
Information	 Retrieval	 and	 Extraction	

Implementation	 for	 An	 Automatic	 Course	

Website	 Discovery	 	

INFSCI	 2910-‐Independent	 Study	
	

 Zexin Zhao
University of Pittsburgh

ZEZ7@pitt.edu
	

1.	 INTRODUCTION	 	

Sharing is a goal of the Internet development. As more and more educational resources
are open online, taking this advantage of online resources to enrich the content and
relevant materials of University courses is a good choice for educator to improve the
course quality. However, because online scattered information contains many
overlapping contents and is organized in diverse forms, integrating them is a challenge.

This research aim to gain two goals: 1) Modeling online course; 2) Modeling courses by
mapping modules into uniform representation. In order to do an efficient work for
accomplishing these two tasks. This project will implement some tools to complete
information retrieval and extraction.

2.	 MODELING	 ONLINE	 COURSE	

In	 this	 task,	 the	 main	 goal	 is	 to	 store	 and	 present	 online	 courses	 with	 a	 uniform	
template,	 including	 organizing	 textbooks,	 slides,	 and	 readings.	 Classifier	 is	 needed	 to	
identify	 relative	 course	 website.	 All	 the	 data	 that	 should	 be	 fed	 into	 the	 classifier	 is	
collected	 by	 a	 web	 crawler	 and	 a	 crowdsourcing	 system.	

2.1	 Preparing	 Raw	 Data	 	

On this stage, we need to collect relevant online educational resources for specific
courses no matter whether it is useful or not.

2.1.1	 Required	 Features	 of	 Data	 	

For each relevant online educational resource, we need an information collection
including link, title, an ID, and the course’s category it belongs to. In order to organize
those links by the course’s categories, we use search engine to select relevant links and
other information for us according to the course’s categories.

2.2	 Collecting	 Training	 Set	 	

On this stage, we need to collect training data set for the classifier. The data in training
data set should be done the “valid-identification” by specialists.

2.2.1	 About	 “Valid-‐identification”	 	

If an online educational resource is valid, it should have these requirements showing
below:

l Relevant to the required course’s category; ���

l Having a valid link; ���

l There must be a schedule or a syllabus ���on the page which the valid link lead to; ���

l The schedule or a syllabus should provide links of the materials it refers to. ���This task
requires specialists to identify valid resources in raw data. ���

2.2.2	 About	 Specialists	 	

Specialists in our project could be educator, students or other people who have basic
educational background and an ability of identifying valid resources.

2.3	 Implementation	 	

In order to accomplish these two steps efficiently, I implemented applications for both
two steps.

2.3.1 Web Crawler

I used Python and its library: Beautiful Soup to implement this crawler. The target of
crawler is Google search. The complete structure of the crawler shows in Figure 1.

Figure 1. The structure of the crawler

We have four course’s categories: Information Retrieval, Human Computer Interaction,
Database, and Java Programming. For each course’s category, I configure the amount of
pages the crawler will work on is 10. The outputs are stored in files with JSON format. In
order to cover as many courses as possible, I also use different course names as queries
for one category. One part of crawling result shows in Figure 2.

Figure 2. One part of crawling result for HCI course

2.3.2 Link-mark System

In	 this	 part,	 I	 will	 explain	 the	 implementations	 in	 two	 phases.	

1) Crowdsourcing on Amazon Mechanical Turk

For the second step, we need allow specialists to visit those links in crawler’s output files,
and mark it if it’s a valid link. Besides, specialists are also required to input the location
of a syllabus or a schedule on the page.

I implemented a RESTful web server to record specialists’ visiting behavior and
decisions. The workflow of the system shows in Figure 3.

Figure 3. The workflow of the system

For each course’s category, I configure the amount of links shows in a subtask is 5. The
output files are stored with JSON format. The display of the system shows in Figure 4.
One part of output file shows in Figure 5.

Figure 4. The display of the system

Figure 5. One part of output file

In order to collect large amount of diverse training data, we planed to use online
crowdsourcing platform to deploy this system. Amazon Mechanical Turk (MTurk) is a
crowdsourcing Internet Marketplace enabling individuals and businesses (known as
Requesters) to coordinate the use of human intelligence to perform tasks that computers
are currently unable to do. The final display of get-start page on MTurk shows in Figure
6.

Figure 6. The final display of get-start page on MTurk

However, this system on MTurk didn’t work very well and less efficient because the
workflow that MTurk required is a little complicated. And we don’t think using
crowdsourcing can help the second step a lot. So we turn to deploy it on a local server.

2) Collecting training data on local server

The Link-mark system has no different with the system on MTurk. Now we are still
working on import data in this system.

3.	 MODELING	 ONLINE	 COURSE	

In this task, the main goal is to map course resources to chapters of textbook, integrate
various resources. In order to complete this task, we need to extract course syllabus from
course websites, and download materials like readings, and slices.

3.1	 Syllabus	 Extractor	

3.1.1 The design of Syllabus Extractor

According to collection of useful courseweb link, this information extractor should
identify a valid syllabus in the webpage and restore its information into a file with a
uniform representation. However, some of syllabuses are organized using table or list.
They are easier to be recognized than other syllabuses that are organized without a
specific format. So we chose these syllabuses as our target to extract.

Figure 7. Syllabus Extractor’s structure

Extractor’s structure is shown above (Figure 7). The mechanism of this extractor is to
pick every block in the webpage, and then evaluate its significance based on specific
features that a syllabus should have, finally output the block with highest significance in
each website. There are three main features that a syllabus “table” may have: A. the
number of rows is more than N; B. content should contain positive words; C. the titles of
table should contain keywords. There are three main features that a syllabus “list” may
have: A. the number of rows is more than N; B. content should contain positive words.
Notice that N, positive words list, and keywords list are generated according to the
observation to as mush as online resources, Initially, I defined N=8, the positive words
and keywords are ones that are highly used in syllabus of IR course or other specific

course. The evaluation process will calculate significance of a block based on a formula
below (Formula 1). Then ranking all the blocks and output the blocks with highest
significance.

Formula 1. nrow() is a function to get number of rows of a Table. T represents a table
needed to be evaluated. t(kw) function is to count the number of keywords shows in this

table title. ave(kw) is the average amount of keywords shows in syllabuses that I
observed. t(pw) function is to count the number of positive words shows in this table title.

ave(kw) is the average amount of positive words shows in syllabuses that I observed.

3.1.2 Implementation

This tools is used BeautifulSoup library in Python to parse an html website and help to
extract every blocks from the website. The result is shown as following(Figure 8). The
precession is 93% to all tables and lists. Those missing tables and lists can’t be
recognized because they are organized with mess format. Therefore, they need to be
extracted manually.

Figure 8.

3.2	 Course	 Materials	 Download	 and	 Parser	

The research hopes to map all materials (readings, slides) to chapters, so we next pick up
those syllabuses that mentioned chapter information. This work was done manually, and
got a .xml file as follows (Figure 9).

Figure 9. syllabus with chapter information

Next step, I need to download every material listed in this file, and store them in disk.
Finally, I parsed every material and got a bag of words for each file. The workflow of this
tool is shown below (Figure 10).

Figure 10. The workflow of material downloading and parser.

3.3	 Wiki	 Article	 Extractor	 and	 Concept	 Picker	

In order to map materials, we need use concepts from Wikipedia in specific field. I
implement an article extractor to search and store all articles belongs to “Computer
Science” field. Those article are from dump file (XML) of Wikipedia. The rule of article
being selected is that the article should contain category information, which belongs to
“Computer Science” category and its subcategories. Category links of Wikipedia are
stored in MySQL database, because Wikipedia only provide whole category tree as SQL
file. Therefore, the extractor works as follows (Figure 11).

Figure 11. The workflow of Wikipedia article extractor

The next step, we need to pick concepts referred in articles. This tool mostly uses regular
expression to identify referred concepts marked using specific pattern. In dump files, the
referred concepts are in “[[]]”. So the regular expression is r"\[\[.+?\]\]". Besides, before
extracting concepts, these articles should be removed ads and unrelated sections like
“navigation menu”, “External links”, “Further reading”, and so on.
By now, this tool can select the concepts. However, because we have very large amount
of wanted articles, parsing one file takes long time. So I’m still working on this tool to
improve its online processing ability by using cache technique in Python.

4.	 CONCLUSIONS	 AND	 FUTURE	 WORK	 	

Most of the implementation in this project has accomplished. The following stage will be
using the relationship between materials’ content and textbook, and the concepts from
Wikipedia to learn a connection between course materials and units that a course
schedule contains.

5.	 ACKNOWLEDGEMENT	 	

I wish to thanks the following people for their contribution to this project:

Prof. Peter Brusilovsky and Daqing He who gave us the knowledge resource and
opportunity to design and develop this project. Also they provided useful suggestions and
comments during the development process. Besides, Rui Meng and Shuguang Han who
gave a great help in problems solving.

	

