
INFSCI	2930	-	INDEPENDENT	STUDY	
	

Enhance	features	of	Authoring	tool	for	Java	and	Python	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Saurabh	Dhamnaskar	

sad148@pitt.edu	

	

Raghav	Raman	

rar155@pitt.edu	



1.Overview:	
	

Inspired	by	Professor	Peter	Brusilovsky,	Kamil	Akhuseyinoglu,	Roya	Hosseini,	our	topic	of	

independent	study	in	2018	Spring	is	to	enhance	features	in	existing	authoring	tool	and	pc	ex	

compiler	to	enable	professors	create	challenges	and	examples	for	students	in	Java	and	Python	

programming	language	courses.	

	

In	this	enhancement,	we	focused	mainly	towards	easing	the	process	of	creating	exercises	for	

the	professors	which	can	be	given	to	students	to	complete.		

	

2.	Used	Technologies:	

JSP,	HTML,	CSS,	nodejs	

	

	

	

	

	

	

	

	

	

	

	

	

	



3.Working:	
	

	

Figure	1	-	First	page	

	

There	were	tabs	to	create	a	topic	and	example	for	a	various	programming	language.	But	there	was	no	

option	to	create	a	combination	of	challenges	and	examples.	Hence,	we	designed	the	part	“Challenge	

authoring”	and	everything	it	has	to	offer.	Now,	the	professors	can	select	various	options	like	create,	

modify,	edit	challenge/example/set.	

	

	



	

	

Figure	2	-	Create	example	1	

There	are	2	options	–	Challenge	and	Example.	As	shown	above,	we	will	first	create	an	example.	After	

selecting	example,	we	get	options	to	select	language.	Since,	we	focused	only	on	Java	and	Python,	there	

are	only	2	options	to	choose	from.	After	selecting	language,	scope	of	the	activity(challenge/example)	is	

selected,	upon	which	we	get	list	of	topics	like	arrays,	classes	etc	depending	on	the	combination	of	

language	and	scope.	There	are	2	fields	to	enter	activity	title	and	description.		The	professor	also	needs	to	

select	privacy	level.	Privacy	level	public	defines	that	the	activity	is	open	to	students	to	complete	whereas	

privacy	level	private	defines	that	the	activity	is	not	complete	and	is	under	progress.	

There	can	be	activities	in	which	user	input	might	be	required.	Hence,	there	is	a	field	which	is	not	

mandatory	to	enter	user	inputs.		There	is	an	area	given	to	upload	code.	After	clicking	on	submit,	an	API	

is	called	which	indents	the	code	and	sends	back	the	indented	response.	



	

Figure	3	-	Code	splitting	

As	shown	in	above	figure,	the	code	is	split	on	every	new	line.	There	is	an	option	to	indent	or	outdent	the	

line.	The	professors	can	also	add	comments	against	every	line	which	will	be	visible	to	students	when	

they	go	through	the	activity.	To	delete	a	line,	a	“trash”	icon	is	present	and	“add	icon”	is	used	to	add	a	

new	line	to	the	existing	code.	

	

	



	

	

Figure	4	-	Create	challenge	

To	maintain	consistency	in	the	system,	the	process	to	create	challenge	and	example	are	same.	For	every	

example,	there	are	challenges	created.	Hence,	while	creating	challenge,	the	professor	needs	to	select	

the	example	title	from	Example	dropdown.	After	selecting	the	appropriate	example,	the	specific	

challenge	is	mapped.	Additionally,	after	indenting	the	code	there	are	few	more	operations	need	to	be	

performed	by	the	professor	for	a	challenge	creation.	After	code	is	split	into	separate	lines,	each	line	has	

a	checkbox	assigned	against	it.	These	checkboxes	help	to	eliminate	those	specific	lines	in	the	challenge.	

The	lines	which	are	unchecked	are	shown	as	blank	lines	to	the	students.	To	fill	these	blank	lines,	options	

are	given	to	students	to	choose	from.	These	options	are	called	distractor	lines	and	can	be	added	by	

clicking	on	Add	distractor	lines	button.	



	

Figure	5	-	Add	distractors	

The	professors	can	add	distractors	using	add	icon	aligned	against	comment	textbox.	To	explain	the	

meaning	of	a	specific	distractor	line,	additional	comments	can	be	added	in	the	comment	box.	These	

distractors	are	not	mapped	to	blank	lines.	It	means	that	for	2	blank	lines	there	can	be	many	distractor	

lines	making	it	difficult	for	students	to	choose	the	correct	ones.	The	options	remain	same	for	every	blank	

line.		

Once	all	data	is	filled	for	challenge	or	example,	save	changes	button	need	to	be	clicked	to	create	the	

activity.		

	



	

Figure	6	-	Edit	example	

	

The	already	created	example	can	be	edited	by	selecting	edit	option	on	homepage(Fig	1).	The	process	of	

editing	example	is	similar	to	creating	one.	The	options	to	select	a	specific	example	is	few	to	filter	out	the	

appropriate	example.	

	

	

	



	

Figure	7	-	Edit	challenge	

	

The	already	created	challenge	can	be	edited	by	selecting	edit	option	on	homepage(Fig	1).	The	process	of	

editing	challenge	is	similar	to	creating	one.	The	options	to	select	a	specific	challenge	is	few	to	filter	out	

the	appropriate	challenge.	

	

	

Figure	8	-	Create	Set	(Select	example)	

To	create	a	set	of	challenge	and	example,	the	professor	needs	to	select	an	example	first.	Depending	on	

the	selected	example,	the	challenges	associated	with	that	example	are	fetched	and	displayed	on	next	

page	(Fig	9).	

	



	

Figure	9	-	Create	Set	(Select	challenge)	

	

Here,	the	professor	can	select	challenges	which	need	to	be	included	in	the	set.		

	

Figure	10	-	Create	Set	(Re-order	set)	

	

In	the	final	step	of	creating	a	set,	the	professor	needs	to	re-order	the	activities	inside	the	set.	By	default,	

the	example	is	kept	at	first	position	but	it	can	be	re-ordered.	On	clicking	“Submit”,	the	set	is	created	and	

ready	to	be	shown	on	Pc-Ex.		

	

After	the	exercises	are	visible	to	students,	the	students	can	see	the	sequence	as	was	defined	by	the	

professor	while	creating	the	set.	Earlier,	all	possibilities	of	options	were	calculated	using	permutation	

and	combination	and	the	output	of	that	specific	combination	was	saved.	This	helped	in	quicker	response	

when	any	of	the	option	was	chosen	by	students	irrespective	of	whether	it	is	correct	or	incorrect.	But	the	

drawback	of	this	approach	was	seen	when	the	options	increased	for	an	exercise.	The	CPU	intensive	task	

gradually	increased	making	the	whole	application	slow.	



To	solve	this,	we	came	up	with	the	approach	of	dynamic	execution	of	java	and	python	code.	We	

implemented	caching	using	memcache	npm	module.	Whenever	a	student	chooses	an	option,	the	code	is	

sent	to	the	API	to	execute.	The	execution	is	processed	in	following	steps	–		

a. Check	if	code	is	already	present	in	cache	

b. If	present	in	cache,	return	the	output	of	the	code	from	the	cache	

c. If	it	is	not	present	in	cache,	compile	and	execute	the	code.	Store	the	output	in	cache	

d. Send	the	output	to	the	front-end	

This	approach	helped	in	increasing	efficiency.	For	every	new	option,	a	cache	was	hit,	and	empty	was	

returned.	This	ensured	that	the	combination	is	not	present	in	cache	and	hence,	the	code	is	executed,	

and	output	is	stored	in	cache.	For	every	request	after	the	first	request	for	that	combination,	the	

response	was	sent	directly	from	cache.	But	this	is	not	the	case	for	previewing	the	code.	If	a	professor	

wants	to	preview	a	code,	then	the	combination	is	stored	in	the	cache.	The	code	is	compiled	and	

executed	and	returned	to	the	front-end.	This	is	because,	the	professor	just	checks	to	see	whether	the	

code	is	running	or	not.	

	

4.	Future	Scope	

1.	We	intend	to	include	other	programming	languages	in	the	application	

2.	Currently	only	one	set	of	1	example	and	many	challenges	can	be	created.	We	plan	to	make	it	

flexible	by	allowing	creation	of	set	of	any	combination	of	example	and	challenge.	

	

5.	Codes	

1.	Authoring	tool	-	https://github.com/sad148/authoring_tool	

2.	PcEx	Compiler	-	https://github.com/sad148/pcex_compiler	


