
Secure Coding in C

and C++
Integer Security

Lecture 7

Acknowledgement: These slides are based on author Seacord’s original presentation

Integer Security
 Integers represent a growing and underestimated

source of vulnerabilities in C and C++ programs.

 Integer range checking has not been systematically

applied in the development of most C and C++

software.

 security flaws involving integers exist

 a portion of these are likely to be vulnerabilities

 A software vulnerability may result when a program

evaluates an integer to an unexpected value.

Representation

4-bit

two’s complement

representation

Signed Integer Unsigned Integer

Example Integer Ranges

signed char

0 127-128

0 255

unsigned char

0 32767

short

- 32768

0 65535

unsigned short

signed char

00 127127-128-128

00 255255

unsigned char

00 3276732767

short

- 32768- 32768

00 65535 65535

unsigned short

Integer Promotion Example

 Integer promotions require the promotion of
each variable (c1 and c2) to int size

 char c1, c2;

 c1 = c1 + c2;

 The two ints are added and the sum truncated to fit

into the char type.

 Integer promotions avoid arithmetic errors from the

overflow of intermediate values.

Implicit Conversions

1. char cresult, c1, c2, c3;

2. c1 = 100;

3. c2 = 90;

4. c3 = -120;

5. cresult = c1 + c2 + c3;

The value of c1 is added

to the value of c2.

The sum of c1 and c2 exceeds the
maximum size of signed char

However, c1, c1, and c3 are each

converted to integers and the overall

expression is successfully evaluated.

The sum is truncated and
stored in cresult without a

loss of data

From
unsigned

To Method

char char Preserve bit pattern; high-order bit becomes sign bit

char short Zero-extend

char long Zero-extend

char unsigned

short

Zero-extend

char unsigned long Zero-extend

short char Preserve low-order byte

short short Preserve bit pattern; high-order bit becomes sign bit

short long Zero-extend

short unsigned char Preserve low-order byte

long char Preserve low-order byte

long short Preserve low-order word

long long Preserve bit pattern; high-order bit becomes sign bit

long unsigned char Preserve low-order byte

long unsigned

short

Preserve low-order word

Misinterpreted data Lost data Key:

From To Method

char short Sign-extend

char long Sign-extend

char unsigned char Preserve pattern; high-order bit loses function as sign bit

char unsigned short Sign-extend to short; convert short to unsigned short

char unsigned long Sign-extend to long; convert long to unsigned long

short char Preserve low-order byte

short long Sign-extend

short unsigned char Preserve low-order byte

short unsigned short Preserve bit pattern; high-order bit loses function as sign

bit

short unsigned long Sign-extend to long; convert long to unsigned long

long char Preserve low-order byte

long short Preserve low-order word

long unsigned char Preserve low-order byte

long unsigned short Preserve low-order word

long unsigned long Preserve pattern; high-order bit loses function as sign bit

Misinterpreted data Lost data Key:

Signed Integer Conversion

Example

 1. unsigned int l = ULONG_MAX;

 2. char c = -1;

 3. if (c == l) {

 4. printf("-1 = 4,294,967,295?\n");

 5. }

The value of c is

compared to the
value of l.

Because of integer promotions, c is

converted to an unsigned integer with a
value of 0xFFFFFFFF or 4,294,967,295

Overflow Examples 1

 1. int i;
 2. unsigned int j;

 3. i = INT_MAX; // 2,147,483,647

 4. i++;

 5. printf("i = %d\n", i);

 6. j = UINT_MAX; // 4,294,967,295;

 7. j++;

 8. printf("j = %u\n", j);

i=-2,147,483,648

j = 0

Overflow Examples 2

 9. i = INT_MIN; // -2,147,483,648;

 10. i--;

 11. printf("i = %d\n", i);

 12. j = 0;

 13. j--;

 14. printf("j = %u\n", j);

i=2,147,483,647

j = 4,294,967,295

Truncation Error Example

 1. char cresult, c1, c2, c3;

 2. c1 = 100;

 3. c2 = 90;

 4. cresult = c1 + c2;

 Integers smaller than int are

promoted to int or

unsigned int before being

operated on

Adding c1 and c2 exceeds the max
size of signed char (+127)

Truncation occurs when the

value is assigned to a type

that is too small to represent

the resulting value

Sign Error Example

 1. int i = -3;

 2. unsigned short u;

 3. u = i;

 4. printf("u = %hu\n", u);

There are sufficient bits to represent the value so

no truncation occurs. The two’s complement

representation is interpreted as a large signed
value, however, so u = 65533

Implicit conversion

to smaller unsigned

integer

Integer Division

 An integer overflow condition occurs when
the minimum integer value for 32-bit or 64-bit
integers are divided by -1.

 In the 32-bit case, –2,147,483,648/-1 should be
equal to 2,147,483,648

 Because 2,147,483,648 cannot be represented as
a signed 32-bit integer the resulting value is
incorrect

- 2,147,483,648 /-1 = - 2,147,483,648

Vulnerabilities Section Agenda

 Integer overflow

 Sign error

 Truncation

 Non-exceptional

 Integer overflow

 Sign error

 Truncation

 Non-exceptional

JPEG Example

 Based on a real-world vulnerability in the handling of

the comment field in JPEG files

 Comment field includes a two-byte length field

indicating the length of the comment, including the

two-byte length field.

 To determine the length of the comment string (for

memory allocation), the function reads the value in

the length field and subtracts two.

 The function then allocates the length of the

comment plus one byte for the terminating null byte.

Integer Overflow Example

 1. void getComment(unsigned int len, char *src) {

 2. unsigned int size;

 3. size = len - 2;

 4. char *comment = (char *)malloc(size + 1);

 5. memcpy(comment, src, size);

 6. return;

 7. }

 8. int _tmain(int argc, _TCHAR* argv[]) {

 9. getComment(1, "Comment ");

 10. return 0;

 11. }

Size is interpreted as a large
positive value of 0xffffffff

0 byte malloc() succeeds

Possible to cause an overflow by creating

an image with a comment length field of 1

Sign Error Example 1

 1. #define BUFF_SIZE 10

 2. int main(int argc, char* argv[]){

 3. int len;

 4. char buf[BUFF_SIZE];

 5. len = atoi(argv[1]);

 6. if (len < BUFF_SIZE){

 7. memcpy(buf, argv[2], len);

 8. }

 9. }

Program accepts two

arguments (the length

of data to copy and

the actual data)

len declared as a signed integer

argv[1] can be

a negative value

A negative

value

bypasses

the check

Value is interpreted as an
unsigned value of type size_t

Sign Errors Example 2

 The negative length is interpreted as a large,
positive integer with the resulting buffer
overflow

 This vulnerability can be prevented by
restricting the integer len to a valid value

 more effective range check that guarantees len
is greater than 0 but less than BUFF_SIZE

 declare as an unsigned integer

 eliminates the conversion from a signed to
unsigned type in the call to memcpy()

 prevents the sign error from occurring

Truncation:

Vulnerable Implementation

 1. bool func(char *name, long cbBuf) {

 2. unsigned short bufSize = cbBuf;

 3. char *buf = (char *)malloc(bufSize);

 4. if (buf) {

 5. memcpy(buf, name, cbBuf);

 6. if (buf) free(buf);

 7. return true;

 8. }

 9. return false;

 10. }

cbBuf is used to initialize

bufSize which is used

to allocate memory for
buf

cbBuf is declared as a long and used

as the size in the memcpy() operation

Vulnerability 1

 cbBuf is temporarily stored in the unsigned short

bufSize.

 The maximum size of an unsigned short for both

GCC and the Visual C++ compiler on IA-32 is

65,535.

 The maximum value for a signed long on the

same platform is 2,147,483,647.

 A truncation error will occur on line 2 for any values
of cbBuf between 65,535 and 2,147,483,647.

Vulnerability 2

 This would only be an error and not a
vulnerability if bufSize were used for both

the calls to malloc() and memcpy()

 Because bufSize is used to allocate the

size of the buffer and cbBuf is used as the

size on the call to memcpy() it is possible to

overflow buf by anywhere from 1 to

2,147,418,112 (2,147,483,647 - 65,535)

bytes.

Negative Indices

 1. int *table = NULL;\

 2. int insert_in_table(int pos, int value){

 3. if (!table) {

 4. table = (int *)malloc(sizeof(int) * 100);

 5. }

 6. if (pos > 99) {

 7. return -1;

 8. }

 9. table[pos] = value;

 10. return 0;

 11. }

Storage for the

array is

allocated on

the heap
pos is not > 99

value is inserted into the

array at the specified position

Vulnerability

 There is a vulnerability resulting from
incorrect range checking of pos

 Because pos is declared as a signed integer,

both positive and negative values can be passed

to the function.

 An out-of-range positive value would be caught

but a negative value would not.

Mitigation

 Type range checking

 Strong typing

 Compiler checks

 Safe integer operations

 Testing and reviews

Type Range Checking Example

 1. #define BUFF_SIZE 10

 2. int main(int argc, char* argv[]){

 3. unsigned int len;

 4. char buf[BUFF_SIZE];

 5. len = atoi(argv[1]);

 6. if ((0<len) && (len<BUFF_SIZE)){

 7. memcpy(buf, argv[2], len);

 8. }

 9. else

 10. printf("Too much data\n");

 11. }

 .

Implicit type check from

the declaration as an

unsigned integer

Explicit check for both upper and lower bounds

Strong Typing

 One way to provide better type checking is to

provide better types.

 Using an unsigned type can guarantee that a

variable does not contain a negative value.

 This solution does not prevent overflow.

 Strong typing should be used so that the

compiler can be more effective in identifying

range problems.

Strong Typing Example

 Declare an integer to store the temperature of water
using the Fahrenheit scale
 unsigned char waterTemperature;

 waterTemperature is an unsigned 8-bit value in
the range 1-255

 unsigned char

 sufficient to represent liquid water temperatures which
range from 32 degrees Fahrenheit (freezing) to 212
degrees Fahrenheit (the boiling point).

 does not prevent overflow

 allows invalid values (e.g., 1-31 and 213-255).

Abstract Data Type

 One solution is to create an abstract data type in
which waterTemperature is private and cannot
be directly accessed by the user.

 A user of this data abstraction can only access,
update, or operate on this value through public
method calls.

 These methods must provide type safety by
ensuring that the value of the waterTemperature
does not leave the valid range.

 If implemented properly, there is no possibility of an
integer type range error occurring.

Safe Integer Operations 1

 Integer operations can result in error conditions and

possible lost data.

 The first line of defense against integer

vulnerabilities should be range checking

 Explicitly

 Implicitly - through strong typing

 It is difficult to guarantee that multiple input variables

cannot be manipulated to cause an error to occur in

some operation somewhere in a program.

Safe Integer Operations 2

 An alternative or ancillary approach is to

protect each operation.

 This approach can be labor intensive and

expensive to perform.

 Use a safe integer library for all operations on

integers where one or more of the inputs

could be influenced by an untrusted source.

SafeInt Class

 SafeInt is a C++ template class written by
David LeBlanc.

 Implements a precondition approach that
tests the values of operands before
performing an operation to determine if an
error will occur.

 The class is declared as a template, so it can
be used with any integer type.

 Every operator has been overridden except
for the subscript operator[]

Testing 1

 Input validation does not guarantee that

subsequent operations on integers will not

result in an overflow or other error condition.

 Testing does not provide any guarantees

either

 It is impossible to cover all ranges of possible

inputs on anything but the most trivial programs.

 If applied correctly, testing can increase

confidence that the code is secure.

Testing 2

 Integer vulnerability tests should include boundary
conditions for all integer variables.
 If type range checks are inserted in the code, test that they

function correctly for upper and lower bounds.

 If boundary tests have not been included, test for minimum
and maximum integer values for the various integer sizes
used.

 Use white box testing to determine the types of
integer variables.

 If source code is not available, run tests with the
various maximum and minimum values for each
type.

Source Code Audit

 Source code should be audited or inspected for
possible integer range errors

 When auditing, check for the following:
 Integer type ranges are properly checked.

 Input values are restricted to a valid range based on their
intended use.

 Integers that do not require negative values are
declared as unsigned and properly range-checked
for upper and lower bounds.

 Operations on integers originating from untrusted
sources are performed using a safe integer library.

Notable Vulnerabilities

 Integer Overflow In XDR Library

 SunRPC xdr_array buffer overflow

 http://www.iss.net/security_center/static/9170.php

 Windows DirectX MIDI Library

 eEye Digital Security advisory AD20030723

 http://www.eeye.com/html/Research/Advisories/AD200307

23.html

 Bash

 CERT Advisory CA-1996-22

 http://www.cert.org/advisories/CA-1996-22.html

