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ABSTRACT 
Parameterized exercises present an interesting opportunity and challenge for educational 
data mining. Since this kind of exercise can be repeated many times with different 
parameters, it is possible to examine student's problem solving behavior on a deeper 
level. Preliminary analysis exposed unexpected patterns such as repeated successful and 
failed attempts to solve the same problem. To understand these behaviors we propose the 
Problem Solving Genome analysis framework. We first characterize attempts in terms of 
correctness (correct/incorrect) and time (short/long) and use pattern mining techniques to 
extract attempts' patterns that we call problem solving genes. Then, we build profiles of 
students, called problem solving genome, based on the frequencies of these patterns. By 
analyzing the similarity of problem solving genes within students, we show that the 
problem solving genome reflects consistent student behavior, even across exercises of 
different complexity level. Surprisingly, we find that the students' genomes persist across 
different performance groups. A detailed look at the genes within clusters of students 
having similar genomes suggests that a particular set of patterns are responsible for the 
difference of performance among students. The results reveal considerable potential of 
using problem solving genome analysis to understand student behavior at the 
macroscopic level and suggest new directions for the user modelling and adaptation. 

 

1. Introduction 
Parameterized exercises have recently emerged as an important tool for online 
assessment and learning. A parameterized exercise is essentially an exercise template that 
is instantiated at runtime with randomly generated parameters. As a result, a single 
template is able to produce a large number of similar, but distinct questions. While 
parameterized questions are considerably harder to implement than traditional "static" 
questions, the benefits offered by this technology make this additional investment 
worthwhile. During assessment, a reasonably small number of question templates can be 
used to produce online individualized assessments for large classes minimizing cheating 
problems [14]. In a selfassessment context, the same question can be used again and 
again with different parameters, allowing every student to achieve understanding and 
mastery. 

The above mentioned properties of parameterized exercises made them very attractive for 
the large-scale online learning context. In turn, it made platforms that supported 
parameterized questions such as LON-CAPA [14] or edX very popular for college-
offered online learning and MOOCs. At the same time, parameterized exercises as a 
learning technology have its own problems. Our experience with personalized exercises 



for SQL [21] and Java [9] in the self-assessment context demonstrated that the important 
ability to try the same question again and again is not always beneficial, especially for 
students who are not good in managing their learning. The analysis of a large number of 
student logs revealed some considerable number of unproductive repetitions. We 
observed many cases where students keep solving the same exercise correctly again and 
again with different parameters, well past the point when it can offer any educational 
benefit. While it might increase self-confidence, students time might be spent better by 
advancing to more challenging questions. We can also observe cases where students 
persist in failing to solve the same, too difficult exercise, instead of focusing on filling the 
apparent knowledge gap or switching to simpler exercises. 

The work presented in this paper was motivated by our belief that the educational value 
of parameterized exercises could be increased by a personalized guidance mechanism 
that can predict non-productive behavior and intercept it by recommending a more 
efficient learning path. Main challenge with predicting unproductive behavior is a 
stability of behavior patterns in the problem solving process. If the patterns, such as 
specific unproductive sequences, appear at random, there is a little chance to predict and 
prevent them. If, on the contrary, specific patterns are associated with some student 
features (such as knowledge and individual traits), exercise complexity, or the learning 
process stage, there is a good chance to learn the association rules and use it for 
prediction. In this paper we performed an extended study of problem solving patterns in 
the context of parameterized exercises. We explored the connection between these 
patterns and the components of the learning process mentioned above. Our study 
produced a rather unusual result. While it was more plausible to expect that patterns are 
related to the current level of student knowledge, our data pointed that patterns are related 
to a student as a person. More exactly, we discovered that every student has a specific 
combinaion of micro-patterns, a kind of problem solving genome. This "genome" is 
relatively stable, distinguishing every student from his or her peers and changes very little 
with the growth of the student knowlegde over the course. We also discovered that 
genomes are not randomly distributed either, instead students with similar genomes form 
cohorts that perform relatively similarly in the problem solving process. We believe that 
that our discovery of problem solving genome is a very important step towards our goal 
of predicting and preventing unproductive behavior. Indeed, the stability of patterns on 
the personal level makes the task of pattern prediction feasible while the presence of 
cohorts opens the way to detect student problem-solving genome early in the learning 
process. In this paper we present our approach of detecting student problem-solving 
genome and report our exploration of the genome on the level of individual students and 
cohorts. 

2. Related Work 
2.1 Parametererized questions and Exercises 

Recent studies in educational technology have demonstrated promising results by 
leveraging computer and Web abilities to deliver parameterized exercises worldwide, 
which has become one of the focusing topics in Web-enhanced education. One of the 



most influential system, CAPA [11], was evaluated in a number of careful studies [10, 
11], providing clear evidence that individualized exercises can significantly reduce 
cheating while improving student understanding and exam performance. The CAPA 
technology has been later integrated into popular LON-CAPA platform [14] and its 
functionality defined the assessment architecture of eDX. 

Due to the complexity of parameterized assessment, the majority of work on 
parameterized questions and exercises was done in physics and other math-related 
domains where a correct answer to a parameterized question can be calculated by a 
formula that includes one or more question parameters. There are, however, examples of 
using this technology in other domains. In particular, our team focused on parameterized 
exercises for teaching programming. We developed and explored QuizPACK platform 
for C-programming [3] and a similar QuizJET platform for Java programming [9]. This 
paper is based on our experience with both platforms and uses data obtained in 3 
semesters classes using another system Progressor+ [7] that uses the set of parameterized 
exercises of QuizJET. 

2.2 Sequential Pattern Mining 

Mine patterns on students sequential actions has recently gain attention in educational 
data mining field. Using activity data collected from groups of students using interactive 
tabletops, Martinez et al [15], mined and clustered frequent patterns to analyze distinct 
behaviors between low and high achievement groups. The differential sequence mining 
method, introduced by Kinnebrew and Biswas [13] has been successfully used to 
differentiate behavioral patterns among groups of students (like low and high 
performance students.) The method uses SPAM [1] to find common patterns in the 
sequences of the whole dataset, and then statistical tests are applied to see differences on 
the frequencies of the discovered patterns among different groups. The same authors have 
applied this technique in data col- lected from the system Betty’s Brain to discovered 
patterns that can distinguish self-regulated behaviors in successful and non-successful 
students [2], and to analyze the evolution of reading behaviors in high and low 
performance students during productive and non-productive phases of work [12]. Herold, 
Zundel and Stahovich [5] have used the differential sequence mining on sequences of 
actions on handwritten tasks and proposed a model to predict performance on the course 
based on pattern features. Our work extends this prior work by utilizing and aggregating 
the mined sequence patterns to construct student activity profiles. Such profiles enable us 
to evaluate the statistical differences at the student, exercise, and group levels. 

2.3 Clustering in EDM 

Clustering techniques has been widely used in educational data mining, especially for the 
purpose of grouping students [18]. Spectral clustering is a graph based clustering 
technique widely used in machine learning [20]. Trivedi et al [22] applied spectral 
clustering in educational data and demonstrated how the technique performs better, 
compared with other popular clustering methods like k-means, in understand global 
similarities among data points in complex education datasets. 



2.4 Problem Solving Repetition 

Problem solving repetition behaviors has been studied by psychologists in different ways, 
providing evidence that repetition behaviors have roots in cognitive, metacognitive and 
motivational aspects and explaining why some students quit and some persist when 
facing challenging problems [16]. Schunk [19] shows the positive correlation between 
persistency in repeating and self-efficacy (believe on self capabilities/skills to solve a 
problem). The attribution theory [24] describes how students that attribute performance 
outcomes (successes, failures) to effort tend to work harder than students who attribute to 
ability. This explanation is in the same line with the Growth and Fixed Mindset theory 
[4], which demonstrate how growth mindset people (believing that intelligence is 
malleable and that new things can be learned with effort) hardly get frustrated and tend to 
keep trying, compared with fixed mindset people (the intelligence is fixed and can not be 
change, no matter how much effort is put.) Grounded in the literature in educational 
psychology, we conjecture that patterns on problem solving repetition may be explained 
by individual learners’ motivational traits that are part of learners’ personality [17]. These 
theories provide insights into analyzing to which extent these behaviors are stable on 
students. 

3. System and Dataset 
We collected answers of students to a set of parameterized exercises of our system 
Progressor+ [7] over three semesters of a Java programming course in the School of 
Information Sciences in the University of Pittsburgh (Spring 2012, Fall 2012 and Spring 
2013.) A parameterized exercise is an exercise that is generated using a template. When 
the student requests an exercise, it is generated setting some parameters which determine 
the correct answer. When the user answers, the system shows if it was correct or wrong, 
shows the correct response, and lets the student "try again". The next time, the exercise 
will be generated with other values and the correct answer will be different. In this way, 
the student can try the same exercise many times, leaving a trace of successes and 
failures. We describe such sequences of repetitions as sequences of 1s (correct answer) 
and 0s (incorrect answer) of one student within one exercise. We have observed many 
sequences of 1, 2 or 3 attempts like 0, 1, 01, 11, 011, etc, and also many other with 
several attempts which are more difficult to explain, like 001011011 or 11000. In the 
system, there are 103 different parameterized exercises organized in 21 topics (Variables, 
Objects, Arrays, etc.) Exercises are also labeled n terms of complexity as easy, medium 
and hard. There are 41 easy exercises, 41 medium exercises and 19 hard exercises. 
Overall, the students attempted 6489 and 14726 times giving incorrect and correct 
responses, respectively. Easy exercises were attempted 10620 times, medium complexity 
exercises were attempted 7876, and hard exercises were attempted 2719 times. The users 
usually go exercise by exercise repeating 1 or more times. There are 4212 sequences of 
only 1 attempt (no repetition) and 4758 sequences with more than 1 attempt. The 
frequency decreases following the power law shape: there are 2717 with more than 2 
attempts, 1583 with more than 3 attempts, and 1016 sequences with more than 4 
attempts. 



4. Method 
An overview of our analysis method is shown in Figure 1. The steps can be summarized 
as follows: First, we label students’ attempts using time and correctness (Figure 1(a), 
Section 4.1). We then apply sequential pattern mining to extract sequential attempt 
patterns (Figure 1(b), Section 4.2) and further construct vector representation for each 
students based on the mined patterns’ frequencies, which we called Problem Solving 
Genome (Figure 1(c), Section 4.3). Using the predefined performance groups (Figure 
1(d), Section 4.4) we analyze distances between pairs of students’ genome to determine 
how stable the genome is and to which extent the patterns depends on exercise 
complexity and performance (Figure 1(e), Section 4.5). Finally, we characterize different 
problem solving patterns by clustering the problem solving genomes (Figure 1(f), Section 
4.6). We detail each step in the following subsections. 

 

Figure 1. Method steps followed in this work. 

 

4.1 Attempts labeling 

We use both time and correctness of each attempt to label it for further use in sequential 
pattern mining analysis. In this way, each action will convey more information than using 
only correctness. As shown in the Figure 2, distribution of times for first attempts are 
different from other (non-first) attempts. This is reasonable if we consider that the user 
needs extra time the first time to read and understand the exercise. Additionally, time 
distribution is different for different exercises, as in general, complex exercises need 
longer times. Thus, for labeling the time factor, we used time information of historical 
records in our system to compute median times for each exercise for both first and other 
attempts. Then, we labeled the attempt as short or long depending on the time being 
lower or greater than the corresponding median (the median of the distribution for the 
specific exercise.) Combining correctness and time, we finally label the attempts using 
the letters ’s’ (lowercase s) for a short success, ’S’ (uppercase S) for a long Success, ’f’ 
for a short failure, ’F’ for a long Failure. 

The labeled attempts are organized in sequences by pairs student-question within a 
session in the system. Each sequence su,e represent the sequential attempts of user u in the 



exercise e within a session. If the user attempted the same exercise in different sessions, 
there will be more than one sequence su,e. 

 
Figure 2: time distributions (log) for easy, medium and hard exercises. The right curve is 
always the first attempt time distribution, showing that first attempts usually take longer 
times. 

 

4.2 Sequential pattern mining 

To discover frequent patterns, we use PexSPAM algorithm [6], which extends the fast 
SPAM algorithm [1] with gap and regular expression constraints. Given a sequence 
database D = s1, s2, ..., sn, the support of a pattern α is the number of sequences of D 
which contains α as a subsequence at least once. If the support of α is bigger than a 
threshold, then α is considered a frequent pattern. Support measure does not inform for 
multiple occurrences of the pattern within a sequence. In this work, we set a small 
minimum support in 1% because the sequences in our dataset tend to be short but many, 
i.e. a pattern that occurs in few sequences can still make a difference when looking at the 
aggregation of pattern occurrences by student. Additionally, and since we are interested 
in looking at patterns of 2 or more sequential attempts, we set the gap in 0 and considered 
only sequences with more than 1 attempt. After running the mining algo- rithm, we 
discover 102 common patterns occurring at least in 1% of the sequences. The top 20 
patterns and the corresponding support can be seen in Table 1. Finally, we use ’_’ 
(underscore) to mark starting and/or ending patterns. For example _fS means start with a 
short failure and then make a long success. 

 

Table 1: Top 20 frequent patterns with their sup- port. 



 

4.3 The problem solving genome: characterizing students with pattern 
vectors 

Using the 102 patterns discovered by the sequential pattern mining, we compute 
frequency vectors of the patterns by student and by exercise. For further analysis of the 
relationship of the patterns among students, the performance levels and different 
complexity exercises, we split the data to compute different frequency vectors per 
student, as listed below. 

overall pattern frequencies: counts the patterns' occurrence within all sequences of the 
student and divides by the total number of sequences. Since more than one pattern can 
occur in a sequence, and a pattern can occur more than one time in the same sequence, 
the frequencies in the vector may not sum 1. 

early pattern frequencies: counts the patterns’ occurrences within the first half of the 
sequences of the student, and divides by the half number of sequences of the student. 

late pattern frequencies: counts the patterns’ occurrences within the second half of the 
sequences of the student, and divides by the half number of sequences of the student. 

random half frequencies: samples randomly half of the student’s sequences and 
computes the frequencies of the patterns within them. We compute two of such vectors 
per student, covering all student’s sequences. 

random half frequencies within easy exercises: samples randomly half of the student’s 
sequences within easy exercises and computes the frequencies of the patterns within 
them. We compute two of such vectors per student, covering all student’s easy exercise 
sequences. 

Additionally, for the sake of understanding pattern differences among complexity levels 
(i.e. easy, medium, hard exercises), we compute exercise pattern frequencies vectors 
grouping sequences by exercise and counting pattern occurrences. 

4.4 Predefined performance groups and data filtering 

Students were classified in predefined performance groups (PPG) based on scores on pre 
and posttest we collected in the 3 semesters. The pretest and posttest were highly similar 



among different semesters (small variation on questions) and the scores were further 
normalized as (score) / (max score) (having that min score is 0.) Additionally, using the 
normalized pre and posttest scores, we compute a normalized learning gain score as 
(normalized post score) - (normalized pre score.) For each of the pretest, posttest, and 
learning gain measures, students were classified in three groups using the percentiles 33.3 
and 66.7: low, medium and high. For example, a student with pretest lower or equal than 
the percentile 33.3 in the pretest score distribution was classified as low pretest student. 
Summarizing, we have 3 PPG (low, medium, high) for each performance measure 
(pretest, posttest and learnig gain.) We collected a total of 97 pretest and 93 posttest 
results in the 3 semesters. We filter out students with few usage of the system setting a 
threshold of minimum 20 sequences and minimum 2 sessions. Additionally, we exclude 
one student that present a few sequences in the early stage with a very unusual repetition 
of short successes (67 ’ss’ patterns in 16 sequences). We consider this student as a clear 
outlier. We end up with 67 students in total having pretest, 65 of them having both pre 
and posttest. Table 2 shows the number of students in each PPG. 

Table 2: Number of students in each predefined performance group (PPG). 

 

4.5 Analysis of distances 

To see the value of the patterns as potential descriptors of behaviors, we seek to test to 
which extent students are stable on their patterns and to which extent the patterns depend 
on the predefined performance classification (knowledge), and the complexity levels of 
the exercises. We ask: Do pattern depend on individual differences of the students, 
student’s knowledge, or exercise complexity? To answer this question, we perform 3 
different set of analysis based on distances between pattern vectors (described before). 
The first analysis Patterns among predefined groups aims to see how performance groups 
can be explained by the patterns students are using for solving parameterized exercises. 
Does students with similar performances have similar patterns for solving parameterized 
exercises? Is this similarity, between the students of the same predefined performance 
group, more than the similarity we can find between the students from different groups? 
For this analysis we contrast the overall pattern frequencies vectors on students classified 
in the performance groups. The second analysis Patterns among questions by complexity 
groups seeks for understanding the impact of exercise complexity on the patterns. For 
this, exercises are classified as easy, medium or hard and the distances between pattern 
vectors of the exercises are compared within and between groups. Finally, the third 
analysis Patterns as stable behavior of students looks for comparing students with 
themselves and to other students and answers the question: are students stable on their 
patterns? Here we use random half frequencies vectors, early and late pattern frequencies 
vectors, and random half frequencies within easy exercises vectors. 

In each of the analyses, the distances are computed using Jensen-Shannon (JS) 



divergence between the pattern frequency distributions of a pair of pattern vectors. We 
use JS divergence as it is a symmetric version of Kullback-Leibler divergence and has 
been widely used for computing distance between frequency distributions. Since a pattern 
might occur more than once in a sequence, and more than one pattern may occur in a 
sequence, the frequency vectors are not summing to 1. Thus, we normalize the vectors 
before computing distances. 

4.6 Clustering students based on the genome and pattern by pattern 
analysis 

We aim to see individual patterns differences and their relationship with different 
behaviors and learning outcomes. For this, we cluster students using the overall pattern 
frequencies and characterize the clusters in terms of the distinguishable patterns. We use 
spectral clustering technique [23] as it gives a better separation of the students. We 
finally contrast pattern frequencies between performance groups in each cluster. 

5. Results 
5.1 Analysis of distances 

5.1.1 Patterns among predefined groups 

In this analysis, the goal is to find out if the students in the same predefined performance 
group (PPG) behave more similar to each other than to the students from other group. As 
we described before, the PPG are low, medium and high in 3 measures: pretest, posttest 
and learning gain. We sample 50% of all possible pairs of students within and between 
PPGs and compute the distances of all within and between group pairs. Then, we 
compare the average of distances within and between groups to see if students inside each 
group are more similar to each other than to students in other groups. Normality and 
homogeneity of variance is not met for all groups, thus we used Krustal-Wallis non- 
parametric mean rank test and Mann-Whitney test for single comparisons. We 
constrained the analysis to PPGs low and high to see extreme differences, and we use the 
overall pattern frequency vectors. 

Table 3: Statistical tests on differences on distances between pairs of students within low, 
within high, and between low and high groups PPGs. 

 

Results are shown in Table 3. Mann-Whitney comparison is reported only where 
significant differences among groups were found (pretest). For pretest groups, distances 
within the low group (mean rank = 222.70) are significantly smaller than distances 



between low and high groups (mean rank = 258.21), z = −2.537, p = .011. This suggests 
that student with no previous experience tend to behave differently than students with 
stronger background. There is no significant difference between high and low-high 
distances, though, meaning that high group behave more heterogeneously than low group. 
For posttest and learning gain groups there are no significant differences on distances 
within and between groups. Since we do not find clear differences on dis- tances within 
and between posttest and learning gain ex- treme groups, we hypothesize that pattern 
behaviors might not be due to performance factors, but because of other factors such as 
individual differences or exercises differences. We test for these hypotheses in the next 
analyses. 

 

5.1.2 Patterns among questions by complexity groups 

We now look for pattern differences among complexity levels of the exercises by 
computing distances between exercise frequencies vectors on pairs of questions within 
and between complexity groups. We filter out all questions with less than 20 sequences 
and perform comparisons between extremes groups, i.e. easy and hard complexity levels. 
Results of the Krustal-Wallis non-parametric test shows significant differences between 
distances within and between levels, χ2 (2, N = 1596) = 160.359, p < 001. Mean and 
standard error of distances within easy, within hard, and between easy and hard groups 
are shown in Table 4. Mann-Whitney test is performed to test differences among the 
levels. Distances within easy exercises (mean rank = 626.16) are significantly smaller 
than distances between easy and hard exercises (mean rank = 909.77), z = −12.564, p < 
.001. Similarly, the distances within hard exercises (mean rank = 277.20) are significantly 
smaller than distances between easy and hard exercises (mean rank = 383.13), z = 
−4.733, p < .001. 

Table 4: Mean and standard error of distances within and between easy and hard 
exercises 

 

These results shows a clear dependency of the pattern behaviors with the complexity 
level of the questions. This is reasonable given that hard questions, that need more time, 
are expected to discourage repetitions. These results shows a clear dependency of the 
pattern behaviors with the complexity level of the questions. This is reasonable given that 
hard questions, that need more time, are expected to discourage repetitions. This suggests 
that for further analysis of students’ individual differences, we need to control for the 
question complexity, as we will described in the next subsection. 

5.1.3 Patterns as stable behavior of students 



Using 50% random sample of the activity for each student, we compute distances of the 
student with herself, and between each student and all the others. We claim that if 
students are significantly closer (similar) to themselves than to others, this is a good 
evidence of the stability of the patterns. To perform a comparison between students we 
filter out all student with less than 60 sequences, limiting differences due to extreme 
differences on amount of activity. There were 32 students with at least 60 sequences. In 
this analysis we use paired samples t-test on the difference between the self and other 
distances. Normality assumption is met. 

Results are shown in Table 5 first row (a). Students self- distances are clearly smaller (M 
= .2370, SE = .0169) than distances to other students (M = .4815, SE = .0141), t = 
−15.224, p < .001, Cohen’s d = 2.693. To make the results stronger, we repeat this 
analysis with early and late pattern vectors to control for potential pattern change. We 
assume that if patterns depend on individual differences, they show stability even when 
students ”evolve” in their behaviors. Results on Table 5 second row (b) confirm this idea: 
self distances (M = .3211, SE = .0214) are significantly smaller than between student 
distances (in early patterns) (M = .4997, SE = .0164), t = −6815, p < .001, Cohen’s d = 
1.205. This result is very promising, since it clearly shows that students are more similar 
to themselves in terms of pattern behaviors. Further more, we made a third version of this 
analysis considering random half frequencies within easy exercises vectors, to control for 
differences of students amount of activity on different complexity exercises, i.e. are 
differences among students explained because some students do more easy exercises and 
some students do more hard exercises? We performed this analysis with 39 students 
having at least 20 sequences in easy questions. Results showed in last row (c) in Table 5 
confirm the stability of patterns: students are more similar to themselves (self distance M 
= .3736, SE = .0214) than to others (distances M = .6065, SE = .0128), t = −10.352, p < 
.001, Cohen’s d = 1.6569. Since all effects are considerably high, these results strongly 
support the idea that pattern behaviors are due to personality rather than performance 
factors. 

Table 5: Statistical tests comparing students with themselves and others 

 

5.2 Pattern by pattern differences on behavioral clusters 

As we have seen in the Patterns as stable behavior of students analysis, student patterns 
are stable during time and among different performance groups. There are many other 
aspects that can result in pattern differences among students. One of these aspects can be 
the student’s personality. To find out patterns differences of individual students and to 
see if specific type of students follows a special behavior in solving the problems, we use 
students’ problem solving genome (pattern frequency vector), to cluster the students 
using spectral clustering technique with two clusters (K=2). We observe that two clusters 
give the largest eigen-gap, suggesting there are two intrinsic groups in the data. Figure 3 



shows the top 30 frequent patterns in both of the clusters. Each point represents the 
average frequency of seeing a particular pattern in the cluster. Error bars are included to 
indicate significance. we order the patterns in x-axis by the differences between clusters 2 
and 1. As we can see in this picture, some of the patterns (genes), such as _fS_ , _FS_ , 
_ss, Sss, etc., occur with significant frequency difference in the two clusters and some 
other patterns, such as _fS, fs_ , Ff, etc., do not show significant differences. If we look 
more closely, the sequences that start with failure are mostly related to the students in 
cluster 2 and the sequences that start with success are mostly related to the students in 
cluster 1. Also, we can see that the students in cluster 1 tend to repeat their successful 
attempts more and more frequently (e.g. the ssss pattern). In other words, even when they 
get the right answer to the question, they will insist on confirming knowing the question 
by repeating it again and again. Unlike students in cluster 1, the students in cluster 2 
mostly stop after figuring out the right answer to the question, even if they have struggled 
for the correct answer in their previous attempts (e.g. _fS_ , _ss_ , and FS_ patterns.) 
Looking at this behavior, we can see that the students’ genome can lead to different 
behaviors in solving parameterized exercises. Based on these findings, we call the first 
cluster of the students the confirmers and the second cluster the non-confirmers. 

 

Figure 3: Top 30 patterns and their frequencies in each cluster. Patterns are ordered by 
the difference on frequencies between cluster 2 (non-confirmers) and 1 (confirmers). 

Furthermore, to find out the clusters’ relationship with different behaviors and learning 
outcomes, we compare the pattern by pattern differences for different PPGs within each 
cluster and describe the patterns that distinguish them. As we have mentioned earlier, 
both of the clusters have students from all PPGs. As a result, we cannot say that the 
student’s genome has a direct impact on the performance of the student. Both confirmers 
and non-confirmers can have high or low performance. To look at the clusters deeply and 
to see if there are any differences in the patterns, within each cluster, that can drive 
students’ performance, we repeat the first analysis within each cluster looking at the 
learning gain. For each of the clusters, we look at the patterns (genes) and the difference 
between their average frequencies for the students with low and high learning gain. The 
result is shown in Figure 4. The upper diagram shows the students in cluster 1 (the 
confirmers) and the lower diagram shows the students in cluster 2 (the non-confirmers). 
The red line with round markers show the pattern frequencies for low learning gain 
students and the blue line with the triangle marker is representative of high learning gain 
students. If we look at the patterns in cluster 1 (the confirmers), we can see that there are 



some patterns that show significant difference between the low and high learning gain 
students. These patterns all start with a failure: _FS_ and Ff have long failures in the 
beginning of the patterns and _fF, fs_ , and _ff, have short failures at the beginning of the 
patterns. Among these patterns, only _FS_ is practiced more by the high learning gain 
students. This indicates that, among the confirmer students, the ones that put a good 
amount of effort to answer a question right, after a long failure and stop repeating the 
same question learn more. The low learning gain group shows more frequent use of the 
Ff, _fF, fs_ , and _ff patterns. The common element of all of these patterns is short failure 
(f). If we look at Figure 4 for confirmers, we can see that all of the patterns that include a 
short failure, are practiced more by the low gain students. This can indicate that the low 
gain confirmer students do not spend enough time and thought on the questions that they 
do not know the answer of. 

The non-confirmer students show more pattern differences between the low and high 
learning gainers. We can see that the high learning gain group follow the patterns of _FF, 
FS, _FS, SS_ , _SS, SS, and Ss more frequently. This means that the high learning gain, 
non-confirmer students tend to continue trying a non-parameterized exercise and 
spending time on it after they failed in it or it took them a long time to get to the correct 
answer for that exercise. In this sense, these students are closer to the confirmer group of 
students (cluster 1) but only at the times that they are not sure if they have learnt the 
solution to an exercise. On the other hand, the low learning gain group tend to develop 
the fs_ , _fs_ , and _ff patterns in their sequence. The first two indicates that they give up 
practicing the exercise after having a short success that comes after a short failure. Also, 
they tend to repeat short failures on the same exercise more often. 

 

Figure 4: Top 30 patterns and their frequencies for low and high learnig gain PPG by 
cluster. 

 

Another interesting observation here is that having repeated successes in the same 
parametrized exercise does not add to the learning gain of the students. We can see that 
none of the patterns having more than one short success make any significant differences 
between the low learning gain and high learning gain students. 



The above analysis shows the specific patterns that can explain the differences between 
high and low learning gain students in each of the confirmers and non-confirmer clusters. 
In both of the clusters, short failures are more associated with low learning gain students. 
For the non-confirmers group, the students, who acted similar to the confirmers group in 
cases of having a hard time getting to the right answer, had higher learning gain. Also, 
repeating the short success did not add to the learning gain of students. These results are 
promising for the further guidance of the students in the correct use of the system and 
increasing their performance. Based on a student’s pattern cluster, we can guide him/her 
to follow the sequences with the patterns associated with high learning gain (such as 
encouraging them to think longer on questions) and not following the patterns that do not 
affect their learning gain or having a negative effect (e.g. stopping the student from 
repeating short successes). 
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