
1

Exception Handling

Michael B. Spring
Department of Information Science and Telecommunications

University of Pittsburgh
spring@imap.pitt.e d u

http://www.sis.pitt.edu/ ~s p ri n g

08/23/2000 Introduction to Java 2

Overview of Part 1 of the Course

• Demystifying Java: Simple Code
• Introduction to Java
• An Example of OOP in practice
• Object Oriented Programming Concepts
• OOP Concepts -- Advanced
• Hints and for Java
• I/O (Streams) in Java
• Graphical User Interface Coding in Java
• Exceptions and Exception handling This slide set

08/23/2000 Introduction to Java 3

Objectives for this unit

• Explain the purpose of exceptions
• Define what an exception is
• Demonstrate how exceptions are triggered
• Demonstrate how exceptions are handled
• Illustrate how exceptions propagate
• Explain when and when not to use exception

handling

2

08/23/2000 Introduction to Java 4

Concepts

• Exception objects
• Throwing exceptions
• Try / catch / finally blocks
• Propagation

08/23/2000 Introduction to Java 5

Keywords

• throw
• throws
• try
• catch
• finally

08/23/2000 Introduction to Java 6

Traditional error handling

• In C:
if(myFunction() == -1)

/* handle error */

3

08/23/2000 Introduction to Java 7

Drawbacks to traditional error handling

• Inconsistent use of error codes
• Misinterpretation of valid data
• No enforcement of error checking
• Poor readability of code

08/23/2000 Introduction to Java 8

Exception triggers

• Calling a method that throws an exception
• Use of the keyword throw
• Programmer error (e.g. out-of-bounds array access)
• An internal Java error that is out of your control

08/23/2000 Introduction to Java 9

Throwing an exception

public void myMethod() throws MyException
{

n = getData();

if(n == null)
throw new myException();

}

4

08/23/2000 Introduction to Java 10

Try / catch blocks

try
{

// code which may potentially throw an exception
}
catch(MyException e)
{

// code which handles exceptions of type
// MyException or any of its subclasses

}

08/23/2000 Introduction to Java 11

An example

try
{

FileReader input = new FileReader("input.txt"));
input.read ();
input.close();

}
catch (IOException e)
{

System.out.println("IO error: " + e);
}

08/23/2000 Introduction to Java 12

Rethrowing an exception

try
{

// code which may potentially throw an exception
}
catch(MyException e)
{

// perform some type of cleanup

throw e;
}

5

08/23/2000 Introduction to Java 13

Multiple catch clauses

try
{

// access file stream
}
catch(FileNotFoundException e1)
{

// handle file not found error
}
catch(IOException e2)
{

// handle all other I/O errors
}

08/23/2000 Introduction to Java 14

Finally blocks
try
{

// code which may potentially throw an exception
}
catch(MyException e)
{

// code which handles exceptions of typeMyException or
// any of its subclasses

}
finally
{

// cleanup code
}

08/23/2000 Introduction to Java 15

When to use exception handling

Propagate the
exception
(keyword:
throws)

Declare the
exception
(keyword:
throws)

Header

Implement a try
/ catch block
(keywords: try,
catch)

Throw the
exception
(keyword:
throw)

Body

User of classDeveloper of
class

6

08/23/2000 Introduction to Java 16

Important points to remember

• Exceptions derived from RuntimeException are considered
unchecked exceptions. All others are referred to as checked
exceptions. Only checked exceptions require exception
handling.

• A catch clause should try to either handle an error and
recover, or clean up and rethrow the exception

• Order multiple catch clauses in order of the most specific
case to the most general

• Do not resort to exception handling when a trivial test will
suffice

08/23/2000 Introduction to Java 17

Exercise

• Given: A system of banking accounts developed in
exercise # 2 from Thursday’s presentation.

• To Do: Provide additional code that will accept
data from the console and output data to a file,
catching exceptions as necessary.

• Bonus: Input data from either the data file or
console file.

