
1

Java I/O Streams

Michael B. Spring

Department of Information Science and Telecommunications
University of Pittsburgh
spring@imap.pitt.e d u

http://www.sis.pitt.edu /~s p ring

08/23/2000 Introduction to Java 2

Overview of Part 1 of the Course

• Demystifying Java: Simple Code
• Introduction to Java
• An Example of OOP in practice
• Object Oriented Programming Concepts
• OOP Concepts -- Advanced
• Hints and for Java
• I/O (Streams) in Java
• Graphical User Interface Coding in Java
• Exceptions and Exception handling

This slide set

08/23/2000 Introduction to Java 3

Objectives for this unit

• Define what streams are
• Examine the different types of streams
• Demonstrate how to work with streams
• Illustrate how streams can be layered

2

08/23/2000 Introduction to Java 4

Concepts

• Java adopts a Unix like view of input and output that treats
all I/O as streams of bytes. The semantics of the bytes are
not addressed in the conceptualization of a stream

• In Unix, functionality and semantics are managed by the
user or by libraries of functions. In Java, these are provided
by classes.

• Just as in Unix, “streams” may be piped through sequences
of tools to provide compound functionality.

• With the exception of the RandomAccessFile class, all of
I/O in Java is unidirectional.

08/23/2000 Introduction to Java 5

The Implementation as Classes

• There are several classes which play a role in I/O in Java.
• Files are objects of Class File
• Four abstract classes organize the various I/O streams

• InputStream
• OutputStream
• Reader (an input stream optimized for Unicode text)
• Writer (an output stream optimized for Unicode text)

• There are three predefined streams that may be used without
any construction
• System.in - for reading from the keyboard
• System.out - for writing to the screen
• System.err - for writing error messages to the screen

08/23/2000 Introduction to Java 6

Subclasses of Streams

• A subclass of stream is either a sink, a source, or a filter.
• Sources include FileInputStreams, PipedInputStreams, etc.
• Sinks include FileOutputStreams, PipedOutputStreams, etc.
• Filters include BufferedInputStream, DataInputStream,

BufferedOutputStream, DataOutputStream, etc.

• These filters, or processing streams provide additional
functionality on “top” of the source and sink streams.

• It should be noted that there is a RandomAccessFile class
that allows both reading and writing to a file.

3

08/23/2000 Introduction to Java 7

Data sources and sinks

• As may be deduced from the previous slides, there
are different kinds of I/O streams
• FileInputStream - for reading from files
• FileOutputStream - for writing to files
• PipedInputStream – for reading from a thread
• PipedOutputStream – for writing to a thread

• There are subtle additional types for the Readers
and Writers which are specialized to deal with
Unicode encoded text.

08/23/2000 Introduction to Java 8

Filters and Processing streams

• DataInputStream – processes the primitive Java types from
an input stream allowing them to be assigned to variables.

• DataOutputStream – processes the primitive Java types to
an outptut stream

• BufferedInputStream – optimizes I/O from a stream by
using a buffer

• BufferedOutputStream – optimizes I/O to a stream by using
a buffer

• PrintStream – converts various primitive data types to text
before placing them in the stream

• PushbackInputStream – allows look ahead input such as
might be required for tokenizing or parsing

08/23/2000 Introduction to Java 9

The basic procedures for accessing a stream

• Open the stream by calling its constructor (Java
streams do not use an open() method)

• Read or write to the stream using the methods
associated with that particular stream (when
layering streams, use the methods of the outermost
stream)

• Close the stream with the close() method

4

08/23/2000 Introduction to Java 10

Layering input streams

Source

Data Source Stream

Processing Stream

Variable

08/23/2000 Introduction to Java 11

Layering output streams

Variable

Data Sink Stream

Processing Stream

Destination

08/23/2000 Introduction to Java 12

Key points

• Import the java.io package when working with streams
• InputStreams and OutputStreams are 8-bit and treat all data

as simple streams of 8 bit bytes
• Readers and Writers are 16-bit and are used for Unicode

text data
• Filters or processing streams are used for performing

intermediary operations on data
• Filter streams are layered on top of sink and source streams.
• Remember to close a stream when finished using it
• Closing an output stream flushes its buffer

5

08/23/2000 Introduction to Java 13

Streams and Exceptions

• Java has a method of handling errors that encloses
code subject to failures or exceptions in “try/catch”
blocks.

• I/O tends to be subject to a large number of
exceptions (file not found, file locked, I/O errors,
etc.)

• Care needs to be taken in writing Java code that
involves streams to anticipate and handle the
various exceptions that might occur.

08/23/2000 Introduction to Java 14

Example
String name = new String("John Smith");
int age = 23;
double qpa = 3.756;
try{

File F1 = new File("binary.dat");
File F2 = new File("text.dat");
FileOutputStream OFS1 = new FileOutputStream(F1);
FileOutputStream OFS2 = new FileOutputStream(F2);
DataOutputStream ODS = new DataOutputStream(OFS1);
PrintStream OPS = new PrintStream(OFS2);
ODS.writeChars(name);
ODS.writeInt(age);
ODS.writeDouble(qpa);
OPS.print(name);
OPS.print(age);
OPS.print(qpa);}

08/23/2000 Introduction to Java 15

Results of the Program

• Both streams started with the following data:
String name = new String("John Smith");
int age = 23;
double qpa = 3.756;

• The DataOutputStream took the information provided and
produced a file with the following contents:
• ?J?o?h?n? ?S?m?i?t?h???�@�Iº^5?

• The PrintStream took the same information and produced a
file with the following contents:
• John Smith233.756

• If read back in with the appropriate filters the orignal data
correctly formed would be returned.

