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Abstract

To guarantee the security of computer systems, it is nec-
essary to define security permissions to restrict the access
to the systems’ resources. These permissions rely on certain
restrictions based on the workflows the system is designed
for. It is not always easy to see if workflows and the de-
sign of the security permissions for the system fit together.
We address this problem using an approach which embeds
security permissions in UML models and supports model-
based security analysis by providing consistency checks.
The presented formal framework also prepares the ground
for an automated analysis of underlying protocols for man-
aging security-critical permissions, for example with the
help of first-order logic theorem proving. We explain how
the models can be securely implemented in a language such
as Java.

1 Introduction

Since IT systems become more and more interconnected,
they also become exposed to an increasing number of at-
tacks. In order to develop high quality systems, it is there-
fore important to consider security aspects in the software
development process. Security is a complex non-functional
requirement which can only be guaranteed by the interac-
tion of many parts in a system. Leaving security aspects to
late stages and not considering them systematically makes
their integration extremely difficult and increases the poten-
tial for the final product to contain vulnerabilities.

A commonly used security concept is permission-based
access control, i.e. associating entities (e.g., users or ob-
jects) in a system with permissions and allowing an entity
to perform a certain action on another entity only if it owns
the necessary permissions. Designing and enforcing a cor-
rect permission-based access control policy (with respect to
the general security requirements) is very hard, especially

because of the complex interplay between the system enti-
ties. This is aggravated by the fact that permissions can also
be delegated to other objects for actions to be performed on
the delegating object’s behalf.

In this paper, we present an approach for the integra-
tion of permissions into early design models, in particu-
lar for object-oriented design using the UML. We both de-
scribe static modelling aspects, where we introduce owned
and required permissions and capabilities for their delega-
tion into class diagrams, and dynamic modelling aspects.
Dynamic modelling aspects are characterized by the use
and delegation of permissions within an interaction of the
system objects, modelled as a sequence diagram. To gain
confidence in the correctness of the permission-based ac-
cess control policy, we define checks for the consistency of
the permission-related aspects within the static and dynamic
models and between these models. The formal framework
presented here prepares the ground for making use of tool-
support such as presented in [7] for these checks using a
translation from the UML models to the input notation of a
first-order predicate logic automated theorem prover, based
on a formal semantics for the used UML diagrams.

We focus on basic consistency checks that are well au-
tomatable and allow to quickly detect errors in the models.
To achieve a highly trustworthy system, further analyses of
the complex properties involved by the defined permissions
are required, such as the analysis of the correctness of au-
thorization chains. This is not in scope of the current pa-
per. Besides, we assume that an object-oriented design and
a set of appropriate permissions have already been deter-
mined. Methodologies for their elaboration are similarly
out of scope of this paper.

For the implementation, we show a way to transfer
permissions using cryptographic certificates and provide a
formal analysis. We also address the realization of the
specified permission-based access control policy in a con-
crete object oriented programming language like Java. We
demonstrate our approach at the example of a model of an
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instant message service.
Our long-term goal is to make formal techniques appli-

cable in the context of industrial software development and
thus try to unify the three approaches to software develop-
ment (formal specifications, automated analysis, and UML
models), a challenge discussed for example in [11]. This
was motivated by a study which showed that formal meth-
ods adoption is still limited [1].

In the next section, we will give the necessary back-
ground on permission-based security in object-oriented sys-
tems. In Section 3, the above described aspects will be mod-
elled in UML. Section 4 addresses consistency checks of
the UML model, whereas Section 5 deals with security as-
pects of the model in an abstract way. The integration of the
modelled concepts into a concrete programming language
like Java is described in Section 6. We end with references
to related work (Section 7) and conclude in Section 8.

2 Permission-based security in OO systems

Objects in object-oriented systems usually interact with
each other in the following way: one object becomes an
actor and performs an action on another (passive) object.
The passive object is changed or activated by these actions.
Activation means that the entity will also become an actor
in order to perform actions on other entities.

In security-critical systems, it is crucial to have control
over the execution of the actions. For this purpose, the exe-
cution of the actions is controlled by permissions. An actor
is only allowed to initiate actions on certain objects if he
owns the associated permissions.

In the context of such a model, we denote objects
which own or define permissions as permission-secured ob-
jects. Permission-secured objects are the smallest entities
on which permissions can be defined. Not every object in
a system must be a permission-secured object. The permis-
sions are attached to the actions that can be performed on
an object. It is possible to define several permissions, which
must all be owned for performing an action. In the follow-
ing, we write the names of objects, classes and methods
in italics, and denote permissions and corresponding model
annotations in sansserif.

As an example, we consider a simple file. There is the
permission-secured object file. The file defines two pro-
tected actions: read, which is protected by the permission
read, and write, protected by the permission write and the
permission read. These permissions are valid for the whole
file object. We assume the protection of lower levels like
lines or characters is not possible.

There are two types of owning permissions: there are
permissions which are defined statically, but there is also
the possibility to delegate permissions to other objects. Del-
egation is necessary to enable an activated object to fulfil the

jobs an actor has given to it, but where the activated object
itself does not have the necessary rights.

In this case, it should be possible for the delegate to act
in the name of the actor. For this purpose, it is necessary to
restrict the given permissions to the ones actually needed, to
limit security risks. It is also necessary that it is always rec-
ognizable that the delegate acts in commission. Therefore
re-delegation of permissions to other objects is an important
issue. It is possible that the delegating object does not know
the final delegate at delegation time.

An example for a re-delegation is the use of an account
statement printer. The account owner wants to get his ac-
count statement and initiates the process. As he is not able
to enquire the banking host system himself, he charges the
account statement printer with doing this. Therefore, he
gives the permission for reading the account information to
the machine, in order for it to get the information on behalf
of the account owner.

As we regard this example in more detail, it turns out
that it is suitable to restrict this authorization because of two
aspects:

• The printer should be able to make use of the autho-
rization only once. If it is possible to use the authoriza-
tion more than once, the printer can print the owner’s
account balance to every other customer.

• There should be a timeout, after which the authoriza-
tion expires. If there is no timeout, it is possible that
the printer makes use of the authorization after the cus-
tomer has left the bank.

3 Security permissions in UML

To model the permission-based security aspects of a sys-
tem, we must identify the permission-secured objects. The
smallest entities on which actions may be executed are the
objects. Thus, every object that is defined in a system may
be a permission-secured object.

The next step is to define the protected actions. The usual
way to change an object’s state from the outside is to invoke
a corresponding method. So it is necessary to treat method
invocations as security-critical actions and thus to protect
methods by permissions.

Another way of changing an object’s state is to read or
write public attributes directly. Although public attributes
are not a good way of object design, reading and writing
them must also be regarded as an action. While it is pos-
sible to restrict access to public variables at the modelling
level of a system, it is not possible to do so in common ob-
ject oriented programming languages. The best way to cope
with this problem is to use only private variables in combi-
nation with get and set methods.

2
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Let us reconsider the file system example. In this case,
we can model two objects: a file object and a line object,
where the file object is an aggregation of many line objects.
The only way to access the line objects is to use the methods
of the corresponding file object. The methods of the file
object are protected by permissions, whereas the methods
the line object places at the file object’s disposal are not.
As these methods are only available to the file object, it is
not necessary to make the line object a permission-secured
object.

In a first step, we will look at the static description of the
permissions in an system model. After that, we describe the
permission-related aspects of the dynamic interaction of the
system regarding the activities the system is designed for.

Static definitions First, we describe the static aspects of
an integration of permission-based security into UML mod-
els. For this purpose, we consider class diagrams and deal
with the following questions:

• Which classes define permission-secured objects?

• Which permissions will be assigned to these objects at
instantiation time? These permissions are the same for
all objects instantiated from the same class.

• Which methods (and public attributes) will be pro-
tected by permissions?

• What kinds of permissions are these?

• Which of the assigned permissions may be delegated?
How can one define to which type of objects they may
be delegated?

First of all, the permission-secured objects are identified
by marking classes that define or own permission objects
with the stereotype «permission-secured».

If an object owns certain permissions on other objects
at instantiation time, this is also stated at this place. A
tagged value is associated with the «permission-secured»
stereotype consisting of a list of tuples structured as follows:
{permission = [(class , permission)]}. The first parameter
of the tuple indicates the class on which the permission is
valid. The second parameter names the permission.

Methods and public attributes to which access
is restricted are marked with the stereotype «per-
mission check» and an associated tagged value
containing the list of permissions needed for access
({permission = [permission]}). This list is only a simple
list naming the permissions. The association to classes is
given by the class implementing the method or containing
the attribute.

To allow objects of certain classes classified as reli-
able unrestricted access to particular methods and pub-
lic variables, it is possible to associate a second tag to

the stereotype «permission_check». The tagged value
{no_permission_needed = [class ]} indicates that objects
of the named classes need no permissions for access.

Although delegation is a dynamic process, which comes
into effect at execution time, at this point of view it is of in-
terest which permissions can be delegated at all, and if so, to
which class of objects these permissions may be delegated.

Classes that can delegate at least some
of their permissions have the following tag:
{delegation = [(class , permission, role/class)]}. The
first two parameters name the permission which is del-
egated together with the class it belongs to. The third
parameter names the class to which the permission can be
delegated.

The last aspect to be regarded in the static class defini-
tion is inheritance. Definitions belonging to the modelling
of permissions are inherited in the same way as all other def-
initions are inherited. Redefining a method or an attribute
makes it necessary to also redefine the stereotypes and tags
for permission modelling.

Now let us describe the example of the Instant Messag-
ing Service which will be used to illustrate the definitions
in the remainder of this paper.

The class diagram in Figure 1 shows the Subscription-
Client and the InstantMessenger on the client side, which
define permission-secured objects. The class Subscription-
Client contains the permission subscribe on objects of class
SubscriptionServer and the permission receive on objects
of class InstantMessenger. In the model, this is reflected
by the tagged value {permission=[(SubscriptionServer,
subscribe),(InstantMessenger, receive)]}. The latter per-
mission is marked for delegation to objects of class For-
warder. This is defined by the tag {delegation =
[(InstantMessenger, receive, [Forwarder])]}.

On the server side, there are the classes Subscription-
Server and Forwarder. The class SubscriptionServer gets
the permission forward on objects of class Forwarder. The
access to the method subscribe() is guarded by the permis-
sion subscribe. This is stated by the stereotype «permis-
sion_check» and the tag {permission = [subscribe]}. For
calling the method checkLogin(), the possession of the per-
mission checkLogin is necessary.

The class Forwarder defines the method forward(msg,
receiver), which is guarded by the permission forward.

Dynamic definitions In this section, the point of view on
the system changes to the modelling of interactions between
the objects instantiated from the classes defined above. For
that purpose, we identify and model workflows.

For workflow modelling in UML, activity diagrams are
used, where activities are assigned to the objects. It is pos-
sible to depict the interaction of several objects solving one
problem regarding the causal and temporal dependencies.

3
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For the description of used and needed permissions,we
often need more detailed information than activity diagrams
can offer. The main problem arises from the possibility to
combine a number of single actions into one activity, which
is connected with a number of objects. For coping with
permissions in an automated way, you need to identify the
objects communicating with each other clearly. This means
that for every single action we must be able to name the
sender and the receiver to coordinate the necessary permis-
sions. This information easily gets lost when aggregating
actions to activities. For this reason it is only possible to use
activity diagrams to catch the workflow whereas for further
use the workflow must be converted to a sequence diagram.
In a sequence diagram you can identify caller and callee in
every single step of communication, which allows to assign
the permissions to the sent messages.

For refinement of the workflow, a sequence diagram is
created, allowing to specify the connection between permis-
sions and messages by regarding the exchange of messages
between objects.

In a first step, we define which of the objects are
permission-secured objects, using the same stereotype
«permission-secured» as in the class diagram. To this
stereotype, we attach the permissions the object owns
on other objects, utilizing tagged values. These tags
are defined the same way as in the class diagrams, by
{permission = [(object , permission)]}. In contrast to the
class diagram, here the first parameter of the tuple means
no longer a class but a concrete object on which the
permission is valid. Additionally, the ability for dele-

{permission = [(SubscriptionServer, subscribe), 
(InstantMessenger, receive)]}

{delegation = [(InstantMessenger, receive, 
[Forwarder])]}

<<permission>>
SubscriptionClient

<<permission>>
InstantMessenger

+receive(msg)
<<permission_check>>
{permission = [receive]}

{permission = [(Forwarder, 
forward)]}

{delegation = [(Forwarder, forward, 
InstantMessenger)]}

<<permission>>
SubscriptionServer

+subscribe()
<<permission_check>>
{permission = [subscribe]}

+checkLogin()
<<permission_check>>
{permission = [checkLogin]}

<<permission>>
Forwarder

+forward(msg, receiver)
<<permission_check>>
{permission = [forward]}

{permission = [(SubscriptionServer, 
checkLogin)]}

Figure 1. Class diagram for instant messager

gation of certain permissions is stated by a tag as well
({delegation = [(object , permission, role/class)]}).

Permissions which are needed for executing a method –
or in other words for sending a message successfully – are
attached directly to the message which is to be protected by
these permissions. To signalize that a message is protected
by permissions, the message is marked with the stereotype
«permission_check», where the permissions are named as
tagged values ({permission = [permission]}).

The delegation is performed by emitting and passing on
certificates, which are formally defined as 7-tuples

certificate = (e, d, c, o, p, x, s)

with emittent e, delegate d, class c of the delegate, object
o, permission p which is valid on o, expiration timestamp x
and sequence number s.

A certificate contains the following information:

• Who is delegating a permission? The emittent e is
named in the certificate; he is signing the certificate.

• To whom is the permission to be delegated? For the
definition of the delegate, there are two possibilities,
depending on the relation between emittent and del-
egate. If the emittent knows the delegate at emission
time of the certificate, he can name him explicitly (field
d in the certificate). Otherwise, he can name the class
c the delegate must be an instance of to make use of
this certificate. In this case, d has the value null. In our
example, the emittent never knows the delegate, thus
the latter (more general) type of certificate is used.

• Which permission is to be delegated? The permission
to be delegated is defined by two parameters: the per-
mission p and the object o on which this permission is
valid.

• For how long is the permission to be delegated? As it
is not possible to define a contiguous time in sequence
diagrams, it is also not possible to make temporal re-
strictions on the validity of certificates. Time will be
approximated by the number of messages to be sent,
starting at zero with the first message. If a certificate is
valid unrestrictedly, this parameter is set to -1.

• What about the sequence number? The sequence num-
ber s is contained in the certificate to avoid that it is
used several times. The sequence number of certifi-
cates which are defined by the same parameter values
must differ. It is also necessary that the number is the
same if a certificate is passed along several objects. For
defining a certificate which might be used more than
once, this parameter is to be set to -1.

4
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In the sequence diagram, messages where permission
certificates are sent are marked by the stereotype «certifica-
tion», where a 7-tuple representing a certificate is directly
attached as a tagged value. The parameters of this tag cor-
respond to the definition above.

Back to the example of the Instant Messaging Service.
First of all, in the sequence diagrams in Figure 2 and
Figure 3 the instances of the objects are visible with their
definitions for permissions and delegation.

In Figure 2, it is shown how the SubSender object tries
to log on at the authentication server SubS, by sending the
message subscribe(). As this method expects the permis-
sion subscribe, the stereotype «permission_check» and
the tag {permission = [subscribe]} are attached to this mes-
sage.

The second message is a confirmation containing a per-
mission certificate for further communication. The certifi-
cate is emitted for an object of class InstantMessenger and
contains the permission forward on the Forwarder object
ForS.

In the next step, SubSender initializes the InstantMessen-
ger object Sender and sends the certificate to it for further
communication.

The rest of the communication now takes place directly
between Sender and ForS. Whenever Sender has to send a
message to other InstantMessenger objects, he does so by
calling the method forward() on ForS, for which he needs
the permission forward, delegated by SubS.

Although the SubReceiver receives no certificate from
SubS, the scenario on the receiver side is similar (cf.
Figure 3). Here, SubReceiver delegates to SubS his permis-
sion receive restricted to objects of type Forwarder. Later,
this permission certificate will be passed to the Forwarder
object ForS, after it has been checked whether SubReceiver
has logged on or not. With this permission, ForS can pass
a message to the Receiver object by calling the method re-
ceive().

4 Checking the UML model

Consistency between class and sequence diagrams As
class diagrams and sequence diagrams are linked very
closely to each other regarding the security permissions, it is
necessary to check the consistency of the definitions made
in these two diagrams.

In the class diagram, classes are assigned permissions
on other classes. The definitions made there have to cor-
respond to the definitions of the objects instantiated out of
these class definitions. This means that objects must not
have been assigned definitions that are not contained in the
corresponding class definition. It is only admissible to de-
fine less permissions in the sequence diagram than in the
class diagram.

The definitions for delegation are treated in a similar
way, with some restrictions. In the sequence diagram, only
permissions can be delegated for which this possibility is
defined in the class diagram. Besides that, it is neces-
sary that the permission which is to be delegated is present,
which means that it is not only defined in the class defini-
tion, but also in the object definition.

The next thing to check is the definition of methods. The
permissions needed to execute a single method are defined
in the class diagram. It is necessary that these definitions
fit the definitions of the sequence diagrams. The method
calls are defined as messages there. Attached to these mes-
sages are the permissions which are necessary to force the
receiver to execute the message in the desired way. There-
fore, it is necessary that these permissions are consistent
with the ones defined in the receiver’s class definition.

Dynamic checking of the sequence diagram Are all per-
missions assigned in a system in a way that the processes
modeled in the sequence diagram can be completed? This
is the next question to solve. If an object should be able
to send a message, it must own all permissions necessary
for that action. Permissions which are assigned statically
are not a problem (addressed by the consistency checks de-
scribed above), but permissions assigned dynamically by
delegation are:

• A permission certificate must be received before it can
be used, which means both using the permission in-
cluded in the certificate and passing on the certificate
to other objects.

• The emittent of a certificate must be able to create the
certificate. This means that he must own the permis-
sion statically and the permission must be released for
delegation.

• A certificate must be valid at time of use. The loss of
validity will be defined by a time stamp in the certifi-
cate.

• A certificate which is defined for being used only once
looses validity by being used, so no object can use it
again.

In the sequence diagram for the instant messaging ser-
vice in Figure 2 you can see that the object Sender calls the
method forward() of ForS where the permission forward is
needed. As the object Sender does not own this permission,
it is delegated by a certificate which is passed on by the
message create():

{certificate = (SubS , null,ForS , forward,

InstantMessenger ,−1,−1)}

5
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<< permission-secured >>
SubSender::SubscriptionClient

<< permission-secured >>
SubS:: SubscriptionServer

{permission = [(SubS, subscribe), 
(Sender, receive)]}

{delegation = [(Sender, receive, [Forwarder])]}
{permission = [(ForS, forward)]}
{delegation = [(ForS, forward, InstantMessenger)]}

subscribe()
<<permission_check>>   {permission = [subscribe]}

subscriptionConfirmation
<<certification>>  
{certificate = (SubS, null, ForS, forward, InstantMessenger, -1,-1)}

<< permission-secured >>
Sender::InstantMessenger

create
<<certification>>  
{certificate = (SubS, null,
ForS, forward, 
InstantMessenger, -1,-1)}

<< permission-secured >>
ForS::Forwarder

{permission = [(SubS, checkLogin)]}

Forward(Message, receiver)
<<permission_check>> 
{permission = [forward]}

checkLogin(Sender)
<<permission_check>> 
{permission = [forward]}

true
<<certification>>  
{certificate = (SubSender, null,
Receiver, receive, Forwarder, -
1,-1)}

receive
<<permission_check>> 
{permission = [receive]}

true

checkLogin(Receiver)
<<permission_check>> 
{permission = [forward]}

to
receiver

Figure 2. Sequence diagram for the instant messaging service (sender)

Because of lack of this permission, SubSender, the sender of
this message, cannot create this certificate but must receive
it from SubS by the message subscriptionConfirmation().
SubS owns the permission and is able to delegate it. You
can see this by the tags assigned to this object:
{permission = [(ForS , forward)]}
{delegate = [(ForS , forward, InstantMessenger)]}

The period of validity has not been considered in this
example, because no time stamp is available. Also, the cer-
tificates may be used more than once.

Within our tool support, the dynamic checking is carried
out by translating the sequence diagrams to Prolog.

5 Modelling permissions on an abstract level

A permission is a message consisting of permission and
identifier (of the object the permission is valid on). The ob-
ject owning the permission will be specified by appending
the object’s public key. Therefore it is impossible for any
other object to use this permission. A certificate is defined
as a triple consisting of the identifier followed by the per-
mission and the public key of the user of the certificate.

For signing the permissions, there is an trusted instance
in the system called security authority (SA). This instance
releases all permissions and passes them on to the objects
at their instantiation time. It is not possible to change the
definition of a permission once signed by this authority.

Thus, a certificate defining a permission will be formally
defined as follows:
Sign(identifier::permission::Klegitimate,KSA

−1 ).
To enable the delegation of permissions, passing on the

permission is not enough. The delegating object must issue
a certificate containing the permission and restrictions for
its use. In addition, the certificate contains the public key
of the owner of the permission. This allows other objects to
prove that this object originally was the owner of the per-
mission. The certificate is signed with the private key of the
permission’s owner:

Sign(K legitimate :: Sign(identifier :: permission ::

Klegitimate ,K−1
SA ):: [properties ],K−1

legitimate)

Making use of a delegated permission is only allowed
for objects which are implementing the properties of the
properties-list.

The next thing to cope with is the question of the secu-
rity of these definitions. One possible scenario of an attack
is that an intruder listens to the messages sent between the
objects (man-in-the-middle-attack). So the communication
underlies the following threats:

• The intruder gets rid of all messages sent between ob-
jects. He can save them for analyzing and further use.

• Messages can be deleted by the intruder, so that the
receiver is not able to get a specific message.

6

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05) 

0-7695-2284-X/05 $20.00 © 2005 IEEE



<<permission-secured>>
SubReceiver::SubscriptionClient

<< permission-secured >>
SubS:: SubscriptionServer

{permission = [(SubS, subscribe), 
(Receiver, receive)]}

{delegation = [(Receiver, receive, [Forwarder])]}
{permission = [(ForS, forward)]}
{delegation = [(ForS, forward, [InstantMessenger)]}

subscribe()
<<permission_check>>   {permission = [subscribe]}
<<certification>>  
{certificate = (SubReceiver, null, Receiver, receive, Forwarder, -1, -1)}

subscriptionConfirmation

<< permission-secured >>
Receiver::InstantMessenger

create << permission-secured >>
ForS::Forwarder

{permission = [(SubS, checkLogin)]}

checkLogin(Receiver)
<< permission-secured >> 
{permission = [forward]}

true
<<certification>>  
{certificate = (SubReceiver, null,
Receiver, receive, Forwarder, -1, 
-1)}

checkLogin(Sender)
<<permission-secured >> 
{permission = [forward]}

true

receive
<<permission_check>> 
{permission = [receive]}

from 
Sender

Figure 3. Sequence diagram for the instant messaging service (receiver)

• The intruder is able to insert messages into the com-
munication between objects.

• By combination of these threats, the intruder is able to
manipulate messages.

As usual, one makes use of cryptography to try to avoid
such attacks by encrypting messages. In the case of secu-
rity permissions it must be ensured that only the legitimate
object is able to make use of a permission. Although by
the definition of permissions it is guaranteed that only legit-
imate objects are able to create certificates for granting per-
missions, it is possible for intruders to obtain such a certifi-
cate in order to use the included permission. This threat can
only be avoided by using an additional encryption mecha-
nism for transmitting these certificates.

We address this problem by enhancing the UML model
by cryptographic functions given in Table 1 for producing a
protocol for secure communication between the objects fol-
lowing [6]. The security check for this protocol is done au-
tomatically using the first-order predicate logic automated
theorem prover e-Setheo. For this, the protocol is converted
into predicates in the TPTP-syntax following the formal se-
mantics for UML given in [6].

We explain the modelling of such a protocol by the ex-
ample of the instant messaging service. For simplification,
only the communication between sender and server will be

regarded. In the communication with the receiver, it is
assumed that the Forwarder ForS obtained the permission
receive on the receiver-object before using it.

In Figure 4, the corresponding sequence diagram is
shown. The notation for cryptographic expressions used
in this diagram is given in Table 1. For better readability,
the messages contain names of functions (such as subscribe
or conf), indicating their purpose. On the receiving side,
the components of the received messages are referred to by
A_1, A_2 and A_3 (parameters of the subscribe message),
respectively by B_i, C_i, and D_i (parameters of the mes-
sages conf, init and forward). Note that the protocol in Fig-
ure 4 is only considered as an example to demonstrate our
approach, not necessarily as an optimal solution for the sit-
uation at hand.

As specified in Figure 4, the object SubSender con-
nects to the server SubS and delivers the necessary cer-
tificate sign(conc(conc(SubS,subscribe),KSC),inv(KSA)) to
the Server, which was signed by the security authority with
key inv(KSA). It is encrypted with the public key KSub

of SubS to ensure that only SubS can access the message.
When SubS gets the message, it checks the permission and
the certification of the public key. If the check is successful,
a confirmation is sent back to SubSender that contains a per-
mission certificate allowing an object of class InstantMes-
senger to send messages to the Forwarder ForS. This cer-
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<< permission-secured >>

SubSender::SubscriptionClient
<< permission-secured >>

SubS:: SubscriptionServer

KSC, KSC
-1

subscribe(enc(sign((sub::subscribe)::k_sc, inv(k_sa)), k_sub), k_sc, sign( k_sc, inv(k_ca))) 

conf(enc(sign(conc(sign(for::forward)::k_sub, inv(k_sa)), instantmessenger), inv(k_sub)), A_2 ))

<< permission-secured >>

Sender::InstantMessenger
init(enc(sign(sign( B_DATA_1, inv(k_sa) ):: 
instantmessenger , inv(k_sub) )  , k_snd)

<< permission-secured >>

ForS::Forwarder

forward(enc( sign(sign( C_DATA_1,
inv(k_sa)::instantmessenger, inv(k_sub) ) , k_for)), 
sign(k_snd::instantmessenger, inv(k_ca)), k_snd, sign(k_snd,
inv(k_ca)),message)

KSub, KSub
-1

KCA, KCA
-1 keys of the certification authority

KSA, KSA
-1 keys of the security authority

KSnd, KSnd
-1 KFor, KFor

-1

[fst( fst( ext( dec( A_1, inv(k_sub) ), k_sa)))= sub ∧
snd( fst( ext( dec( A_1, inv(k_sub) ), k_sa)))= subscribe  ∧

snd( ext( dec( A_1, inv(k_sub) ), k_sa ))= A_2 ∧
fst( ext( A_3, k_ca))= A_2  ]

[B_DATA_1 = ext( fst( ext( dec( B_1, inv(k_sc) ), k_sub ) ), k_sa) ∧
B_DATA_1= O::P::K ∧
snd(ext(dec( B_1,inv(k_sc)), k_sub))=instantmessenger ]

[dec( C_1, inv(k_snd)) = sign(sign(C_DATA_1,
inv(k_sa))::instantmessenger, inv(k_sub))]

fst( ext( fst( ext( dec( D_1, inv(k_for)), k_sub)), k_sa))= fors::forward ∧
snd( ext( dec( D_1, inv(k_for)), k_sub))= snd( ext(D_2, k_ca)∧

fst( ext( D_2, k_ca) )= D_3 ∧
ext( D_4, k_ca ) = D_3 ]

receive(enc(sign(sign(receiver::receive)::k_for, inv(k_sa)), inv(k_for)), k_rec), D_5) 

Figure 4. Security protocol

tificate consists of the following parameters:

• the permission, signed by the security authority,

• the name of the class InstantMessenger, so that only
objects of that class are able to use the permission.

For a secure transmission, the certificate is encrypted
with the public key KSC of SubSender.

SubSender analyzes the message. It expects a permis-
sion and a restriction to the class InstantMessenger. If the
certificate fulfills these conditions, the object Sender is ini-
tialized. For transmission, the certificate is encrypted with
the public key KSnd of Sender.

The Sender object uses this permission certificate to
send a message to ForS in order to transmit it to Receiver.
For transmission, the certificate to ForS is signed with
inv(KSnd ) and encrypted afterwards with KFor , the public
key of ForS. The kind of class is also attested using a cer-
tificate emitted by the certification authority. This certificate
will be attached to the message.

ForS checks the contained permission conc(ForS, for-
ward), and whether the sender of the message identified
itself as an object of class InstantMessenger, by compar-
ing the declaration in the certificate to the certificate of the
certification authority. If these checks are successful, the
message is passed on to the Receiver.

6 Integration in Java

We now explain how this permission model can be re-
alized in a concrete object oriented programming language
such as Java.

Java 2 contains a mechanism to model a security system.
With Guarded-, Sealed- and SignedObjects, Java allows to
guard, encrypt and sign objects. To deal with security per-
missions, the GuardedObject is used. In this chapter, the
underlying mechanisms are presented, following [4].

The GuardedObject encapsulates the object which
should be secured. A guard defines a set of permissions,
which are necessary for accessing the object.

To get access to the encapsulated Object, the requesting
object calls the method getObject() of the GuardedObject.
In a second step, it is checked if the accessing object owns
the permissions defined by the GuardObject. If it does, the
method returns the reference of the encapsulated Object.
The requesting object can now call any method on this ob-
ject by using this reference (see Figure 5).

The Guard normally checks the permissions by using the
Java AccessController. This object reads the class of which
the requesting object is an instance off the execution stack.
The classes are linked to their code sources and protection
domains, to which the permissions are also assigned. This
means in particular that all objects of the same class own the
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same permissions. For permissions assigned at instantiation
time this is certainly right, but if one wants to allow the
delegation of permissions at run-time (as in our approach),
this may lead to different sets of permissions for objects of
the same class.

For this reason, it is necessary to enhance this method of
permission checking. For delegating permissions dynami-
cally, it is necessary that every object manages the certifi-
cates it received for delegation on its own. If such per-
missions should be considered, they must be given to the
GuardedObject as a parameter when invoking the method
getObject(). The Guard must thus be enhanced that it not
only checks the static permissions but also the permissions
contained in the certificates.

It must be ensured that an object cannot use “foreign”
certificates to get access to another object. For that reason,
the object references that the getObject() method produces
may be secured by an asymmetric key.

If there is a permission to be delegated to a certain class,
the relevant instance of the class will be referenced in the
certificate. For checking that the caller’s class and the
named class in the certificate coincide, the caller’s class is
read from the execution stack. If there is at least one cer-
tificate which is emitted for a specific object, a reference to
this object must be saved in the certificate. To check the

Table 1. Notation for cryptographic expres-
sions

inv(k) Inverse key of k; a message,
encrypted with key k can be
decrypted by inv(k).

sign(E,inv(k)) The message E is signed with the
inverse key inv(k).

enc(E,k) The message E is encrypted with
the key k.

conc(E1,E2) A message consists of two
concatenated single messages E1
and E2 (also written E1::E2).

fst(E) Inversion of conc(E1,E2); gives
back the first element E1 of the
concatenation.

snd(E) Inversion of conc(E1,E2); gives
back the second element E2 of the
concatenation.

ext(E, k) Extracts the message E out of a
message signed message with the
inverse key inv(k) of k.

dec(E, inv(k)) Decrypts the message E out of a
message encrypted message with
the inverse key inv(k) of k.

guard secured object

1. request for access

2. permission checking

3. Return of reference

accessor

Figure 5. guardedObject

permission, the object’s public key will be requested, and
the reference of the encapsulated object will be encrypted
with this key.

For using the reference, the caller must decode it using
the corresponding private key. Since unauthorized objects
do not have the appropriate private key, they cannot decode
the reference.

Another problem of the Guarded Objects in Java is that
the caller gets either no or complete access to an object af-
ter the permission check. To achieve restricted access to
objects, we cannot give back the real reference to an object,
but build a wrapper object around the encapsulated object,
having only the methods the caller has the permission for
calling (see Figure 6). These wrapper objects are the only
ones which call the original object. This means that a wrap-
per class must be created for all possible combinations of
methods.

Note that there is one problem not to be solved by these
modifications: if one object gets the reference to an encap-
sulated object, the owner of the reference may pass it to
unauthorized objects. This simply means that trusted ob-
jects must be developed in a trustworthy way.

wrapper 2

method4

method 3

wrapper 1

method 2

method 1

caller 1 caller 2
call of method 1

call of method 2

call of method 3

call of method 4

secured object

Figure 6. Wrapper objects
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7 Related work

There are a number of approaches using UML for secure
systems development, besides the one this work is based on
[6, 7]. The one closest to the work presented in this paper in
particular is [2, 8]. It presents work on modeling role-based
access control (RBAC) using UML models in a way which
allows the UML models to be parameterized. Specifications
of RBAC policies are incorporated into UML design mod-
els and can thus be specified as patterns and reused. To in-
corporate RBAC policies into an application specific model,
one instantiates the patterns and composes the instantiations
with the model. Compared with our work, the paper does
not give a method for automatically analyzing the access
control specifications for example using an automated theo-
rem prover, as we do. It would however be very interesting
to try to join the two approaches. Another example is [3],
which explains an approach which allows one to model ap-
plication requirements and designs separately from security
requirements and designs using UML. This approach sup-
ports a separation of concerns, in that the security require-
ments are captured in security use cases and encapsulated
in security objects separately from the application require-
ments and objects. Thereby, system complexity is reduced
which would arise when mixing security requirements with
business application requirements.

There also exists some work on using logic to ana-
lyze object-oriented designs. For example, [9] formalizes
Object Oriented Design Frameworks (OOD frameworks),
which are groups of interacting objects, using computa-
tional logic. The paper uses logic programs in the context
of open specification frameworks. The work also considers
both static (the specification of constraints and the correct-
ness of queries) and dynamic aspects (by introducing ac-
tions that update the current state), but does not consider
security aspects.

Compared with the substantial amount of work done in
the area of formal methods and security, less work has been
done on security and software engineering more generally.
One example which is relevant here is [10], which presents
a method for modeling and analyzing information system
process interactions to enforce security. The work is aimed
at the area of complex systems and uses a general modeling
methodology.

8 Conclusion

We presented an approach which embeds security per-
missions in UML models for a model based analysis. In par-
ticular, the presented formal framework prepares the ground
for an automated security analysis using automated first-
order logic theorem provers. We explained how the models
can be securely implemented in a language such as Java.

Our approach allows one to define security permissions
to restrict the access to the systems’ resources based on the
workflows the system is designed for. Using the associated
tool, one can automatically see if workflows and the design
of the security permissions for the system fit together. One
can thus consider security aspects in early stages of system
development in a systematic way, which decreases the po-
tential for the final product to contain vulnerabilities. We
also addressed the realization of the specified permission-
based access control policy in a concrete object oriented
programming language like Java. Since designing and en-
forcing a correct permission-based access control policy is
very hard, especially in the presence of delegation, our ap-
proach is hoped to be a worthwhile contribution to the state
of the art in secure software engineering. In future work,
we aim to integrate our approach with other approaches to
permission modeling using UML such as [8].
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