

Contact

- James Joshi
- 706A, IS Building
- Phone: 412-624-9982
- E-mail: jjoshi@mail.sis.pitt.edu
- Web: http://www.sis.pitt.edu/~jjoshi/courses/IS2620/Spring13/ Office Hours: By appointments
- GSA: will be announced later

Course Objectives

- To learn about how to design/implement secure and high assurance information systems
 - Understand and analyze code for vulnerabilities
 - Secure programming (e.g., C, C++, Java)
- Understand the principles and practice towards designing secure information systems
 - Life cycle models/ security engineering principles
 - Usability issues
- To learn about the tools and techniques towards assurance (validation/verification/testing)
 - Use of tools to detect coding/design flaws;
 - architectural risk analysis

Course Coverage

- Secure programming
 - Coding practices and guidelines
 - Code analysis;
 - Buffer overflows
 - Input validation
 - Cross-site scripting Mobile Code

Race conditions SQL injection Safe Languages

- Secure software development process
 - Security Engineering/Lifecycle models
 - E.g. Capability Maturity Models and Extensions
 - Building security In
 - Secure Design/Implementation Principles
 - Systems / software &Formal methods and testing
 - UMLSec, Model Checking (code, protocols)
- Miscellaneous issues (recent papers/articles)

Pre-requisite

- IS 2150/TEL 2810 Introduction to Computer Security
 - OR some background in security
- Following courses are preferred but not required:
 - IS 2170/TEL 2820 Cryptography; TEL 2821 Network Security
 - IS 2511 or 2540
- Talk to me if you are not sure of the background

Course References

- Building Secure Software: How to avoid the Security Problems the Right Way, John Viega, Gary McGraw, Addison-Wesley, 2002
- Enterprise Java Security: Building Secure J2EE Applications, Marco Pistoia, Nataraj Nagaratnam, Larry Koved, Anthony Nadalin, Addition-Wesley, 2004
- Secure Systems Development with UML, Jan Jurjens, Springer-Verlag, 2005.
- Securing Web Services with WS-Security: Demystifying WS-Security, WS-Policy, SAML, XML Signature, and XML Encryption – Jothy Rosenberg, David Remy, 2004, Sams Publishing, 2004.

Course References

- High Assurance Design: Architecting Secure and Reliable Enterprise Applications, Clifford J. Berg, Addison-Wesley, 2006.
- Core Security Patterns: Best Practices and Strategies for J2EE?, Web Services, and Identity Management, Christopher Steel, Ramesh Nagappan, Ray Lai; Prentice-Hall
- How to Break Software Security James Whittaker, Herbert Thompson, Addition Wesley, 2003
- Secure Coding in C and C++, Robert C. Seacord, Addition-wesley, 2006
- Computer Security: Art and Science by Matt Bishop (ISBN: 0-201-44099-7), Addison-wesley 2003.
- Papers; MSDN, US-CERT

Grading (Tentative)

• Assignments/Presentation/Exam: 60-70%

- Read/Review and/or present research papers or articles
- Assignments and lab exercises
- One exam (15% 20%)

• Project : 40-30%

- Development-oriented project (e.g. Creating Secure Social Network; Secure Mobile Apps, etc.)
- Research paper for conference
- Team oriented and in some cases in collaboration with PhD students
- Start early on

Course Policy

- Your work MUST be your own
 - Zero tolerance for cheating/plagiarism
 - You get an F for the course if you cheat in anything however small – NO DISCUSSION
 - Discussing the problem is encouraged
- Homework
 - Penalty for late assignments (15% each day)
 - Ensure clarity in your answers no credit will be given for vague answers
 - Homework is primarily the GSA's responsibility
- Check webpage for everything!
 - You are responsible for checking the webpage for updates

