Introduction to RMI

Michael B. Spring
Department of Information Science and Telecommunications
University of Pittsburgh
spring@imap.pitt.edu
http://www.sis.pitt.edu/~spring

RMI Overview

Origin and background on RMI
RMI paradigm

RMI Classes

Defining remote interfaces
Building an RMI server
Building an RMI client
Running the rmiregistry
Running the server
Connecting with the client
An Example

An Exercise

08/23/2000 I ntroduction to Java

Background(1)

* |nthe beginning client server programmers had to manage
both the specific packets being exchanged and the data
contents of those packets.

e TCP alowed programmers to ignore the individual packets and
focus on the dialog and messages.

 XDR —the eXternal Data Representation (XDR) APl developed
by SUN allowed for the transparent interchange of integers,
floats, and other complex data types with automatic conversions

08/23/2000 I ntroduction to Java

Background (2)

e Even with data management, client server coding required
rendezvous management — what port, and provided an
awkward pipe based programming style. Both of these
problems were addressed via alibrary API called Remote
Procedure Call (RPC)

* Environments supporting RPC run a portmapper service. The

portmapper service allows serversto register their existence and
gives clients a single access point.

 XDR isautomatically used for “data marshalling”

* A utility called RPCgen allows an interface to be written and
Interpreted such that the programmer can code in away that
allows “remote procedures’ to be invoked on the client and
Implemented on the server.

08/23/2000 I ntroduction to Java

RMI Basic Features

* Remote Method Invocation (RMI) is Java equivalent of
RPC, it allows development of clients and serversin an
object oriented rather than communications oriented
fashion. The server isssimply aremote object.

RMI also addresses the vagaries of different native data
formats by providing an standard definition across machines
— It manages the marshalling.

Finally, RMI assumes a remote method registry that allows
all clients to connect to a single port — the rmiregistry port
and then be redirected as appropriate to the specific server
which is running on a port that has previously been
registered.

08/23/2000 I ntroduction to Java

RMI paradigm

Develop any interface classes needed to define the data interface
between the client and server — extending Remote

Define a server using the interface. The server extends
UnicastRemoteObjectshould and implements the interface.

Use rmic to compile a stub class for the server

Define aclient that uses the interface by remote interface
reference. (The server stub class for the interface needs to be
available to the client)

Use rmiregistry to manage communications
Run the server —which will register the rmiregistry

Run the client which will check with the registry, use the stub to
marshall datato and from the remote methods

08/23/2000 I ntroduction to Java

RMI Classes (1)

e There are several classes and interfaces of interest to
programming with RMI|

* Thejavarmi package provides access to the basic interface used
by objects, i.e. Remote. It also provides access to the Naming
Class used to register with the rmiregistry (bind, unbind, and
rebind) and to check for registered services (lookup and list).

The java.rmi package also provides details on most of the
exceptions thrown by remote objects.

The java.rmi package provides the RMISecurityManager class
which is used to protect the client in automated downloads of
Interface and implementation classes.

The java.rmi.server package provides access to the
UnicastRemoteObject which is the base class from which almost
all servers are developed

08/23/2000 I ntroduction to Java

RMI Classes (2)

e The Remote interface from java.rmi is the base class from
which all RMI interfaces are defined.
public inter face myinterface extends Remote{
Some method definition}

e The UnicastRemoteObject from java.rmi.server is the basis
for standard TCP RMI server implementations. All servers
extend this class implementing the interface which defines
the data interchange

public class myinter facel mpl extends UnicastRemoteODbj ect
| mplements myinterface{
Some class definition including a main()

}

08/23/2000 I ntroduction to Java

RMI Classes (3)

e The Naming class from java.rmi provides the basic method used
In main by which the server registers

 static void bind(String name, Remote obj) binds the specified name to
the specified object.
The nameisaURL and a user selected service name
The object is the remote server
* The function can throw four exceptions.

The AlreadyBoundException says the registry already had a binding
for the given name

The MalformedURL Exception says the string is not avalid URL
The RemoteException says the registry could not be contacted

The AccessException says the caller (the server) is not allowed to
access the remote object

* The aready bound exception can be avoided by using

static void rebind(Stri ng name, Remote ob))
08/23/2000 troduction to Java

RMI Classes (4)

e The client uses the naming class method lookup() from
java.rmi to locate the remote server and then invokes the
appropriate method returning a structure consistent with the
Interface classfile.

e String servobjname= “rmi://” +ip+” /" +servicename
e Classname x=(Classname) Naming.lookup(servobjname);
* Result = x.method()

e Itisimportant to note that the client will use the server stub
to marshall datato be sent to the remote object and to collect
and return data from the remote object.

08/23/2000 I ntroduction to Java

RMI Classes (5)

e Asyou will soon see, it IS necessary to move copies
of some classes from the server to the client.

* |t would be nice to have this happen automatically,
but when this is done, there is an issue of security.

* The RMISecurityManger class from java.rmi provides
assistance in this process

* The RMISecurityManger requires that a client.policy
file be created that defines what kinds of connections
are alowable for the client.

08/23/2000 I ntroduction to Java

Conventions

e A client server pair will ultimately reside on different
machines. Developing the two applications in different
directories helpsto insure that all the right pieces moved to
al the right places

By convention, the remote interface defines the primary
name for the components

Given an interface called “ Office”

The server program would be called OfficeServer.java

The class implementing the interface would be called
Officelmpl.java

The client program calling the methods would be
OfficeClient.java

The stub produced by rmic will be called Officelmpl_Stub.java

08/23/2000 I ntroduction to Java

Defining remote Interfaces

Defining aremote interface is a matter of defining the
methods along with the parameters and returns.

Use the keyword interface and extend remote.
Be sure to indicate that it throws a RemoteException

For example:
[/ Time.java (interface)
| nport java.rm.?*;
public interface Tine extends Renote{
public String get STine()
t hrows Renot eExcepti on;

}

08/23/2000 I ntroduction to Java

Building an RMI server(1)

* Assume theinterface already defined is used

* Animplementation is built that provides the method definitions
public class Tinelnpl extends Unicast Renpot e(bj ect
| npl enents Ti nme
{private String stine;
public Tinmelnpl () throws RenoteException
{try
{Date SD = new Date();
stinme = SD.toString();
Systemerr.println(stine);}
cat ch(Exception e)
{e.printStackTrace();
Systemexit(1l);}}
public String getSTinme() throws RenoteException
{return stine;}
}

* Define aserver that binds the object to a name

08/23/2000 I ntroduction to Java

Building an RMI server(2)

e Theserver proper includesamain
public static void main (String args[])

{try{ Systemerr.println("Starting
Server...");

Tinelnpl tnp = new Tinelnpl ();

String RM Cbj = "//local host/TS";

Nani ng. rebi nd(RM Qbj , tnp);
Systemerr.println("...Server Started");

}
catch (Exception e)

{

Systemout. println(“Server:" +e);

}
}

08/23/2000 I ntroduction to Java

Building an RMI client

e The RMI client assumes the existence of the Impl_Stub
class and the Interface Class

e These may be dynamically downloaded or manually moved
to the location of the client

e With these two pieces in place, the client smply looks up

and then invokes the remote method

try
{String RMethod = "//"+i p+"/TS";
Time tnp = (Tinme) Nam ng. | ookup(RMet hod) ;
String t = tnp.get STi nme(); }

catch (java.rm . Connect Excepti on ce)
{Systemerr.println("connection refused");
Systemexit(1l);}

* Note the exception catch

08/23/2000 I ntroduction to Java

Putting the Piece Together

Compile the Interface, the |mplementation of the
Interface, and the server using javac

Use the RMI compiler (rmic) to create the
Implementation stub. Assuming JDK1.2,

rmic —v1.2 xyzl mpl
* Where xyzlmpl isthe particular implementation class
file
Move copies of the xyz class file and the
xyzlmpl_stub classfile to the client directory

Compile the client using javac

08/23/2000 I ntroduction to Java

Running the server/client

When the server isrun, the first thing it will do Is connect to
the rmiregistry, so before running the server, start the
rmiregistry program.

Start it in the directory where the server is positioned with
Its classes.

e start rmiregistry
The start command in windows will run rmiregistry in a
separate DOS window

Start the server either from within fregjava (or other IDE) or
at the DOS prompt

Run the client which will connect and invoke the remote
method

08/23/2000 I ntroduction to Java

An Example and Test

* Try all of the steps above on the example provided.

* Test it acouple of waysto assure yourself it is
working

* Try to run the server without running rmiregistry
* Run the client without running rmiregistry

* Run rmiregistry, and then run the client without
running the server

* Finally, try everything in the correct sequence

08/23/2000 I ntroduction to Java

An Exercise

Redefine the interface in the example provided to provide
the time in two different forms.

Add amethod in the interface to set a variable on the server
— try something ssimple like adding a name that says who the
person providing the time serviceis.

Keep in mind that the changes you make in the interface
definition will have to be reflected in the implementation

Also keep in mind that both of these files have to be moved
to the client directory and the client will need to be
recompiled

08/23/2000 I ntroduction to Java

