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/Course schedule \

Introduction to Bayesian inference
Bayesian networks

Building Bayesian networks

Hands-on exercises (Bayesian networks)

Learning Bayesian networks and causal discovery
Decision theory and decision analysis

Hands-on exercises (learning)

Hands-on exercises (decision modeling)
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/Session overview \

« Rationality, rational behavior, elements of behavioral
decision theory

 Decision theory, and decision analysis

o Multi-attribute utility models

 Representation and solving of decision problems:
Decision trees and influence diagrams

o Sensitivity analysis

* Value of information
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/What | want you to know after this session? \

e Understand the foundations of decision theory and
decision analysis

 Understand the concept of utility and multi-attribute utility

 Understand the extension of Bayesian networks to
Influence diagrams

« Know how to create influence diagrams, perform (true)
sensitivity analysis and value of information computation
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The Normative Foundations
of Decision Theory and
Decision Analysis?
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@ Foundations
Risk attitudes, utility
Multi-attribute utility
Modeling tools
Sensitivity analysis
- - . Value of information
What is a good decision? g

As many good questions, this question
does not have a crisp-cut answer ©.
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Can you judge decisions by their outcomes?

The story of
Bill and Bob
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What is a good decision then? e

One possible answer:

e One that results from a good decision making

process
e Improving decisions means mostly improving

the decision-making process.
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Elements of decisions

Decisions are made everywhere, including
science. What are their elements?

e Preferences (a.k.a. objectives)
e Actions (a.k.a. decision options)

e Uncertainty (nuisance but, unfortunately
a fact of life ®)

Other relevant concepts:
e Context of a decision (situation)
e Consequences (outcomes)

e Dynamic character of decision problems
(often leads to sequential decisions)
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Why are decisions hard?

©4/27/97 Jim Borgman, Cincinnati Enquirer.

e Uncertain ty Reprinted with special permission of King Features Syndicate.
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Why are decisions hard?

[ @ Foundations

\

Risk attitudes, utility
Multi-attribute utility
Modeling tools
Sensitivity analysis
Value of information J

e Complexity
e Conflicting objectives
e Many decision alternatives
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\Why are decisions hard?'

e Multiple decision makers
e Our cognitive limitations
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e Traffic laws vs.
actual behavior
of drivers

 Bible vs. actual
behavior of
people
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/Decision theory and decision analysis

Decision theory:
A mathematical theory of how decisions should
be made

(based on the idea that uncertainty and preferences should
combine like mathematical expectation)

Decision analysis:
The art and craft of applying decision theory In

practice
Decision Theory and Decision Analysis /
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/Foundations of decision analysis

The foundation of decision analysis (assumption
but confirmed by observations):

Humans can provide reliably the structure of a
problem and reliable numbers (judgments) but
are weak in combining these
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The goal of decision analysis

Insight not numbers!
e Decision analysis provides structure and guidance to
thinking systematically about hard decisions

e A DA exercise will be successful if the decision maker
has learned something about the problem

e Sometimes it offers justification of previously made
\ choices, but even then it is useful by offering insight

DS

Decision Systerms Laboratory

Decision Theory and Decision Analysis




Utility

\

DS

P OCITIOn SyotorT Lonorecory Decision Theory and Decision Analysis




( Foundations )
@ Risk attitudes, utility
Multi-attribute utility

Modeling tools
Sensitivity analysis
Value of information J

“Immeasurables”

Some things are difficult to express in numerical terms.

Imagine that you are a juror. How much is it worth to condemn
an innocent man or to release a guilty one?

How do you judge money vs. health or happiness?

Decision Theory and Decision Analysis
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/The need for utility l

Even if you can express “immeasurables” in numbers, there
are problems with expected value, found quite a while ago
(even though probability is quite young).

Bernoulli (17t century) pointed out these problems and the
need to have some measure of preferences.

Then there was long nothing, just a qualitative, ordinal notion
(note the gymnastics around qualitative notion of utility in
economics) and finally a quantitative, cardinal utility in 1940s
due to von Neuman & Morgenstern.
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Problems with expected value

Who would call a pauper
foolish for selling a lottery
ticket paying 20K ducats
tomorrow with p=0.5 for 9K
today?
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(a.k.a., St. Petersburg's paradox)

Imagine a game that involves flipping a coin infinitely many
times and that pays progressively more for reaching each step.
If you get just one heads (p=0.5), you get $2, if you get two
heads in arow (p=0.25), you get $4, if you get three heads in a
row (p=0.125), you get $8, etc. The expected value of this game
IS:

What would you pay to participate in this game? Will it be wise
to pay a lot for it? Note that the expected value of this game is

Infinity!
Decision Theory and Decision Analysis /
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The solution proposed by Bernoulli is that, what he called,
"moral worth" of a quantity is different from that quantity.

He introduced the law of diminishing marginal utility and
proposed the logarithm function as one that satisfies this
law. (Just take the logarithm of the value to get the utility.)
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Risk attitudes

 Three theoretical attitudes: risk neutrality, risk seeking, and risk
aversion.

 Easy to understand in terms of the second derivative of the utility
function:
 |If each additional dollar is worth more to you than the one
before, you are out to win big and you are willing to take risks

e |f the value of each additional dollar is worth less than the last
dollar, then you are risk averse.

Risk seeking
Risk aversion
e.g., lottery players e.g., people buying flood or health insurance

Systerms Laboratory
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Certainty equivalent of a gamble: How much would you pay
for an opportunity to participate in this gamble?

/

Risk premium can be positive
or negative (How will the
picture look for somebody

. who is risk prone ©?).

Note that each of CE, EMV
and RP are not in terms of
utility but rather in terms of
the quantity that we are
measuring.

A CE C=pB B

\ < » (EMV) Risk Premium = EMV — CE/
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/

Restatement: If the gamble
IS worth to you less than
the expected value, then CE
Is to the left of EV.

Restatement: If the utility
of a value is higher than the
utility of that value when it
IS only expected, then we
are dealing with risk
aversion.

A CE C=pB B

\ <4 » (EMV) /
D s .— Decision Theory and Decision Analysis
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( Foundations A
l. Risk attitudes, utility

Utility

Axiomatization proposed by von Neumann and
Morgenstern in 1940s

A peculiar measure with no scale and no zero point

If U(x) is a utility function, then U’(x)=aU(x)+b is also a
utility function, i.e., utility is determined up to a linear
transformation

Any other measures that behave like this ©?
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ﬂ/leasurement of utility l

We have four variables: p, CE, G, L.

Two are for free and determined by the axioms (these are the
lower and the upper bounds of the utility range).

We need to fix (preset) the third and then obtain the fourth.
CE method: fix G, L, and p, assess CE
PE method: fix G, L, and CE, assess p

CE

\DSI_ P J
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ﬂ/leasurement of utility: Probability equivalent

outcome
measured

best
possible
p outcome

1-p wors.t
possible

outcome

Manipulate p until the decision maker is indifferent
between the two choices. Then,

U(Measured) =p U(Best) + (1-p) U(Worst)
\ U(Measured) =p 100+ (1-p) 0=p 100

DS

|

@ Risk attitudes, utility

Foundations A

Multi-attribute utility
Modeling tools

Sensitivity analysis
Value of information J

Decision Sysstems Laborarary Decision Theory and Decision Analysis /



ﬂ/leasurement of utility: Certainty Equivalent

0.5

0.5

between the two choices. Then,
U(CE) =0.5 U(Best) + 0.5 U(Worst)
\ U(CE) =0.5100 + 0.5 0 = 50
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Certainty
Equivalent
(Middle)

worst
possible
outcome

best
possible
outcome

Manipulate CE until the decision maker is indifferent
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Multgﬁ;téi?gé?sutillity

ﬂ/leasu rement of utility: Comparison of PE and CE |:cnirmaion,

CE leads to more risk-averse responses in gains and risk seeking
In losses.

In PE, p=0.5is the best, as people exhibit probability distortions at
more extreme probabilities (“certainty effect”).

One possible answer to this problem is to use the following

lotteries: 5
0.5
0.5 C (worst)
A (best)
p
1-p C (worst)
This is known as The McCord-De Neufville
\ utility assessment procedure. /
DS

Decision Systerma Leboratory Decision Theory and Decision Analysis




{ Foundations A

@ Risk attitudes, utility
Multi-attribute utility

Modeling tools

Sensitivity analysis
Value of information J

ﬂ%isk tolerance-based utility functions

Exponential utility function: U(X) =1 -exR

This is a “poor-man’'s” utility function and one can argue whether it
models well a decision maker's preferences.

Useful as a first-cut approximation in cases when we want to model risk
aversion.

A quick sensitivity analysis can determine a critical risk tolerance, and
the decision maker can be asked, via a simple assessment question
whether his/her risk tolerance exceeds the critical value.

If the choice is clear, then there is no need for further preference
modeling.

If the choice is not clear, it may be a good idea to assess a utility
function more carefully.

0
Risk Tolerance R is the /
maximal value of Y for which

the DM is indifferent between -Y/2
the choices in the following 0.5

gamble:
\ o~
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Risk tolerance-based utility functions
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Multi-attribute utility

When there are multiple attributes of a decision (quite typical ©),
we are facing a harrl Nnrnhlam a fiinertinn nf Miiltinla arniimante

20000

13000

Here is what a multi-
attribute utility function
\ of two arguments might

look like. zooan= 0"
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Multi-attribute utility

Elicitation of a MAU function is hard (number of points
exponential in the number of attributes)

An obvious solution
Is standardizing the
shapes (similarly to
canonical gates ©)

20000

13000

Several solutions:
Additive linear function

10000

Multiplicative functions 13000
*Risk tolerance-based functions zoopp= 00
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Multi-attribute utility: Simplification of the problem —

Simplifications of the problem starts with a
series of attribute independence tests:

preferential independence
utility independence
additive independence
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An attribute Y is said to be preferentially independent of X if
preferences for specific outcomes of Y do not depend on the
level of attribute X. In other words, the value of X does not
influence our ordinal preferences for Y.

This condition is pretty intuitive and it holds most of the time.
Examples of violations?

1.The amount of homework and the course topic.
2.Car type and location.
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An attribute Y is considered utility independent of attribute X if
preferences for uncertain choices involving different levels of Y
are independent of the value of X. In other words, the value of X
does not influence the certainty equivalent of a lottery involving Y.

Mutual utility independence: When the relation holds both ways.

Example when this is violated (from Keeney and Raiffa): Serious
crime rates in two police precincts. The region's police chief does
not want to appear as though he neglects one of the two
precincts. An easy fix in that case is adding bonus to some
values or transforming the function.
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Kmplication of utility independence

When mutual utility independence holds, we can write a two-
attribute utility function as follows:

U(x,y) =w, U,(x) +w, U/y) + (1 -w, —w,) U,(x) Uyy)

U,(x) and U,(y) are utility functions scaled to the interval [0,1],
W, =U(X1,Y o), Wy=U(Xg,Y1).
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This is known as the multiplicative form of a MAU function.
It is a special functional form that gives a curvature in the
utility function of multiple attributes and is capable of
modeling such non-linearities as complements and
substitutes.

U(x,y) =w, U,(x) +w, U/y) + (1 —-w, —w,) U,(x) Uyy)

The product term is what allows for modeling the interaction
between the two attributes.

Decision Theory and Decision Analysis /

DS

Decision Systerms Laboratory




\

K:omplements and substitutes

\

Foundations
Risk attitudes, utility
@ Multi-attribute utility

Modeling tools
Sensitivity analysis
Value of information J

U(x,y) =w, U,(x) +w, U/y) + (1 -w, —w,) U,(x) Uy y)

The coefficient (1-w,—w,) can be interpreted quite nicely.

If positive, then higher values of both attributes at the same time
will drive up the value of the utility function even higher (the
attributes complement each other, e.g., two battles on one front,
you need to win both, defeat on one is almost just as bad as defeat
on both).

If negative, we are quite happy with having one or the other and
don’t necessarily need to have both (they substitute each other,
e.g., two branches of a company, two investments).

Decision Theory and Decision Analysis /
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How do we demonstrate that this functional form implies
mutual utility independence?

Take one value of y: The function will transform to the utility
U,, although it will be its linear transformation.

For another value of y, it will be another linear transformation.

The utility function for x will be exactly the same, because it is
determined up to a linear transformation anyway.

How to go the other way, i.e., demonstrate that you need this
functional form to have mutual utility independence?

Left as a homework exercise ©.
Decision Theory and Decision Analysis /
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When w,+w,=1, the multiplicative function simplifies to

U(x,y) = w, U,(x) +w, U(y)

This is precisely when additive independence holds.

In general
— UXy, Xy ooy X)) = K U(XY) + K, UX,) + .00+ K UX)
— Condition on weights: k; + Kk, + ... + Kk =1)

Additive linear utility function is quite often used and abused
(used without checking whether it is a good approximation).
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ﬂ/lulti-attribute utility assessment

Are you indifferent between the two choices? If so, then they
are additively independent, but if you prefer one over the
other, then they are not. A good example: service and
reliability — most of us prefer when at least one of them is

good to the situation when you can be screwed up on both
or have both good.

x0,y1

0.5

x1,y0

/ oe
\ x0,y0
0.5
\ 0.5 x1,y1
DS /
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ﬂ/IAU assessment: When everything fails

What is mutual utility independence fails? You can always use
direct assessment.

Sometimes transformations of the individual utility functions
will work (e.g., instead of individual crime rates, take the
average and difference between the two crime rates).

X,y

x1,yl

\ 1-p x0.y0 /
DS
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Decision-analytic modeling tools I Value of information

The essence of a decision-analytic model is a representation of
uncertainties (joint probability distribution over the model’s variables),
decision options, and values (utility function over the outcomes).

decision trees value influence diagrams

U(s,

success &P o
Prelp) success
new product
product ¢ Pr(~s|p) — U(~s.p) line O
line
Q \ — U(S’~p)
no O/ Pr(s|~p)
\
Pr(~s|~p) _
U(~s,~
oo value

Most of the time it comes down to significant simplifications, such as
\ discretization of the model variables to allow this specification.
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Sensitivity analysis

Every model rests on a variety of assumptions regarding:

» the decision options available

e possible states of nature and the probabilities
associated with these states

e the values of different outcomes

* In many cases we will be uncertain about the validity of some
of our assumptions. Or, in social settings, different people may
differ in what they find reasonable to assume.

 The purpose of sensitivity analysis is to determine which
assumptions really do have a substantial impact on the
decision.

 Once we know which assumptions matter most, we can focus

our attention there.
Decision Theory and Decision Analysis /
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Sensitivity analysis

e Sensitivity analysis answers the question: "What matters in
this decision?"

 Determining what matters requires incorporating sensitivity
analysis throughout the modeling process.

o |t is important to keep in mind that the purpose of sensitivity
analysis is to refine the decision model, with the ultimate
objective of obtaining a requisite model.

e Sensitivity analysis can lead to reconsidering the very nature
of the problem ("Are we solving the right problem?")

« There may be synergy effects among various model
parameters, so the problem is very complex in general. No
optimal procedure exists for performing sensitivity analysis. It
IS essentially an art with a few basic heuristics, most of which
are covered in the textbook.
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One-way sensitivity analysis

Expected
Value

Indicates the sensitivity of a
proposed decision to changes in
the value of a single parameter.

Plots the graph of variations in total
value with respect to the possible
range of values of a parameter.

Very often we have the lower and
the upper bound for a value. We
can check the values of the
outcome variable for the range of
possible values of decision
variables and uncertain quantities
between their upper and lower Value of Variable A
bounds.

\
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Multi-way sensitivity analysis

e Sometimes we may want to consider sensitivity to several
variables at the same time.

e This gives us an idea about how combinations of parameters
Impact the decision.

* Quite complex in general (exponential in the number of
parameters). Two-way sensitivity analysis is quite complex
already.

* | have not seen more than two-way done in practice. On the
other hand, | have read opinions that going higher rarely
gives insight that we have not gained from one and two-way
sensitivity analysis.
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Sensitivity analysis: Basic question

The basic question in sensitivity analysis is whether a
parameter changes our decision

That’s why sensitivity analysis in Bayesian networks
Is standing on a somewehat uncertain ground ©

Decision Theory and Decision Analysis
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Value of information (VOI)

e Itis good to know things ©

* Since knowledge does not typically come for free, one might
ask the question how much is a piece of information worth.

 This is typically translated into additional benefit beyond
what we have already, i.e., VOI is defined as the difference
between the expected utility when we have the additional
Information and the expected utility without it.

e What does it mean that VOI is zero?

Decision Theory and Decision Analysis /
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The remainder

e Building and solving influence diagrams
e Performing value of information analysis
\ * Performing sensitivity analysis
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