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Learning Bayesian Networks and Causal Discovery

Course schedule

Session 1: Introduction to Bayesian inference

Session 2: Bayesian networks

Session 3: Building Bayesian networks

Session 4: Hands-on exercises (Bayesian networks)

Session 5: Learning Bayesian networks and causal discovery

Session 6: Decision theory and decision analysis

Session 7: Hands-on exercises (decision modeling)

Session 8: Hands-on exercises (learning)
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Session overview

• Motivation

• Constraint-based learning

• Bayesian learning

• Example

• Software demo

• Concluding remarks
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Learning Bayesian networks from data

There exist algorithms with a capability to analyze data, discover 
causal patterns in them, and build models based on these data.

data

numerical 

parameters

structure

• Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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The problem of learning

Given a set of variables (a.k.a. attributes) X and a 
data set D of simultaneous values of variables in X

1. Obtain insight into causal connections among 
the variables X (for the purpose of 
understanding and prediction of the effects of 
manipulation)

2. Learn the joint probability distribution over the 
variables X 

• Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Why are we also interested in causality?

Reason 1:  Ease of model-building and model 
enhancements: People think in causal terms.

Reason 2:  Predicting the effects of manipulation.

Given (2), (1) is not really surprising

• Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Causality and probability

The only reference to causality in a typical statistics textbook is: 

“correlation does not mean causation”
(if the textbook contains the word “causality” at all ☺☺☺☺).

What does correlation mean then (with respect to causality)?

The goal of experimental design is often to establish (or 

disprove) causation.  We use statistics to interpret the results 

of experiments (i.e., to decide whether a manipulation of the 

independent variable caused a change in the dependent 

variable).

How are causality and probability actually related and what 

does one tell us about the other? 

Not knowing this constitutes a handicap!

Many confusing substitute terms: “confounding factor,” “latent 

variable,” “intervening variable,” etc.

• Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Causality and probability

Causality and probability are closely related and their relation has 

to be made clear in statistics.

Probabilistic dependence is considered a necessary condition for 

establishing causation (is it also a sufficient condition ☺☺☺☺?).

weather

barometer 
reading

Weather and barometer reading are correlated 

because the weather causes the barometer 

reading.

A cause can cause an effect but it does not 

have to. Causal connections result in 

probabilistic dependencies (or correlations in 

linear case).

• Motivation
Constraint-based learning
Bayesian learning
Example
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Concluding remarks
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Causal graphs

Causal connections result in correlation
(in general probabilistic dependence).

Acyclic directed graphs (hence, no 

time and no dynamic reasoning) 

representing a snapshot of the world at 

a given time.

Nodes are random variables and arcs 

are direct causal dependencies 

between them.

• glass on the road will be 

correlated with flat tire

• glass on the road will be 

correlated with noise

• bumpy feeling will be 

correlated with noise

glass on 

the road

bumpy 

feeling

thorns on 

the road

flat tire

steering 

problems
noise

nails on 

the road

an 

accident

car 

damageinjury

a knife
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Causal Markov condition

An axiomatic condition describing the relationship between 

causality and probability.

Axiomatic, but used by almost everybody in practice and no 

convincing counter examples to it have been shown so far (at 

least outside the quantum world).

A variable in a causal graph is probabilistically independent 

of its non-descendants given its immediate predecessors.

• Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Markov condition: Implications

Variables A and B are 

probabilistically dependent if there 

exists a directed active path from 

A to B or from B to A:

Thorns on the road are correlated 

with car damage because there is 

a directed path from thorns to car 

damage.

glass on 

the road

bumpy 

feeling

thorns on 

the road

flat tire

steering 

problems
noise

nails on 

the road

an 

accident

car 

damageinjury

a knife
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Markov condition: Implications

glass on 

the road

bumpy 

feeling

thorns on 

the road

flat tire

steering 

problems
noise

nails on 

the road

an 

accident

car 

damageinjury

a knife

Variables A and B are 

probabilistically dependent if there 

exists a C such that there exists a 

directed active path from C to A 

and there exists a directed active 

path from C to B:

Car damage is correlated with 

noise because there is a directed 

path from flat tire to both (flat tire 

is a common cause of both).

• Motivation
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Bayesian learning
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Markov condition: Implications

glass on 

the road

bumpy 

feeling

thorns on 

the road

flat tire

steering 

problems
noise

nails on 

the road

an 

accident

car 

damageinjury

a knife

Variables A and B are probabilistically 

dependent if there exists a D such 

that D is observed (conditioned upon) 

and there exists a C such that A is 

dependent on C and there exists a 

directed active path from C to D and 

there exists an E such that B is 

dependent on E and there exists a 

directed active path from E to D:

Nails on the road are correlated with 

glass on the road given flat tire 

because there is a directed path from 

glass on the road to flat tire and from 

nails on the road to flat tire and flat 

tire is observed (conditioned upon).

• Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Markov condition:
Summary of implications

Variables A and B are probabilistically dependent if:

• there exists a directed active path from A to B or there 

exists a directed active path from B to A

• there exists a C such that there exists a directed active 

path from C to A and there exists a directed active path 

from C to B

• there exists a D such that D is observed (conditioned 

upon) and there exists a C such that A is dependent on C 

and there exists a directed active path from C to D and 

there exists an E such that B is dependent on E and there 

exists a directed active path from E to D

• Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Markov condition:
Conditional independence

Once we know all direct causes of an 

event E, the causes and effects of 

those causes do not tell anything new 

about E and its successors.

(also known as “screening off”)

E.g.,

• Glass and thorns on the road are 

independent of noise, bumpy 

feeling, and steering problems 

conditioned on flat tire.

• Noise, bumpy feeling, and steering 

problems become independent 

conditioned on flat tire.

glass on 

the road

bumpy 

feeling

thorns on 

the road

flat tire

steering 

problems
noise

nails on 

the road

an 

accident

car 

damageinjury

a knife

• Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks



Learning Bayesian Networks and Causal Discovery

Intervention

Given an external intervention on a variable A in a causal 

graph, we can derive the posterior probability distribution 

over the entire graph by simply modifying the conditional 

probability distribution of A.

Manipulation theorem [Spirtes, Glymour & Scheines 1993]:

If this intervention is strong 

enough to set A to a specific 

value, we can view this 

intervention as the only cause 

of A and reflect this by 

removing all edges that are 

coming into A. Nothing else in 

the graph needs to be modified.

intervention other 

causes 

of A

A

effects of A

...

...
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Intervention: Example

“Pumping up” the barometer 

eliminates the weather as a cause 

of the pressure indicated by the 

barometer reading.

weather

barometer 

reading

“pumping up”
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Constraint-based learning
Bayesian learning
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Intervention: Example

Making the tire flat with a knife makes 

glass, thorns, nails, and what-have-

you irrelevant to flat tire.

The knife is the only cause of flat tire.

knife cut

glass on 

the road

bumpy 

feeling

thorns on 

the road

flat tire

steering 

problems

noise

nails on 

the road

an 

accident

car 

damageinjury

a knife

• Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks



Learning Bayesian Networks and Causal Discovery

Experimentation

Smoking and lung cancer are correlated.

Can we reduce the incidence of lung cancer by reducing smoking?
In other words: Is smoking a cause of lung cancer?

Empirical research is usually concerned with testing causal hypotheses.

Each of the following causal structures is compatible 
with the observed correlation:

G = genetic factors

S = smoking

C = lung cancer

G

S C

G

S C

G

S C

G

S C

G

S C

G

S C

G

S C

G

S C

G

S C
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Selection bias

• If we do not randomize, we run the danger that there are common 
causes between smoking and lung cancer (for example genetic 
factors).

• These common causes will make smoking and lung cancer 
dependent.

• It may, in fact, also be the case that lung cancer causes smoking.

• This will also make them dependent without smoking causing 
lung cancer.

genetic factors

smoking
lung cancer?

Observing correlation is in general not enough to establish 

causality.

• Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Experimentation

• In a randomized experiment, coin becomes the only cause of 
smoking.

genetic factors

smoking
lung cancer

coin asbestos

?

• Smoking and lung cancer will be dependent only if there is a 
causal influence from smoking to lung cancer.

• If Pr(C|S) ≠≠≠≠ Pr(C|~S) then smoking is a cause of lung cancer.

• Asbestos will simply cause variability in lung cancer (add noise 
to the observations).

But, can we really experiment in this domain?

• Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Science by observation

• Experimentation is not always possible.

• We can do quite a lot by just observing.

• Assumptions are crucial in both experimentation and 
observation, although they are usually stronger in the latter.

• New methods in causal discovery: squeezing data to the limits

“... George Bush taking credit for the end of the cold 
war is like a rooster taking credit for the daybreak ...”

Vice-president Al Gore towards Dan Quayle during their first debate, Fall 1992

“... Does smoking cause lung cancer or does 
lung cancer cause smoking? ...”

Sir Ronald A. Fisher, a prominent statistician, father of experimental design

• Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
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Approaches to learning Bayesian networks

Constraint search-based learning
Search the data for independence relations to give us a 

clue about the causal relations [Spirtes, Glymour, Scheines 

1993].

Bayesian learning
Search over the space of models and score each model 

using the posterior probability of the model given the data 

[Cooper & Herskovitz 1992; many others].

• Motivation
Constraint-based learning
Bayesian learning
Example
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Constraint search-based learning
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Constraint search-based learning

• Search for independencies among variables in the database.

• Use the independencies in the data to infer (lack of) causal 
links among the variables (given some basic assumptions).

Principles:

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Constraint search-based learning

True but only in limited settings and often unfairly 
abused by the “statistics mafia” ☺☺☺☺.

x

y

x

y

If x and y are dependent, we have indeed at least 
four possible cases:

“Correlation does not imply causation”

•
Motivation
Constraint-based learning
Bayesian learning
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Concluding remarks
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Constraint search-based learning

x and  z are dependent
y and  z are dependent

x and y are independent
x and y are dependent given z

We can establish 
causality!

Not necessarily true in case of three variables:

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks

⇒
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Foundations of causal discovery:
(1) The Causal Markov Condition

A B C

D E

F G

Relates a causal graph to a probability 
distribution.

Intuition:
In a causal graph, the parents of each node 
“shield” the node from their ancestors.

Formally:
For any node Xi in the graph, we have 
P[Xi|X’,Pa(Xi)] = P[Xi|Pa(Xi)],
where Pa(Xi) are the parents of Xi in the graph, 
and X’ is any set of non-descendents of Xi in the 
graph.

Theorem:  A causal graph obeys the Markov condition if and only if 

every d-separation in the graph corresponds to an independence in 

the probability distribution.

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
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The Causal Markov Condition: d-separation

Restatement of “the rules:”

• Each node is a “valve”

• v-structures are “off” by default

• other nodes are “on” by default

• conditioning on a node flips its 

state

• conditioning on a v-structure’s 

descendants also flips its state.

I(B,F) ? Yes

I(B, F | D) ? No

I(B, F | C,D )?

A

B C D

I H G

F

EJ

D

Yes

•
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Constraint-based learning
Bayesian learning
Example
Software demo
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Foundations of causal discovery:
(2) Faithfulness condition

• Markov Condition: 
d-separation ⇒⇒⇒⇒ independence in data.

• Faithfulness Condition:
d-separation ⇐⇐⇐⇐ independence in data.

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks

In other words:
All independences in the data are structural, 
i.e., are consequences of Markov condition.
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Violations of faithfulness condition

Given that HIV virus infection has not 
taken place, needle sharing is independent 
from intercourse.

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks

Faithfulness condition is more controversial.
While every scientist makes it in practice, it does 

not need to hold.
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Violations of faithfulness condition

The effect of staying up late before the exam on the 
exam performance may happen to be zero:
being tired may cancel out the effect of more knowledge. 
But is it likely?

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Equivalence criterion

Two graphs are statistically indistinguishable (belong to the 

same equivalence class) iff they have the same adjacencies 

and the same “v-structures”.

Statistically 
indistinguishable

Statistically
unique

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Constraint search-based learning

All possible graphs …

… can be divided into equivalence classes

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Causal model search

1. Start with data.

2. Find conditional independencies in the data.

3. Infer which causal structures could have given 
rise to these independencies.

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Theorems useful in search

Theorem 1

There is no edge between X and Y if and only if X and Y are 

independent given any subset (including the null set) of the 

other variables.

Theorem 2

If X—Y — Z,  X and Z are not adjacent, and X and Z are 

independent given some set W, then X→→→→Y←←←←Z if and only if 

W does not contain Y.

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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PC algorithm

Input:

a set of conditional independencies

Output:

a “pattern” which represents a Markov equivalence 
class of causally sufficient causal models.

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks



Learning Bayesian Networks and Causal Discovery

PC algorithm (sketch)

Step 0:

Begin with a complete undirected graph.

Step 1 (Find adjacencies):

For each pair of variables <X,Y> if X and Y are independent 
given some subset of the other variables, remove the X–Y 
edge.  

Step 2: (Find v-structures):

For each triple X–Y–Z, with no edge between X and Z, if X and Z 
are independent given some set not containing Y, then orient 
X–Y–Z as X→→→→Y←←←←Z.

Step 3 (Avoid new v-structures and cycles): 

– if X→→→→Y—Z, but there is no edge between X and Z, then orient 
Y–Z as Y→→→→Z.

– if X—Z, and there is already a directed path from X to Z, then 
orient X — Z as X→→→→Z.

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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PC algorithm: Example

Independencies entailed by

the Markov condition:

I(A,B)

I(A,D | B,C)

A

B

C D

Causal 

Graph

(1) From A ⊥⊥⊥⊥ B, remove A—B

A

B

C D

(0) Begin with

A

B

C D

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks



Learning Bayesian Networks and Causal Discovery

PC algorithm: Example

A

B

C D

(1) From I(A,D | B,C), remove A—D (2) From I(A,B), orient 
A–C–B as A→→→→C←←←←B

A

B

C D

(3) Avoid a new v-structure (A→→→→C←←←←D),
Orient C –D as C →→→→D.

A

B

C D

(3) Avoid a cycle (B →→→→C →→→→D →→→→B),
Orient B –D as B →→→→D.

A

B

C D

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
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Patterns: Output of the PC algorithm

PC algorithm outputs a ‘pattern’, a kind of graph containing 
directed (→→→→) and undirected (—) edges which represents a 
Markov equivalence class of models

– An undirected edge A–B in the ‘pattern’, indicates that 
there is an edge between these variables in every 
graph in the Markov equivalence class

– A directed edge A→→→→B in the ‘pattern’ indicates that 
there is an edge oriented A→→→→B in every graph in the 
Markov equivalence class

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Continuous data

• Causal discovery is independent of the actual distribution of 
the data.

• The only thing that we need is a test of (conditional) 
independence.

• No problem with discrete data.

• In continuous case, we have a test of (conditional) 
independence (partial correlation test) when the data comes 
from multi-variate Normal distribution.

• Need to make the assumption that the data is multi-variate 
Normal.

• The discovery algorithm turns out to be very robust to this 
assumption [Voortman & Druzdzel, 2008].

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
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Normality

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks

Multi-variate normality is equivalent to two conditions:

(1) Normal marginals and (2) linear relationships
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Linearity

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks

Multi-variate normality is equivalent to two conditions:

(1) Normal marginals and (2) linear relationships
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Bayesian learning
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Elements of a search procedure

• A representation for the current state (a 
network structure.)

• A scoring function for each state (the 
posterior probability).

• A set of search operators.
– AddArc(X,Y)

– DelArc(X,Y)

– RevArc(X,Y)

• A search heuristic (e.g., greedy search).

• The size of the search space for n 
variables is almost 3^Cn

2 possible graphs!

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Posterior probability score
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Constraint-based learning: Open problems

Cons:

• Discrete independence tests are 
computationally intensive

⇒⇒⇒⇒ heuristic independence tests?

• Missing data is difficult to deal with

⇒⇒⇒⇒ Bayesian independence test?

Pros:

• Efficient, O(n2) for sparse 
graphs.

• Hidden variables can be 
discovered in a modest way.

• “Older” technology, many 
researchers do not seem to 
be aware of it.

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Bayesian learning: Open problems

Pros:

• Missing data and hidden 
variables are easy to deal 
with (in principle).

• More flexible means of 
specifying prior 
knowledge.

• Many open research 
questions!

Cons:

• Essentially intractable.

• Search heuristics (most efficient) 
typically lead to local maxima.

• Monte-Carlo techniques (more 
accurate) are very slow for most 
interesting problems.

•
Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Some challenges

Scaling up – especially Monte Carlo techniques.

Practically dealing with hidden variables –

unsupervised classification.

Applying these techniques to real data and real 

problems.

Hybrid techniques: Constraint-based + Bayesian 

(e.g., Dash & Druzdzel, 1999).

Learning causal graphs in time-dependent 

domains (Dash & Druzdzel, 2002).

Learning causal graphs and causal manipulation 

(Dash & Druzdzel, 2002).

Learning dynamic causal graphs from time 

series data (Voortman, Dash & Druzdzel 2010).

•

Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks



Learning Bayesian Networks and Causal Discovery

The rest
•

Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks
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Concluding remarks

• Observation is a valid scientific method

• Observation allows often to restrict the class of possible 

causal structures that could have generated the data.

• Learning Bayesian networks/causal graphs is very exciting: 

It is a different and powerful way of doing science.

• There is a rich assortment of unsolved problems in causal 

discovery / learning Bayesian networks, both practical and 

theoretical.

•

Motivation
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Bayesian learning
Example
Software demo
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