
Towards Security Vulnerability Detection by Source Code Model Checking

Keqin Li
SAP Research

Sophia Antipolis, France
e-mail: Keqin.Li@sap.com

Abstract—Security in code level is an important aspect to
achieve high quality software. Various security programming
guidelines are defined to improve the quality of software code.
At the same time, enforcing mechanisms of these guidelines are
needed. In this paper, we use source code model checking
technique to check whether some security programming
guidelines are followed, and correspondingly to detect related
security vulnerabilities. Two SAP security programming
guidelines related to logging sensitive information and Cross-
Site Scripting attack are used as examples. In the case studies,
Bandera Tool Set is used as source code model checker, and
minimizing programmers’ additional effort is set as one of the
goals.

Keywords-model checking; source code analysis; security;
programming guidelines

I. INTRODUCTION
With the increasing usage of software applications,

security is more and more perceived as an important aspect
of software. Achieving high quality software with respect to
security asks for activities across the whole software
development life cycle, rather than a late activity under tight
time and resource constraints. Correspondingly, various
research topics and techniques are proposed to improve
software security. Among them, security in code level
(source code or bytecode) is an important one. Programs
often contain fatal errors despite the existence of careful
designs. Many deadlocks and critical section violations, for
example, are introduced at a level of detail which designs
typically do not deal with, if formal designs are made at all.
In the end, it is the running code in which security
vulnerabilities exist or not.

In order to improve security in the code level, security
programming guidelines are defined in many software
development organizations. These guidelines could cover a
wide range of known security vulnerabilities related to
programming style, usage of certain interfaces, etc. At the
same time, mechanisms to enforce these guidelines are
needed. Without enforcing mechanisms, the application of
these guidelines and correspondingly the software security
related to these guidelines will not be guaranteed.

Source code model checking applies model checking
techniques to source code to find the potential violation of
expected properties. Although these are some difficulties
such as complexity of programming language structure and
state space explosion, several source code model checking

techniques and tools are proposed and applied in different
applications, some fatal errors are found [15].

In this paper, we use source code model checking to
check whether some security programming guidelines are
followed, and correspondingly to detect related security
vulnerabilities. We use two SAP security programming
guidelines as example, one of them is about logging sensitive
information, while the other one is about output encoding to
prevent Cross-Site Scripting attack. In these case studies, we
use Bandera Tool Set [7] as source code model checker. One
important goal we want to achieve is to minimize the
additional effort of programmers. Generally speaking, we
cannot expect the normal programmers are very skillful in
formal methods, thus specifying expected properties
formally is a task of security and formal method experts. At
the same time, large amount and wide spread program
annotations could not be welcomed.

The paper is organized as follows. Section II gives
background information about Java source code model
checker Bandera and the corresponding property
specification language BSL. In Section III, the application of
Bandera to check security guideline about secure logging is
described. In Section IV, the same technique is applied for
security guideline related to Cross-Site Scripting attack.
Related work is discussed in Section V. Section VI
concludes the paper.

II. BACKGROUND: BANDERA AND BSL
The Bandera Tool Set [7] is an integrated collection of

program analysis, transformation, and visualization
components designed to facilitate experimentation with
model-checking Java source code. Bandera takes as input
Java source code and a software requirement formalized in
Bandera's temporal specification language, and it generates a
program model and specification in the input language of
one of several existing model checking tools (including Spin
[8], dSpin [4], SMV [2], and JPF [15]). Both program slicing
and user extensible abstract interpretation components are
applied to customize the program model to the property
being checked. When a model checker produces an error
trail, Bandera renders the error trail at the source code level
and allows the user to step through the code along the path of
the trail while displaying values of variables and internal
states of Java objects.

In Bandera, source code properties to be checked are
written in the Bandera Specification Language (BSL) [3].
BSL is a source level, model checker independent language

Third International Conference on Software Testing, Verification, and Validation Workshops

978-0-7695-4050-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ICSTW.2010.23

381

for expressing temporal properties of Java program actions
and data. The organization of BSL is depicted in Figure 1.
BSL is composed of the following sublanguages:

Q
ua

nt
ifi

ca
tio

n

Assertion Property
Specification

Temporal Property
Specification

Assertion
Definition

Sublanguage

Pattern
Definition

Sublanguage

Predicate
Definition

Sublanguage

Bandera Specification Language

Figure 1: BSL Organization

• An assertion sublanguage allows users to define
constraints on program contexts in familiar assertion
style notation. Assertions can be selectively enabled
or disabled so that one can easily identify only a
subset of assertions for checking. Bandera exploits
this capability by optimizing the generated models
(using slicing and abstraction) specifically for the
selected assertions.

• A temporal property sublanguage provides support
for defining predicates on common Java control
points (e.g., method invocation and return) and Java
data (including dynamically created threads and
objects). These predicates become the basic
propositions in temporal specifications. The
temporal specification language is based not on a
particular temporal logic, but on a collection of field-
tested temporal specification patterns [5]. This
pattern language is extensible and allows for
libraries of domain-specific patterns to be created.

• Interacting with both the predicate and pattern
support in BSL is a powerful quantification facility
that allows temporal specifications to be quantified
over all objects/threads from particular classes.
Quantification provides a mechanism for naming
potentially anonymous data, and this type of support
is crucial for expressive reasoning about
dynamically created objects.

III. APPLICATION 1: SECURITY GUIDELINE ABOUT
SECURE LOGGING

One SAP security programming guideline is that before
sensitive information is logged, it must be encrypted in order
to prevent information leakage. In this section, we describe
how to specify this guideline using BSL in order to check
automatically whether this guideline is followed using
Bandera.

A. Logging APIs and Encryption APIs
Logging is an important element for securing application

server systems. Logs are essential for monitoring
applications and tracking events if problems occur, as well as
for auditing the correct usage of the system.

The SAP Logging API is provided with all functionality
for events logging. The following methods of class
Category are provided to write log messages with
different severity levels. They have intuitive names that
indicate the severity levels such as FATAL, ERROR,
WARNING, INFO, PATH, and DEBUG.

fatalT(string the_message) ;
errorT(string the_message) ;
warningT(string the_message) ;
infoT(string the_message) ;
pathT(string the_message) ;
debugT(string the_message) ;
Using the Logging API, writing a password, which is

sensitive information, to the log file could be implemented as
follows.

Category myCat =
Category.getCategory
 ("/System/Database");
myCat.warningT("Sample message"
 + password);
The last statement is where the sensitive information is

written to the log file.
For more information about SAP Logging API, please

refer to [12].
In SAP NetWeaver Platform, there are interfaces and

classes derived from them available for implementing digital
signature and encryption in the applications. We now
proceed to describe them.

The interface ISsfData is the central interface used for
the cryptographic functions. Its underlying classes specify
the data format used, for example, SsfDataPKCS7,
SsfDataSMIME and SsfDataXML. The available
methods are sign(), verify(), encrypt(),
decrypt(), and writeTo().

The interface ISsfProfile provides access to the
user’s or server’s profile, where the private key and
corresponding public-key certificates are stored. If the
public-key certificate has been signed by a CA, the interface
also provides access to the CA chain associated with the
certificate.

The interface ISsfPab provides access to a list of
public-key certificates belonging to others. These public-key
certificates are used to verify their owners’ digital signatures
or to encrypt documents.

Using the Encryption API, encryption could be
implemented in the following way.

ISsfData data;
profile = new SsfProfileKeyStore
 (keyStore, alias, null);
result = data.encrypt(profile);
For more information about SAP interfaces and classes

for using digital signatures and encryption, please also refer
to [12].

B. Property Specification
In order to check whether the security guideline about

secure logging is followed using Bandera, we need to
develop auxiliary source file and specify the expected

382

property using BSL. In this section, we describe these two
steps.

Class String {

public boolean isConf ;
public boolean isEncrypted ;

public String() {
isConf = false ;
isEncrypted = false ;

}

public void encrypt(ISsfProfile profile) {
isEncrypted = true ;

}
}

class Category {

/**
* @observable
* INVOKE call(this, String m) :
* ((m.isConf == true)
* && (m.isEncrypted == false)) ;
*/
public void errorT(String m) {
}

/**
* @observable
* INVOKE call(this, String m):
* ((m.isConf == true)
* && (m.isEncrypted == false)) ;
*/
public void warningT(String m) {
}

}

Figure 2: Auxiliary File for Secure Logging

The auxiliary source file is depicted in Figure 2. Two
auxiliary classes are defined.

Two attributes are defined in the class String,
isConf means that this string is confidential, while
isEncrypted means that this string is encrypted. In the
default constructor, both isConf and isEncrypted are
initialized to false. In the method encrypt(), the
attribute isEncrypted is set to true.

In the class Category, we give the definitions of two
logging functions as examples. For each logging function, an
invocation predicate call is defined, whose format is as
INVOKE <predicate-name> <params> [:
<exp>].� An� invocation� predicate� is true when
control is at the first executable statement in the
corresponding method and <exp> is true given the
parameters <params>. In the case of the predicate call,
the expression means the string to be logged is confidential
but not encrypted.

With these definitions, we can specify the expected
property. With the help of Bandera GUI, the property is
specified as Figure 3.

In the specification, the <quantification> element
defines universal class instance quantification, which means
the property is satisfied by all the instances of the specified
class. In this case, two quantified variables c and s are
defined for class Category and String, respectively.

<specificationOption>

<temporal>
<quantification>
<quantifiedVariable name="c" type="Category"/>
<quantifiedVariable name="s" type=“String"/>

</quantification>
<pattern scope="Globally" name="Absence"/>
<predicate name="P">
Category.errorT.call(c, s)
|| Category.warningT.call(c, s)

</predicate>
</temporal>

</specificationOption>

Figure 3: Property Specification for Secure Logging
The <pattern> element defines the temporal

specification pattern used. For more details about
specification patterns, please refer to [5]. In this case,
absence pattern is used, which means the argument is never
true in the execution. In the <pattern> element, the
attribute scope is used to specify pattern scope, which is
variation of basic pattern in which checking of the pattern is
enabled during specified regions of execution. In this case,
the pattern is held globally throughout the system’s
execution.

Finally, the predicate expression is defined. In this case,
it means methods errorT() or warningT() of class
Category is called with parameters satisfying previously
specified conditions.

void main () {
String secret = new String() ;

secret.isConf = true ;

ISsfProfile profile = new ISsfProfile() ;

/* secret.encrypt(profile) ; */

Category myCat = new Category() ;

myCat.warningT(secret);
}

Figure 4: Sample Program for Secure Logging

In the Bandera GUI, the property is also presented as

follows:
forall[c: Category].
forall[s: String]
{ Category.errorT.call(c, s)
||Category.warningT.call(c, s) }
is absent globally
With the auxiliary file and property specification, we can

check whether the expected property is held in a program
like the one depicted in Figure 4 using Bandera.

 This program is different from the real programs
developed by programmers. The main difference is that in
real programs, the class String does not have an attribute
named isConf. At the same time, we do not want to bother
the programmers by asking them to define a subclass of

383

String to introduce the isConf attribute. Our solution is
as follows:

• We ask the programmers to write a comment /*
confidential */ after each confidential string;

• We develop a pre-processor to add a statement like
“secret.isConf = true” for each
confidential string.

In this way, the burden of programmers is minimized,
and the pre-processed program is similar to the one in Figure
4 and could be processed by Bandera.

In a program, the confidential information could be
propagated by string construction using another string as
parameter, string assignment and string concatenation. In
order to deal with these cases, more definitions depicted in
Figure 5 need to be added into the auxiliary file.

public String(String str) {
isConf = str.isConf ;
isEncrypted = str.isEncrypted ;

}

public operator=(String str) {
isConf = str.isConf ;
isEncrypted = str.isEncrypted ;

}

Public String concat(String str) {
isConf = isConf || str.isConf ;

return this;
}

Figure 5: More Definitions for Secure Logging
In summary, when a program is developed, it is pre-

processed, and given to Bandera with the auxiliary file to
check whether the security guideline for secure logging is
followed.

IV. APPLICATION 2: SECURITY GUIDELINE ABOUT CROSS-
SITE SCRIPTING

Cross-Site Scripting (XSS) attacks may occur when a
web application accepts data originating from a user and
sends it to another user’s browser without first validating or
encoding it. For example, suppose an attacker embeds
malicious JavaScript code into his or her profile on a social
network web site. If the site fails to validate such input, the
JavaScript may execute malicious code in the browser of any
other user who visits the profile.

A. SAP Output Encoding Framework
In SAP NetWeaver Platform, the SAP Output Encoding

Framework could be used to prevent XSS attacks. This
applies when application developers generate HTML codes.
By encoding user supplied input before rendering it, any
inserted scripts are prevented from being transmitted to users
in executable form. The encoding functions implement the
corresponding sanitization routines.

In order to use SAP Output Encoding Framework to
prevent XSS attacks, the following four different cases need
to be distinguished.

Case 1: XSS attacks can occur when string from a user is
output between tags. For example, for a piece of HTML code
as follows,

<head>
 <title>[Case 1]</title>
</head>
a possible XSS attack could be in the following format,
<head>
 <title>
 <script>alert();</script>
 </title>
</head>
In this case, the following functions should be applied for

output encoding.
static String escapeToHTML
 (String input);
static String escapeToHTML
 (StringBuffer sb, String input,
 int maxLength);
static String escapeToHTML
 (String input, int maxLength);
Case 2: XSS attacks can occur when string from a user is

output inside tags, and the output is not a URL or style. In
this case, the following functions should be applied for
output encoding.

static String escapeToAttributeValue
 (String input);
static String escapeToAttributeValue
 (StringBuffer sb, String input,
 int maxLength);
static String escapeToAttributeValue
 (String input, int maxLength);

public class SampleServlet extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

// Use "request" to read incoming HTTP headers
(e.g. cookies) and HTML form data (e.g. data the user
entered and submitted)

String input = request.getParameter(“Input");

// Use "response" to specify the HTTP response
line and headers (e.g. specifying the content type,
setting cookies).

PrintWriter out = response.getWriter();

// Use "out" to send content to browser

// case 1
out.write("<td>");
// input = API.escapeToHTML(input);
out.write(input);
out.write("</td>");

// case 4
out.write("<script>“);
// input = API.escapeToJS(input);
out.write(input);
out.write("</script>");

}
}

Figure 6: Sample Program for XSS

384

class HttpServletRequest {
public HttpServletRequest() {
}

/**
* @observable
* RETURN from_input(this, String str): ($ret == str) ;
*/

public String getParameter(String field) {
String temp_str = new String() ;
return temp_str ;

}
}

class PrintWriter {
public PrintWriter() {
}

/**
* @observable
* INVOKE tag_begin(this, String str): (str == "<td>") ;
* INVOKE tag_end(this, String str): (str == "</td>") ;
* INVOKE js_begin(this, String str): (str == "<script>") ;
* INVOKE js_end(this, String str): (str == "</script>") ;
* INVOKE call(this, String str):
* ((str != "<td>“) && (str != "</td>") &&
* (str != "<script>") && (str != "</script>")) ;
*/

public void write(String str) {
}

}

class API {

/**
* @observable
* INVOKE call(this, String str);
*/

static String escapeToHTML(String str) {
String temp_str = new String() ;
return temp_str ;

}

/**
* @observable
* INVOKE call(this, String str);
*/

static String escapeToJS(String str) {
String temp_str = new String() ;
return temp_str ;

}
}

Figure 7: Auxiliary File for XSS

Case 3: XSS attacks can occur when string from a user is
output which is a URL or style. In this case, the following
functions should be applied for output encoding.

static String escapeToURL
 (String input);
static String escapeToURL
 (StringBuffer sb, String input,
 int maxLength);
static String escapeToURL
 (String input, int maxLength);
Case 4: XSS attacks can occur when string from a user is

output inside a SCRIPT context. In this case, the following
functions should be applied for output encoding.

static String escapeToJS
(String input);
static String escapeToJS
 (StringBuffer sb, String input,
 int maxLength);
static String escapeToJS
 (String input, int maxLength);
For more detailed information about the usage of SAP

Output Encoding Framework, please refer to [12]

B. Property Specification
In this case study, we are targeting at programs like the

one depicted in Figure 6. In this program, user input is
obtained from a variable request of class
HttpServletRequest, while output is written to a
variable out of class PrintWriter. In this case study, we
will focus on Case 1 and Case 4 mentioned previously. In the
program, the corresponding output encoding functions are
provided as comments. For the sake of simplicity, this

program is a constrained comparing with programs in reality.
For example, we don’t deal with output statements like:

out.write(“<td>” + input + “</td>”) ;
In order to check the sample program against expected

property, we need to develop an auxiliary file as depicted in
Figure 7.

In this auxiliary file, a return predicate from_input is
defined for function getParameter() of class
HttpServletRequest. This predicate is evaluated when
the control point is immediately after any of the
corresponding method’s return statements, and the Bandera
reserved identifier $ret refers to the return value of the
method.

For the method write() of class PrintWriter,
several invocation predicates are defined. Among them,
tag_begin() means the method is invocated to output the
beginning part of a tag, which is <td> in this paper for the
sake of simplicity, tag_end() means the method is
invocated to output the ending part of a tag. The predicates
js_begin() and js_end() are for SCRIPTS context.
The predicate call() means the method is invocated to
output some other string.

For the output encoding functions escapeToHTML()
and escapeToJS(), invocation predicates are also
defined to indicate that the functions are called to encode
some string.

Now, we try to specify the expected properties. In this
case study, we need several properties to specify the security
guideline completely.

The first property is specified as follows:
forall [request: HttpServletRequest].
forall [s: String].

385

forall [out: PrintWriter]
{ API.escapeToHTML.call(s)
 || API.escapeToJS.call(s) }
precedes
{ PrintWriter.write.call(out, s) }
after
{HttpServletRequest.getParameter.from_

input(request, s) }
This property uses the precedence pattern, which

informally means that a designated state/event always occurs
before the first occurrence of another designated state/event.
The scope of the property is after, which means the checking
is enabled after the first occurrence of a state/event. Thus in
summary, this property informally means that before a string
is output, it should be encoded using SAP output encoding
functions, and this check is only performed if this string is
obtained from user input.

The second property is specified as follows:
forall[tag_begin: String].
forall[s: String].
forall[tag_end: String].
forall[out: PrintWriter].
forall[js_begin: String]
{PrintWriter.write.call(out, s)
 && PrintWriter.write.tag_end
 (out, tag_end) }
responds to
{API.escapeToHTML.call(s)
 && PrintWriter.write.tag_begin
 (out, tag_begin) }
before
{PrintWriter.write.js_begin
 (out, js_begin) }
This property uses the response pattern, which informally

means that the occurrence of a designated state/event is
followed by another designated state/event in the execution.
The scope of the property is before, which means the
checking is enabled before the first occurrence of a
state/event. Thus in summary, this property informally
means that the output of the beginning part of a tag and the
output encoding using escapeToHTML() are followed by
the outputs of the encoded string and the ending part of a tag
before outputting the beginning part of a SCRIPT.

The third property is specified for SCRIPT context
similar to the second one as follows:

forall[js_end: String].
forall[s: String].
forall[js_begin: String].
forall[out: PrintWriter].
forall[tag_begin: String]
{PrintWriter.write.call(out, s)
 && PrintWriter.write.js_end
 (out, js_end) }
responds to
{API.escapeToJS.call(s)
 && PrintWriter.write.js_begin
 (out, js_begin) }
before
{PrintWriter.write.tag_begin

 (out, tag_begin) }
When all the properties are held, the application of the

security programming guideline is guaranteed. In summary,
in this case study, with the auxiliary file and expected
property specifications, we are able to check whether the
security guideline for XSS are followed or not without
additional effort from programmers.

V. RELATED WORK
Java PathFinder (JPF) [15] is another source code model

checking tool, which has been applied in several different
applications [1] [9] [10]. By default, it checks the following
“properties”: no deadlock, no assertion violation, and no
uncaught exceptions.

In order to specify more complex properties, such as
what we need in order to enforce security programming
guidelines, there are three ways in JPF:

• Use Java assertion inside the application under
analysis. The drawback is that the assertions will
widely spread all around the program. Thus, writing
the assertions can only be programmers’
responsibility. This is not realistic.

• The second way to specify properties is by using
gov.nasa.jpf.Property or
gov.nasa.jpf.GenericProperty instances
to encapsulate property checks. The user typically
creates an instance of such a class and provides an
implementation for its check() method which
does the main work for checking the property. The
check() method is evaluated after each transition.
If it returns false and termination has been
requested, the search process ends, and all violated
properties are printed (which potentially includes
error traces). The advantage is that the security
property checking part is just one class, which could
be provided by security experts. The disadvantage is
that the security experts need to work in the
programming level to deal with all the programming
details, rather than to work with temporal logic
only.

• The third way of specifying properties is through
the use of two listener classes:
gov.nasa.jpf.SearchListener and
gov.nasa.jpf.VMListener. The listeners
can subscribe to events during the search, making
JPF easily extensible. They can be used to
implement more complex checks that require more
information than what is available after a transition
is executed. The advantage and disadvantage are the
same as the previous option.

Although JPF previously supported LTL (Linear
Temporal Logic) checking, this feature is no longer
supported. Based on these observations, we use Bandera
rather than JPF.

There are also some other source code model checkers
which could be mentioned. Scott Stoller [13] has developed

386

a stateless checker for multi-threaded distributed Java
programs. The basic technology used is an extension of
Godefroid’s Verisoft approach [6]. In [10], a tool is
developed that translates Java into SAL (Symbolic Analysis
Laboratory), an intermediate language designed to interface
with several model-checking and theorem-proving tools.
Eran Yahav has developed a tool for checking safety
properties of Java programs [17] built on top of three-valued
logic analysis tool TVLA.

There are much works on performing source code
analysis to identify vulnerabilities related to XSS attack.
Among these works, [14] and [16] are relatively recent ones.

VI. CONCLUSION
In this paper we present how to use Bandera

Specification Language to describe security programming
guidelines as temporal logic properties by two case studies.
This effort is the first step of using Java source code model
checker Bandera to check whether security programming
guidelines are followed and consequently whether the
corresponding security vulnerabilities exist.

 In addition to the benefits brought by model checking,
the additional effort of programmer is little in our approach.
In both case studies, all the auxiliary files and property
specifications are specified by security and formalism
experts and could be applied across projects in the
development organization. For each specific secure
programming guideline, the security and formalism experts
need to specify specific temporal logic properties
accordingly. The scalability of this approach consists in that
once the expected properties are specified, they could be
used to check programs across the whole development
organization without any additional effort of developers.

Currently, the properties in the two case studies are
specified in Bandera version 0.3. Since Bandera 0.3 is a
prototype, and our properties are more complex than the
ones used to present the idea of Bandera, these properties
have not been used to check real programs. Performing
model checking itself and collecting related performance
data are the next steps.

As a future work, we want to remove some constrains
used in this paper to improve the applicability of the
techniques developed in this paper, and to extend the
techniques to check other security programming guidelines.

The temporal property checking is supported in Bandera
version 0.3. In Bandera 1.0, there is an architectural change,
and temporal logic property checking is removed. Another
direction of our future work is to see whether we can
transport what we have done in Bandera 0.3 to some other
Java source code model checkers.

REFERENCES
[1] G. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg, K.

Havelund, M. Lowry, C. Pasareanu, A. Venet, R. Washington and W.
Visser, “Experimental Evaluation of Verification and Validation
Tools on Martian Rover Software,” Formal Methods in Systems
Design Journal, Volume 25, Number 2-3, September 2004

[2] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: a
new model checker,” International Journals on Software Tools for
Technology Transfer, Springer, Vol. 2, No. 4, March 2000, pp. 410-
425.

[3] J. Corbett, M. Dwyer, J. Hatcliff, and Robby, “Expressing checkable
properties of dynamic systems: the Bandera specification language,”
International Journals on Software Tools for Technology Transfer,
Springer, Vol. 4, No. 1, October 2002, pp. 1433-2779.

[4] C. Demartini, R. Iosif, and R. Sisto, “dSPIN: a dynamic extension of
SPIN,” Proceedings of the 5th and 6th International SPIN Workshops
on Theoretical and Practical Aspects of SPIN Model Checking,
LNCS, Vol. 1680, Springer-Verlag, 1999, pp. 261–276.

[5] M. Dwyer, G. Avrunin, and J. Corbett, “Patterns in property
specifications for finite-state verification,” Proceedings of the 21st
International Conference on Software Engineering, May 1999.

[6] P. Godefroid, “Model-checking for Programming Languages using
Verisoft,” POPL’97, January 1997, pp. 174-186.

[7] J. Hatcliff and M. Dwyer, “Using the Bandera tool set to model-check
properties of concurrent Java software,” Proceedings of the 12th
International Conference on Concurrency Theory, LNCS, Vol. 2154,
Springer-Verlag, 2001, pp. 39–58.

[8] G. Holzmann, “The model checker SPIN,” IEEE Transactions on
Software Engineering, Vol. 23, No. 5, May 1997, pp. 279-294.

[9] G. Lindstrom, P. Mehlitz and W. Visser, “Model Checking Real Time
Java Using JavaPathfinder,” Proceedings of the Third International
Symposium on Automated Technology for Verification and Analysis
(ATVA), October 2005

[10] D. Park, U. Stern, J. Skakkebaek, and D. Dill, “Java Model
Checking,” Proceedings of the First International Workshop on
Automated Program Analysis, Testing and Verification, June 2000.

[11] J. Penix, W. Visser. S. Park, C. Pasareanu, E. Engstrom, A. Larson
and N. Weininger, “Verifying Time Partitioning in the DEOS
Scheduling Kernel,” Formal Methods in Systems Design Journal,
Volume 26, Number 2, March 2005.

[12] Sap netweaver 7.0 knowledge center, URL:
http://help.sap.com/content/documentation/netweaver/docu_nw_70_d
esign.htm.

[13] S. Stoller, “Model-checking multi-threaded distributed Java
programs,” Proceedings of Seventh International SPIN Workshop,
LNCS 1885, Springer-Verlag, 2000, pp. 224-244.

[14] O. Tripp, M. Pistoia, S. Fink, S. Sridharan, and O. Weisman, “TAJ,
Effective Taint Analysis for Web Applications,” PLDI’09, ACM
SIGPLAN Notes, Vol. 44, No. 6, June 2009, pp. 87-97.

[15] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model
checking programs,” Automated Software Engineering, Vol. 10, No.
2, Kluwer Academic Publishers, April 2003, pp. 203-232.

[16] G. Wassermann and Z. Su, “Static Detection of Cross-Site Scripting
Vulnerabilities,” ICSE 2008, May 2008, pp. 171-180.

[17] E. Yahav, “Verifying Safety Properties of Concurrent Java Programs
using 3-valued Logic,” POPL’01, January 2001, pp. 27-40.

387

