
Introduction to RMI

Michael B. Spring
Department of Information Science and Telecommunications

University of Pittsburgh
spring@imap.pitt.edu

http://www.sis.pitt.edu/~spring

08/23/2000 Introduction to Java

RMI Overview

• Origin and background on RMI
• RMI paradigm
• RMI Classes
• Defining remote interfaces
• Building an RMI server
• Building an RMI client
• Running the rmiregistry
• Running the server
• Connecting with the client
• An Example
• An Exercise

08/23/2000 Introduction to Java

Background(1)

• In the beginning client server programmers had to manage
both the specific packets being exchanged and the data
contents of those packets.
• TCP allowed programmers to ignore the individual packets and

focus on the dialog and messages.
• XDR – the eXternal Data Representation (XDR) API developed

by SUN allowed for the transparent interchange of integers,
floats, and other complex data types with automatic conversions

08/23/2000 Introduction to Java

Background (2)

• Even with data management, client server coding required
rendezvous management – what port, and provided an
awkward pipe based programming style. Both of these
problems were addressed via a library API called Remote
Procedure Call (RPC)
• Environments supporting RPC run a portmapper service. The

portmapper service allows servers to register their existence and
gives clients a single access point.

• XDR is automatically used for “data marshalling”
• A utility called RPCgen allows an interface to be written and

interpreted such that the programmer can code in a way that
allows “remote procedures” to be invoked on the client and
implemented on the server.

08/23/2000 Introduction to Java

RMI Basic Features

• Remote Method Invocation (RMI) is Java equivalent of
RPC, it allows development of clients and servers in an
object oriented rather than communications oriented
fashion. The server is simply a remote object.

• RMI also addresses the vagaries of different native data
formats by providing an standard definition across machines
– it manages the marshalling.

• Finally, RMI assumes a remote method registry that allows
all clients to connect to a single port – the rmiregistry port
and then be redirected as appropriate to the specific server
which is running on a port that has previously been
registered.

08/23/2000 Introduction to Java

RMI paradigm
• Develop any interface classes needed to define the data interface

between the client and server – extending Remote
• Define a server using the interface. The server extends

UnicastRemoteObjectshould and implements the interface.
• Use rmic to compile a stub class for the server
• Define a client that uses the interface by remote interface

reference. (The server stub class for the interface needs to be
available to the client)

• Use rmiregistry to manage communications
• Run the server – which will register the rmiregistry
• Run the client which will check with the registry, use the stub to

marshall data to and from the remote methods

08/23/2000 Introduction to Java

RMI Classes (1)

• There are several classes and interfaces of interest to
programming with RMI
• The java.rmi package provides access to the basic interface used

by objects, i.e. Remote. It also provides access to the Naming
Class used to register with the rmiregistry (bind, unbind, and
rebind) and to check for registered services (lookup and list).

• The java.rmi package also provides details on most of the
exceptions thrown by remote objects.

• The java.rmi package provides the RMISecurityManager class
which is used to protect the client in automated downloads of
interface and implementation classes.

• The java.rmi.server package provides access to the
UnicastRemoteObject which is the base class from which almost
all servers are developed

08/23/2000 Introduction to Java

RMI Classes (2)

• The Remote interface from java.rmi is the base class from
which all RMI interfaces are defined.
public interface myinterface extends Remote{

Some method definition}

• The UnicastRemoteObject from java.rmi.server is the basis
for standard TCP RMI server implementations. All servers
extend this class implementing the interface which defines
the data interchange
public class myinterfaceImpl extends UnicastRemoteObject

Implements myinterface{
Some class definition including a main()
}

08/23/2000 Introduction to Java

RMI Classes (3)
• The Naming class from java.rmi provides the basic method used

in main by which the server registers
• static void bind(String name, Remote obj) binds the specified name to

the specified object.
• The name is a URL and a user selected service name
• The object is the remote server

• The function can throw four exceptions:
• The AlreadyBoundException says the registry already had a binding

for the given name
• The MalformedURLException says the string is not a valid URL
• The RemoteException says the registry could not be contacted
• The AccessException says the caller (the server) is not allowed to

access the remote object
• The already bound exception can be avoided by using

• static void rebind(String name, Remote obj)

08/23/2000 Introduction to Java

RMI Classes (4)

• The client uses the naming class method lookup() from
java.rmi to locate the remote server and then invokes the
appropriate method returning a structure consistent with the
interface class file.
• String servobjname= “rmi://”+ip+”/”+servicename
• Classname x=(Classname) Naming.lookup(servobjname);
• Result = x.method()

• It is important to note that the client will use the server stub
to marshall data to be sent to the remote object and to collect
and return data from the remote object.

08/23/2000 Introduction to Java

RMI Classes (5)

• As you will soon see, it is necessary to move copies
of some classes from the server to the client.

• It would be nice to have this happen automatically,
but when this is done, there is an issue of security.
• The RMISecurityManger class from java.rmi provides

assistance in this process
• The RMISecurityManger requires that a client.policy

file be created that defines what kinds of connections
are allowable for the client.

08/23/2000 Introduction to Java

Conventions

• A client server pair will ultimately reside on different
machines. Developing the two applications in different
directories helps to insure that all the right pieces moved to
all the right places

• By convention, the remote interface defines the primary
name for the components
• Given an interface called “Office”
• The server program would be called OfficeServer.java
• The class implementing the interface would be called

OfficeImpl.java
• The client program calling the methods would be

OfficeClient.java
• The stub produced by rmic will be called OfficeImpl_Stub.java

08/23/2000 Introduction to Java

Defining remote interfaces

• Defining a remote interface is a matter of defining the
methods along with the parameters and returns.

• Use the keyword interface and extend remote.
• Be sure to indicate that it throws a RemoteException
• For example:

// Time.java (interface)
import java.rmi.*;
public interface Time extends Remote{
public String getSTime()
throws RemoteException;

}

08/23/2000 Introduction to Java

Building an RMI server(1)

• Assume the interface already defined is used
• An implementation is built that provides the method definitions

public class TimeImpl extends UnicastRemoteObject
implements Time

{private String stime;
public TimeImpl() throws RemoteException

{try
{Date SD = new Date();
stime = SD.toString();
System.err.println(stime);}

catch(Exception e)
{e.printStackTrace();
System.exit(1);}}

public String getSTime() throws RemoteException
{return stime;}

}
• Define a server that binds the object to a name

08/23/2000 Introduction to Java

Building an RMI server(2)

• The server proper includes a main
public static void main (String args[])

{try{ System.err.println("Starting
Server...");

TimeImpl tmp = new TimeImpl();
String RMIObj = "//localhost/TS";
Naming.rebind(RMIObj, tmp);
System.err.println("...Server Started");
}

catch (Exception e)
{
System.out.println(“Server:" +e);
}

}

08/23/2000 Introduction to Java

Building an RMI client

• The RMI client assumes the existence of the Impl_Stub
class and the Interface Class

• These may be dynamically downloaded or manually moved
to the location of the client

• With these two pieces in place, the client simply looks up
and then invokes the remote method
try

{String RMethod = "//"+ip+"/TS";
Time tmp = (Time) Naming.lookup(RMethod);
String t = tmp.getSTime(); }

catch (java.rmi.ConnectException ce)
{System.err.println("connection refused");
System.exit(1);}

• Note the exception catch

08/23/2000 Introduction to Java

Putting the Piece Together

• Compile the Interface, the Implementation of the
interface, and the server using javac

• Use the RMI compiler (rmic) to create the
implementation stub. Assuming JDK1.2,

rmic –v1.2 xyzImpl
• Where xyzImpl is the particular implementation class

file
• Move copies of the xyz class file and the

xyzImpl_stub class file to the client directory
• Compile the client using javac

08/23/2000 Introduction to Java

Running the server/client

• When the server is run, the first thing it will do is connect to
the rmiregistry, so before running the server, start the
rmiregistry program.

• Start it in the directory where the server is positioned with
its classes.
• start rmiregistry

• The start command in windows will run rmiregistry in a
separate DOS window

• Start the server either from within freejava (or other IDE) or
at the DOS prompt

• Run the client which will connect and invoke the remote
method

08/23/2000 Introduction to Java

An Example and Test

• Try all of the steps above on the example provided.
• Test it a couple of ways to assure yourself it is

working
• Try to run the server without running rmiregistry
• Run the client without running rmiregistry
• Run rmiregistry, and then run the client without

running the server
• Finally, try everything in the correct sequence

08/23/2000 Introduction to Java

An Exercise

• Redefine the interface in the example provided to provide
the time in two different forms.

• Add a method in the interface to set a variable on the server
– try something simple like adding a name that says who the
person providing the time service is.

• Keep in mind that the changes you make in the interface
definition will have to be reflected in the implementation

• Also keep in mind that both of these files have to be moved
to the client directory and the client will need to be
recompiled

