be	seen	that	after	sorting	
the	attendees	with	lower	total	score	come	to	the	top	of	recommendation	list(Figure	8).	We	find	
that	the	second	attendee	who	does	not	have	any	academic	common	point	with	the	user	has	a	
very	high	score	in	Twitter	CS	score	which	means	that	they	may	have	some	common	interesting	or	
topics.	The	users	who	want	to	find	some	friend	are	also	able	to	get	a	good	recommendation.	 	 	 	 	 	
	

	
Figure	7	:	The	list	that	sorted	by	total	score	

	

Figure	8	:	The	list	that	sorted	by	Twitter	CS	score	

5.	Conclusion	

	 In	 this	project,	we	provide	a	 system	 that	 can	do	a	 cross	domain	 recommendation	 for	 the	
attendees	in	the	same	conference.	We	achieve	this	function	by	using	Google	custom	search	API,	
Twitter	API,	Readability	API,	VSM,	 Jaccard's	coefficient	and	the	spider	 that	writes	by	ourselves.	
The	recommendation	system	is	displayed	in	a	user	friendly	interface.	It	is	also	useful	according	to	
the	evaluation	we	do	based	on	an	attendee's	recommendation	list.	
	

6.Reference	

1.PARRA,	 Denis,	 et	 al.	 Conference	 Navigator	 3:	 An	 online	 social	 conference	 support	 system.	
In:	UMAP	Workshops.	2012.	p.	1-4.	
2.	 Sahebi,	 Shaghayegh,	 and	 Trevor	 Walker.	 "Content-Based	 Cross-Domain	 Recommendations	
Using	Segmented	Models."	CBRecSys	2014	(2014):	57.	
3.	 Bo,	 Yu,	 and	 Qi	 Luo.	 "Personalized	 web	 information	 recommendation	 algorithm	 based	 on	
support	vector	machine."	 In	Intelligent	Pervasive	Computing,	2007.	 IPC.	The	2007	 International	
Conference	on,	pp.	487-490.	IEEE,	2007.	
4.	 Liben‐ Nowell,	 David,	 and	 Jon	 Kleinberg.	 "The	 link‐ prediction	 problem	 for	 social	
networks."	Journal	 of	 the	 American	 society	 for	 information	 science	 and	 technology	58,	 no.	 7	
(2007):	1019-1031.	
5.	HTML5UP,	http://html5up.net/	

6.	Twitter	API,	https://dev.twitter.com/overview/documentation	
7.	Readability	API,	https://www.readability.com/developers/api	

