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Abstract

An increasing number of computer systems are designed
to be distributed across both local and wide-area networks,
performing a multitude of critical information-sharing and
computational tasks. Malicious attacks on such systems
are a growing concern, where attackers typically seek to
degrade quality of service by intrusions that exploit vul-
nerabilities in networks, operating systems, and applica-
tion software. Accordingly, designers are seeking improved
techniques for validating such systems with respect to spec-
ified survivability requirements. In this regard, we describe
a model-based validation effort that was undertaken as part
of a unified approach to validating a networked intrusion-
tolerant information system. Model-based results were used
to guide the system’s design as well as to determine whether
a given survivability requirement was satisfied.

1. Introduction

Numerous successful attacks into information systems
have illustrated the fact that complete security is difficult
to achieve. As more software and systems are introduced,
more vulnerabilities are created. Intrusion prevention does
not appear to be sufficient to deal with all attacks. Intru-
sion tolerance is a growing area of computer security that
can be used to design more reliable and survivable systems.
Intrusion tolerance is an approach for handling malicious
attacks [2, 4, 5]. Combined with security, it can constitute
“defense-in-depth,” enforcing the attacker to spend more ef-
fort and time to break into a system.

No methodology so far can claim to prove a certain de-
gree of security in a system. In fact, most attempts at val-
idation of security have been non-quantitative. However,
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as mentioned above, it is practically impossible to build a
perfectly secure system. Hence, it is very important to be
able to quantitatively validate the efficacy of secure sys-
tems in general, and intrusion-tolerant systems in particular.
Efforts for quantitative validation of security have usually
been based on formal methods [9], or have been informal,
using “red teams” to try and to compromise a system [11].
Both approaches, while being valuable in identifying sys-
tem vulnerabilities, have their limitations, especially when
they are applied to large intrusion-tolerant systems.

Probabilistic modeling has been receiving increasing at-
tention as a mechanism to validate security. It is especially
suited to intrusion-tolerant systems, since by definition, in-
trusion tolerance is a quantitative and probabilistic property
of a system. Any probabilistic model for validating a se-
cure system would have to represent, among other things,
the attacker’s behavior. Since some of the vulnerabilities
in an information system will be unknown at the time the
system is designed (and modeled), the prediction of when
and how an attacker may successfully intrude the system
is a difficult, but critically important problem. Early work
on probabilistic validation of secure systems was done by
Littlewood et al. [10]. Their work was exploratory in na-
ture and identified “effort” made by an attacker as an ap-
propriate measure of the security of the system. Jonsson
and Olovsson [8] attempted to build a quantitative model of
attacker behavior using data from several experiments they
conducted over a two-year period. They postulated that the
process representing an attacker may be broken into mul-
tiple phases, each of which has an exponential time distri-
bution. Attempts have been made to build models that take
into account behavior of the system as well as the attacker,
and the uncertainities therein. Madan et al. [12] have used
a semi-Markov model to evaluate the security properties of
the SITAR architecture, an intrusion-tolerant system. Their
model does not explicitly represent the attacker or the vul-
nerabilities that may lead to intrusions, but represents the
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state of the system in terms of high-level events that may
lead to failures. Sheyner et al. [15] have tried to build attack
trees automatically using formal methods, and then analyze
those trees using Bayesian networks. Ortalo et al. [13] have
proposed modeling of known system vulnerabilities using
“privilege graphs,” followed by a combination of the privi-
lege graphs with simple assumptions about attacker behav-
ior to obtain “attack-state graphs.” The latter can be ana-
lyzed using Markov techniques to obtain probabilistic mea-
sures of security. Singh et al. [16] have used probabilistic
modeling to validate an intrusion-tolerant system, empha-
sizing the effects of intrusions on the system behavior and
the ability of the intrusion-tolerant mechanisms to handle
those effects, while using very simple assumptions about
the discovery and exploitation of vulnerabilities by the at-
tackers to achieve those intrusions. Gupta et al. [7] have
used a similar approach to evaluate the security and perfor-
mance of several intrusion-tolerant server architectures.

In this paper, we use a probabilistic model for validating
an intrusion-tolerant system that combines intrusion toler-
ance and security. The probabilistic model makes use of
an innovative attacker model. The attacker model has a so-
phisticated and detailed representation of various kinds of
effects of intrusions on the behavior of system components
(such as a variety of failure modes). It includes a represen-
tation of the process of discovery of vulnerabilities (both
in the operating system(s) and in the specific applications
being used by the system) and their subsequent exploita-
tion, and considers an aggressive spread of attacks through
the system by taking into account the connectivity of the
components of the system, at both the infrastructure and the
logical levels. We believe that this attacker model is appli-
cable to a wide range of secure and intrusion-tolerant sys-
tems. Moreover, we use the probabilistic modeling to com-
pare different design configurations, allowing the designers
of the system to make choices that maximize the intrusion
tolerance provided by the system before they actually im-
plement the system. Lastly, we use the model to prove that
the system would meet a set of quantitative survivability re-
quirements.

The system we use in this paper is a networked infor-
mation system called a Joint Battlespace Infosphere (JBI).
JBI is currently being developed by agencies and companies
working for the United States government. A JBI will serve
as a substrate for integrating current/planned command and
control systems. As envisioned in [1], a JBI provides in-
dividual users with specific information required for their
functional responsibilities during a crisis or conflict. Sup-
porting this capability is a JBI core consisting of networked
computers that implement protocols, processes, and com-
mon core functions. In particular, the basic core-provided
services of publish, subscribe, and query (PS&Q) permit
JBI clients (mission applications) to exchange information

in the form of information objects (IOs).
When deployed, a JBI (both core and clients) must be

survivable in the sense that it is capable of fulfilling its mis-
sion in the presence of attacks, failures, or accidents (see
[6], for example). Although the nature of specific JBI mis-
sions will vary quite widely, any mission will require a JBI
implementation that satisfies stringent, quantitative surviv-
ability requirements, particularly with respect to the PS&Q
services.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of the distributed system de-
sign studied. Section 3 presents the requirement for correct
system functionality. Section 4 describes the attack model
developed for the validation effort. Section 5 discusses de-
tails of the probabilistic model implementation. Section 6
presents results obtained from the models. We conclude our
work in Section 7.

2. Overview of the IT-JBI Design

The IT-JBI system consists of multiple clients commu-
nicating with each other through a central core, as shown
in Figure 1. The core consists of three zones (or layers)
of components: the crumple zone (outermost layer), the
operations zone, and the executive zone (innermost layer).
The network connectivity is constrained, through the use of
network-interface-level hardware firewalls and configurable
network switches, to limit direct network connectivity from
the outside network to the inner zones. Communication be-
tween machines in each zone is accomplished via specific
connections using proprietary communication protocols.

The primary component in the crumple zone is the ac-
cess proxy (AP). It functions as a bridge between the outer
(public) network containing the clients and the inner core
network for the remaining zones. It translates between mul-
tiple publicly supported communication interfaces (such as
RMI and CORBA) and the single internal core communica-
tions protocol. Clients connect to the access proxy to pub-
lish, subscribe, and query IO. Attacks on clients generate
alerts that are forwarded to the core via the AP, and com-
mands to the client security components from the core pass
back to the client via the AP.

Inside the crumple zone is the operations zone. It con-
tains the components that perform the two main functions of
the core: processing IO objects and monitoring/maintaining
the security of the core and the clients connected to it. IO
processing is performed by three operations zone compo-
nents: the PSQ server (PSQ), the downstream controller
(DC), and the guardian (Gu). The PSQ server receives
IO objects sent to the core via the AP in the crumple
zone. The DC verifies the signatures on messages sent from
clients to ensure data integrity. The guardian uses mission-
specific and domain-specific knowledge to identify corrup-
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Figure 1. The IT-JBI Architecture

tion within the contents of the IO.
Security monitoring and maintenance are performed by

local components distributed across each host in the client,
the crumple zone, the operations zone, and a centralized
correlator (Co) in the operations zone. The components lo-
cal to each host are sensors, actuators, and local controllers
(LC). Sensors are dedicated to intrusion detection, actuators
are mechanisms that carry out actions when commanded,
and an LC is the control agent responsible for local surviv-
ability management.

The correlator receives alerts from multiple intrusion de-
tection sensors within the client, crumple, and operations
zones, filters out redundant and false alerts, and forwards
serious messages to the system manager. The correlator in-
terprets the alerts it receives in the context of the global state
of the system, allowing it to better identify redundant alerts
and false alarms.

The executive zone contains the system manager (SM).
It serves as the master controller of the IT-JBI. It monitors
intrusion alerts received from the correlator and generates
commands for the appropriate response to counter the in-
trusion. Human operators monitor the IT-JBI via displays
generated by the SM, and can manually initiate specific re-
sponses from the SM.

The core is redundant, consisting of four quadrants (or
quads) that run different operating systems. Each quad-
rant contains copies of all crumple, operation, and exec-
utive zone components discussed previously. Agreement
protocols run among the SM and PSQ servers to ensure a
common, collective view of the system state by human op-
erators viewing it through the SM displays, and by clients
interacting with the core via the access proxies in the crum-
ple zone. The baseline configuration of the system used in
our case study assigned the same operating system to all the
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Figure 2. Publish Data Flow

hosts within a single quadrant of the core.
Among the various data flows in the system, two are cen-

tral to the validation effort described in the sections that fol-
low. The first, which is depicted in Figure 2, is the data flow
among the IT-JBI components during the publish operation.
The publish operation begins when a client creates an IO to
be published. The IO is signed using the client’s private ses-
sion key and sent to the access proxy in one of the quadrants
through the “publish” protocol. The access proxy receives
the IO through the isolation switch (IS) and sends it to the
DC to verify whether the client is in a valid session. Af-
ter successful verification, the AP sends the IO to the PSQ
server in its quadrant. The PSQ server forwards the IO to
the other PSQ servers in the other quadrants. Each PSQ
server then stores the IO in its repository (Rep), sends to the
client an acknowledgment of the receipt of the publication,
and sends the IO to the guardian. The guardian performs
domain-specific tests on the IO. If it finds an error in the IO,
it sends an alert to the correlator. The correlator determines,
based on the threat level of the alert and the alert state of the
system, whether the alert is likely to represent an attack. If
it is, the alert is forwarded to the SM. The SMs collectively
decide whether they should tell the PSQ servers to recall the
IO. If there are no recalls from the SM, the IO is accepted,
and subscribing clients are notified that a new IO is avail-
able. The subscribing clients then query the system for the
available IO.

The second data flow of interest is the alert/response data
flow associated with the intrusion detection/tolerance capa-
bility of the system. Alerts are generated on the clients and
on components in the core, and the data flow is similar for
both cases. The data flow for client alerts is presented in
Figure 3 and described here. When a sensor in a client host
detects an anomalous condition/attack, it generates an alert
and sends it to the LC on the same host. The LC can either
make a local response, such as restarting a process or re-
placing a corrupted file, or forward the alert to the core for
a coordinated adaptive response by the correlator. The cor-
relator then decides (using correlation with other alerts) if
this alert is critical, determines the compromised client(s),
and informs the SM in its quadrant. The SMs propagate the
reports within the SM group and reach a consensus to take
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action. Each SM then generates a command for the desired
response on the client generating the alert and sends it to
the client’s LC via the DC and AP. The LC commands the
appropriate local actuator on the client to take action. If the
SM group determines that a more drastic response is appro-
priate, the client can be quarantined. Each SM notifies the
policy server (PS) for the hardware-based firewall system
and isolates the compromised client.

3. Publish Requirement

The core-provided services of publish, subscribe, and
query are critical to fulfilling any JBI mission. Accord-
ingly, IT-JBI survivability with respect to these services is a
dominant concern of the validation process. In the case of
publish, the corresponding survivability requirement can be
stated as

PUB: Assuming precondition CPUB, a client’s request to
publish an IO is processed successfully with prob-
ability at least pPUB (0 < pPUB < 1),

where, in terms of the IT-JBI, CPUB and the event

EPUB = a client’s request to publish an IO is processed suc-
cessfully

are defined more precisely as follows (requirements for sub-
scribe and query can be formulated in a similar manner).

CPUB is the conjunction of the following preconditions,
i.e., events that are assumed to have occurred prior to a
client’s publish request. In an expanded validation study,
it would be possible to remove one or more of these condi-
tions by either proving that they were satisfied (if they were
not quantitative) or inserting them as additional events that
qualify the meaning of “processed successfully.”

C1
PUB = the publishing client is successfully registered

with the IT-JBI core (authentication).

C2
PUB = the publishing client’s mission application in-

teracts with the client as intended (including provision

of adequate and accurate metadata).

EPUB is the conjunction of the following events.

E1
PUB = the data flow of the publish operation is correct.

E2
PUB = the time required for the publish operation does

not exceed a specified duration tmax (timeliness).

E3
PUB = the published IO that becomes available to sub-

scribers has the same essential content as that assem-
bled by the publishing client (integrity).

Accordingly, PUB can be restated more concisely as

PUB: P [EPUB|CPUB] ≥ pPUB, where P [EPUB|CPUB] is the
conditional probability (relative to condition CPUB) of
EPUB occurring with respect to a randomly chosen pub-
lish request during the mission duration.

It is obvious that the determination of whether PUB is sat-
isfied by the IT-JBI, given some specified value of pPUB

(i.e., whether PUB is true when so instantiated), reduces
to an evaluation of the success probability P [EPUB|CPUB] and
a comparison of the result with the value of pPUB. Model-
based evaluation is employed for that purpose.

4. Description of the Attack Model

This section presents a detailed description of how at-
tacks and resulting intrusions are represented in the model
for the publish service. The attack model makes several
important distinctions concerning where attacks occur (lo-
cation of both the source and target of an attack) and how
resulting intrusions affect both system and attacker behav-
ior. In particular, the model accounts for the fact that once a
vulnerability has been discovered in a target, the attack can
quickly propagate to other instances of that target, provided
that they are accessible (via network connectivity) from the
attack source. If an intruded target (e.g., a host) is compro-
mised, then it is possible for the host to serve as a source of
further attacks.

4.1. Terminology

In order to describe the attack model more precisely, we
make the following distinctions.

• An entity of the system is one of the following:

– A host: A computing resource with an operating
system and network interface cards.

– A component: A process that realizes an IT-JBI
function, e.g., an access proxy. Note that several
components typically reside in a single host (for
example, the survivability delegate, the sensors,
the actuator, and the local controller reside in the
client).
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– A process domain (PD): An entity that imple-
ments a component, e.g., the sensor process do-
main implements the sensor component, and the
AP IO (AP IO) process domain implements the
AP that deals with forwarding IOs.

– An application: The application level of the pro-
cess domain.

• An intrusion is a possible outcome of an attack. It oc-
curs if the attack finds a vulnerability in its target and
thereby alters the target’s behavior (the effect or symp-
tom of the intrusion); otherwise, it is prevented. In
other words, an intrusion occurs if an attack has some
effect on the target. The effect can range from some-
thing very benign (e.g., when the intrusion is “masked”
or “blocked”) to the compromise of the target such that
it can be used as a platform for launching further at-
tacks. An intrusion is prevented if the attack can find
no vulnerabilities in its target, thereby obviating any
effect. In particular, if an attack is unable to access its
target, then the attack cannot find a vulnerability, even
if one exists.

• An intrusion is tolerated (possibly in the presence of
other tolerated intrusions) if its effect does not lead
to unsuccessful processing of a publish request; oth-
erwise, it causes a failure.

• A new vulnerability, found at time t, is a vulnerability
that is present in at least one component of the archi-
tecture, and that was not known by the attacker until
time t during the mission. When discovered, such a
vulnerability can be used any number of times until the
end of the mission against the vulnerable components
that the attacker can reach.

• A successful attack is repeated if that attack (same
source, same type) is made on a similar target having
the same vulnerability, in which case it succeeds very
quickly.

• A successful attack is propagated if the intruded target
is compromised such that the target becomes a source
of further attacks. If this source can access a simi-
lar target with the same vulnerability, the original at-
tack can be repeated (see above). The source can also
launch a new attack that attempts to find a new vulner-
ability in another target.

The simulation model considers attacks that are “success-
ful” in the sense that an intrusion occurs and, moreover, is
neither masked nor blocked. However, if such an intrusion
is tolerated (the third case noted above), the attack does not
succeed in the more usual sense of causing a failure.

4.2. Attack Propagation

Two basic assumptions underlie the construction of the
attack model. First, we assumed that the attacker would
discover new vulnerabilities slowly. Define MTTD to be
the mean time to discovery of a new vulnerability. Second,
it was assumed that the attacker would exploit newly dis-
covered vulnerabilities quickly. Once an entity is intruded
following the discovery of a vulnerability, the attack can be
repeated (see Section 4.1). Define MTTE to be the mean
time between successive exploitations of a known vulner-
ability. The typical value of MTTE in our study was 5
minutes.

It is important to note, however, that repeated attacks re-
quire targets with the same vulnerability, typically entities
that are instances of the original target. Accordingly, design
diversity can be used to reduce the possibility of repeated
attacks. For example, a successful OS-level attack from
the outside, compromising a client running under OS1, can
propagate to hosts connected to the client (namely, the ac-
cess proxy in the core). If the access proxy’s OS is also OS1,
the attack can be repeated, with success (intrusion) coming
quickly. On the other hand, if the access proxy is running
under a different operating system, then the OS diversity
will likely preclude a repeated attack. It is possible that a
given vulnerability exists in more than one OS. We account
for that possibility using a probability of a common-mode
vulnerability. If a vulnerability is determined to be common
mode, it will exist in all OSes used by the IT-JBI.

4.3. Types of Attacks

Three different types of attacks were represented in the
attack model.

• Infrastructure-level attacks exploit a vulnerability
found either in the operating system running on a given
host (for instance, a flaw in the TCP/IP stack), or in
a service running on that host, not related to the IT-
JBI (for example, a flaw in sshd). The attack’s source
and target must be directly connected and communi-
cate with each other, typically with standard network
protocols. If a vulnerability of that type is discovered,
it can be limited to one of the four operating systems,
or affect all operating systems used in system.

• Data-level attacks exploit a vulnerability in an IT-JBI
application on the targeted component. The attack’s
source and target are applications on different hosts.
The attack uses the content of the application data to
intrude into the target. For example, the client sends a
corrupted IO to a PSQ server, resulting in a crash or a
corruption of that host.
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• Attacks across process domains allow the attacker to
intrude into a different process domain of the same
host by exploiting low-level vulnerabilities in the op-
erating system. The source and targets are process do-
mains running on the same machine.

Successful infrastructure-level attacks are attacks in depth;
the intruder quickly progresses deeply into one quadrant,
because only one vulnerability needs to be discovered to
compromise the common operating system in the entire
quadrant. However, unless the vulnerability found corre-
sponds to a common mode failure, the attacker cannot in-
trude into any other quadrant, because the other quadrants
are based on hosts with different operating systems. Data-
level attacks provide attacks in breadth; if a vulnerability
is found in the access proxy application, then the publish-
ing client can exploit it directly on the four access prox-
ies. Those attacks are consequently much more danger-
ous. Great effort should be put into reducing the number of
data vulnerabilities, and preventing attackers from exploit-
ing them.

The first attack on the IT-JBI must be an infrastructure-
level attack, since both of the other types require control of
a machine within the system. For example, attacks across
process domains assume a compromised process domain
for the source of the attack. Data-level attacks require con-
trol of a component that is capable of generating IT-JBI pro-
tocol packets, signed with signatures from host-specific pri-
vate keys.

Figure 4 provides an example of attack propagation. At
time t0 = 85 minutes, an infrastructure-level vulnerability
(ILV) is found on the main process domain of OS1. After
a short time, the attacker exploits that vulnerability on the
publishing client (time t1). From the client, he launches the
same attack on the AP of quadrant 1 at time t2. He continues
in the way until he has compromised all the components of
quadrant 1 (since they’re all running the same OS). At time
t8 = 230 minutes, a data-level vulnerability (DLV) on the
PSQ server is found. The attacker uses that vulnerability to
compromise the three remaining PSQ servers; he can attack
either from the publishing client (times t9 and t11), or from
the PSQ server in the first quadrant (time t10), since he has
control of all those entities.

4.4. Intrusion Effects

When any of the three types of attacks described above is
successfully exploited, the resulting intrusion can have one
of the following effects.

• Crash of the intruded entity: For the operating systems
that handle process domains (secure OSes), a crash of
a given process domain will not lead to the crash of
other process domains. On a traditional OS (without

Co

PSQ

AP

Gu

DC

SM
Publishing Client

OS1

SD

Outside
Quadrant 1, OS1

t0=85 min.  ILV on 
the Main PD, OS1

t8=230 min. DLV 
on the PSQ Server

t2
t4

t3

t5

t1 t7

t6

PSQ

PSQ

PSQ

t9

t10

t11

Quadrant 2, OS2

Quadrant 3, OS3

Quadrant 4, OS4

ILV

DLV

Figure 4. Example of Attack Propagation

process domains), a crash of a given process will crash
the whole machine (and thus all the processes running
on it).

• Compromise of the intruded entity: The intruded entity
can corrupt or drop data packets, or can be a source
of further attacks. When a process domain becomes
compromised on a secure operating system, the other
process domains are unaffected. However, for tradi-
tional operating systems, compromise of one process
also compromises the other processes on the machine.

• Denial of service: The intruded entity can reduce pro-
cessing speeds and increase latencies.

4.5. Attack Responses

The model includes three mechanisms for responding to
a detected intrusion that is not blocked:

• Type 1: Rapid response. The first and fastest mech-
anism is a local and rapid response, based on an au-
tomatic decision made by the LC. Examples of rapid
response include file restoration, termination of illegal
processes, and restarting of critical processes. On av-
erage, this operation takes one minute.

• Type 2: Secure reboot. This operation is carried out in
two phases: automatically shutting down the host and
then manually restarting it. The shutdown is performed
by the SM through DC and LC. Restarting has to be
done manually by the operator sitting at the console.
The reason is that the client application will also need
to be restarted, which will require the user to perform
some action, such as providing a password or swiping
a smart card. Moreover, the shutdown will give the
client operator the opportunity to introduce diversity,
perhaps by removing some services or changing the
firewall policies.

• Type 3: Permanent isolation. The decision to isolate
is taken by the SM through the PS. The decision is
made by the SM in the core; therefore, this operation
requires more time, on average 7 minutes.

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04) 
1060-9857/04 $ 20.00 IEEE 



5. Model Overview

The integrated validation procedure consists of many
techniques for validation, including formal methods, exper-
imentation, and probabilistic modeling [14]. The discussion
that follows focuses on the probabilistic model used for val-
idation of the IT-JBI design with respect to the publish re-
quirement PUB. This probabilistic model was accomplished
by constructing models representing the components of the
IT-JBI system. The models were built with the stochas-
tic activity network (SAN) formalism using the Möbius
tool [3]. Eighteen different SAN models were built to rep-
resent the various components of the system. The models
were combined using the Rep-Join composition formalism
to construct the system model. In the Rep-Join formalism,
Join nodes are used to connect together multiple heteroge-
neous submodels and allow them to share state variables.
Rep nodes are a special case of Join nodes, and are used to
create multiple copies of a single submodel.

Four main components are used in the SAN formalism.
Places represent the state of the system and may hold to-
kens. Activities generate events that change the state of the
system and represent delays in the system. Activities with
cases represent probabilistic choices among multiple possi-
ble outcomes. Input gates give specific and detailed defi-
nitions of conditions necessary for activities to be enabled
(able to execute). Output gates specify detailed and pos-
sibly complex changes to the system after an activity ex-
ecutes. Counted individually, the eighteen IT-JBI detailed
models constructed for our case study contain 787 places,
578 activities, 253 input gates, and 354 output gates. The
system model, formed by combining and replicating the de-
tailed component models, has 10,771 places, 7,850 activi-
ties, 3,370 input gates, and 4,471 output gates. Space does
not permit a detailed description of the entire model, but
the remainder of this section consists of an overview of
some significant features of the model. For more details,
the reader can refer to [17].

5.1. System Model

The high-level model for the IT-JBI system (Figure 5)
consists of two clients (Join PubClient and SubClient) com-
municating with the core (Rep Core) through the network
(submodel Path). Multiple processes are running on each
client, represented by four submodels under each client
Join. The processes on the clients include the primary pro-
cess on the host, the sensors, the actuator, and the local
controller (for the publishing client, the processes are Pub-
Client main, Pub Se, Pub Ac, and Pub LC, respectively).
The fifth submodel under each of those Joins implements
the attack propagation model, and was described in Sec-
tion 4. The two remaining submodels, measures and at-
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Figure 6. Quad Composed Model

tack discovery, implement some measures and discovery of
new vulnerabilities, respectively.

The core is a replica of four quadrants (submodel
Quad1), detailed in Figure 6. Each quadrant is a Join
of several submodels (Access Proxy, PSQ, Downstream-
Controller, Guardian, Correlator, PS, SM, and Isola-
tion Switch) that implement the core components. The
access proxy, PSQ server, downstream controller, and
guardian have an Intrusion Detection System (IDS). There-
fore, their respective Joins have IDS submodels (for in-
stance, AP Se, AP Ac, and AP LC). The correlator, policy
server, system manager, and quadrant isolation switch don’t
have any IDS components.

5.2. Attack Model Implementation

The attack model is represented by multiple submodels
within the system model. The attack discovery submodel,
under the IT JBI Join in Figure 5, implements the func-
tionality for the discovery of new vulnerabilities in the sys-
tem, and identifies which process of which component on
which operating system will be affected. Central to the at-
tack discovery model is an activity that generates a newly
discovered vulnerability every MTTD minutes on average.
Activities with cases are then used to probabilistically deter-
mine specific characteristics about the vulnerability, such as
the type of operating system it affects.

Each host in the system also has a submodel called
attack propagation (represented in Figures 5 and 6 by
Sub attack, PSQ attack, DC attack, etc) associated with it.
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The model represents the exploitation of known vulnerabil-
ities for that host and the potential propagation of successful
attacks from a compromised host to possible network neigh-
bors. The model stores information in places that represent
the state of the host, such as whether each process on the
host is crashed/down, compromised by a successful attack,
or operating normally. For the processes that are compro-
mised, activities with detailed output gates are used to en-
code the list of connected processes and hosts on which the
attack could propagate. Each process on each host in the
system has a place that records the number of other pro-
cesses that are currently compromised and able to launch
attacks on the process. Such places are combined appropri-
ately with the corresponding places in other attack models
in the system, through definition of shared variables at the
multiple Rep/Join levels of the composed model.

An example of one such place is DA PSQ. DA PSQ
is initialized to the value 0 (for each of the quadrants), as
no outsider can start a data attack directly on the PSQ.
If the publishing client becomes compromised at time t0,
DA PSQ (for each quadrant) increases to 1, as the client
can be used to launch a data attack on any PSQ server. How-
ever, as long as no data-level vulnerability has been found,
the PSQ server won’t be attacked. Assuming that at time
t1 such a vulnerability is found, the time before each PSQ
server is compromised is given by an exponential distribu-
tion with mean MTTE.

6. Design Validation Results

The probabilistic model described in the previous sec-
tions represents highly aggressive attackers’ attempts to in-
trude into the IT-JBI system while the system is performing
its publish functionality. The model is used to give evidence
that the publish requirement is met, as well as to study de-
sign trade-offs and explore the behavior of the system in
different operating configurations and attack environments.

Such studies are possible because each component of the
system model contains a set of input parameters that define
aspects of the component’s functionality, such as the rate of
data publishes, or the type of operating system used on a
host. There are also parameters that define the characteris-
tics of the attackers on the system, such as the time between
vulnerability discoveries (MTTD) and the time to exploit
known vulnerabilities (MTTE). Varying these parameters
changes the aggressiveness of the attacker.

Each variation of these input parameters defines a unique
configuration of the system and attack model. The measures
were obtained by discrete-event simulation, and by gather-
ing statistical results. In this section, we present the results
for three of the variations studied to date, specifically those
derived by varying the vulnerability discovery rate, the de-
gree of operating system diversity among the four quadrants
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Figure 7. P [EPUB|CPUB] versus MTTD: Default
Configuration of the IT-JBI

in the IT-JBI core, and the Autonomous Distributed Firewall
Network Interface Card (ADF NIC) policies.

6.1. Vulnerability Discovery Rate

Our first experiment illustrates how the IT-JBI meets the
publish requirements described in Section 3. Based on the
system requirements, we chose a value of 0.95 for pPUB .

The sequence of responses to repeated attack on a host
are 1) restart of the compromised process (Type 1), 2) se-
cure reboot of the host (Type 2) for the next three intrusions
on the host, and then 3) isolation (Type 3). The IT-JBI runs
four different operating systems, one within each quadrant.
One of the four is traditional, and the other three are secure.
Compromised sensors do not detect any further intrusion.
Any component creating or forwarding alerts or commands
(to restart a process, reboot a host, or isolate a host) will
drop those alerts or commands.

The evaluation of P [EPUB|CPUB] was based on the follow-
ing values for the model parameters. MTTE is set to 2
minutes. When an intrusion occurs, the effect is to com-
promise the host with probability 1.0, crash it with prob-
ability 0, and lead to a Denial of Service with probability
0. When vulnerabilities are found, the probability that they
will affect all operating systems (common mode) is 0.4.
When the sensors are not compromised, they detect intru-
sions with a probability of 0.95, after an exponential time
averaging 2 seconds. IDS components send heartbeats ev-
ery minute. Finally, the attacker can perform all types of
attacks (infrastructure-level, data-level, and across process
domains).

A study presented in [14] estimated the value of MTTD
to be 6,000 minutes, by counting the number of vulnerabil-
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Figure 8. Number of Intrusions versus MTTD:
Default Configuration of the IT-JBI

ities over a given time period that the system would have
been vulnerable to. Given the uncertainty about the exact
value of MTTD, we decided to present the results in this
paper with an MTTD varied widely, typically between 100
and 10,000 minutes. The design decisions were made using
the value of 6,000 minutes for MTTD.

Figures 7 and 8 show the effect that varying the vulner-
ability discovery rate has on the variation of P [EPUB|CPUB]
and the number of intrusions, respectively. Three mission
durations are considered: 12 hours (720 minutes), 24 hours
(1,440 minutes), and 48 hours (2,880 minutes).

The results show that the IT-JBI provides correct func-
tionality with high probability (95% of all publishes are suc-
cessful during a 12-hour mission) when new vulnerabilities
are discovered once a day or less often. Figure 9 presents
the availability of the access proxies for a 12-hour mission,
versus the vulnerability discovery rate. The other compo-
nents in the IT-JBI present very similar figures: the avail-
ability of each component of the IT-JBI is high (0.94 or
more for a 12-hour mission) when new vulnerabilities are
discovered, on average, no more than once every 16 hours
(1,000 minutes).

6.2. Effect of Diversity

In this experiment, we studied two different OS configu-
rations, in the following way:

• 4 OS: the access proxy, downstream controller, PSQ
servers and system manager in a given quadrant run
the same operating system. Each quadrant uses a dif-
ferent OS. The policy server is available in only one
operating system. Therefore, there is no possible vari-
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Figure 9. Availability of the AP versus MTTD:
Default Configuration of the IT-JBI

ation for this component. This case corresponds to the
default configuration of the IT-JBI.

• 1 OS: all the components in the core (apart from the
policy servers) run the same operating system.

Also, to make a fair comparison between the two op-
tions, all OSes are secure.

The graph presented in Figure 10 is based on an as-
sumption of a less aggressive attacker than we considered
in the baseline case; here, the attacker can only execute
infrastructure attacks and attacks across process domains.
The figure illustrates the difference between the two options
mentioned above. It shows P [EPUB|CPUB] versus the vulner-
ability discovery rate. Diversity significantly increases the
performance of the design: when MTTD = 200 minutes,
P [EPUB|CPUB] is about 0.97 for the 4-OS case, versus 0.90 for
1 OS, i.e., a 70% improvement of the unavailability (0.10
versus 0.03). The gap between the two curves is noticeable
at all rates.

A similar experiment was done for all types of attack,
including the data-level attacks. In that case, the two curves
were closer. Data-level attacks are the most dangerous type
of attack, as they can take out the same component in every
quad. For example, a compromised client could launch a
data-level attack against the four PSQ servers, which could
result in the crash (or compromise) of all four. If that hap-
pened, no further PSQ requests would be handled, and the
core would be considered down. For the results presented
here, we assumed that the data-level vulnerabilities could
be considerably reduced not only by the effort put into the
implementation of, for example, the PSQ, but also by the
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Figure 10. P [EPUB|CPUB] versus MTTD: 4 OS vs
1 OS

semantic checks done on the access proxy for any incoming
traffic to the core.

6.3. ADF NIC Policies

ADF NICs are local firewalls on each component, ad-
ministrated by the policy servers in the core. The third ex-
periment compares three ADF NIC policies, assuming that
only infrastructure-level attacks and attacks across process
domains are allowed. The first policy is to allow all com-
munications between any two processes of any two com-
ponents. The second is a per-component policy, allowing
only certain components to communicate with each other
(for instance, the AP can talk to the PSQ server in its quad,
but the Client cannot communicate directly with any PSQ
server). Finally, the third one is a per-process-domain pol-
icy, restricting communications between specific processes.

Figure 11 presents the results reflecting the three con-
figurations. The graphs reveal that the per-process-domain
policy is by far the best of all three: for MTTD = 100
minutes, P [EPUB|CPUB] = 84.4% for the no-restriction policy,
versus 90.0% for the per-component, and 98.5% for the per-
process-domain one, which corresponds to a 90% improve-
ment of the unavailability (from 15.6% down to 1.5%).

The per-process-domain restriction can also be inter-
preted as having a rule-set that describes which ports from
which machines can communicate with which ports of the
other machines. It is a very successful way to increase the
survivability of the system, and therefore should be imple-
mented. However, it comes with a price, as it limits the
developers by forcing them to allocate fixed port numbers,
and also might limit the usability of the machines for pur-
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Figure 11. P [EPUB|CPUB] versus MTTD: ADF Pol-
icy Study

poses other than the PSQ functionalities.

7. Conclusions

We described the infrastructure of a networked informa-
tion system that serves as a substrate for integrating cur-
rent and planned command and control systems. Stochastic
models of the system and of the attacker were presented.
Attacks were classified as infrastructure-level, data-level,
or across-process-domain, and attack effects were classi-
fied as compromise, crash, or DoS. We conducted model-
based experiments that evaluated the survivability of the
system when stressed by those types of attacks by measur-
ing the probability of success for the transactions between
the clients and the core. The results show that if the average
time between discoveries of new vulnerabilities is longer
than one day, more than 95% of the publishes are processed
correctly. The system model was used to study design trade-
offs, one of which was that OS diversity in the design signif-
icantly improved the performance. Another design trade-off
became apparent when we compared three ADF NIC poli-
cies: a per-process-domain policy leads to the highest avail-
ability, but constrains developers.

This paper illustrates how probabilistic modeling can be
used in an integrated validation procedure and successfully
bring insight and feedback on a design. It allows us to com-
pare different algorithms, features, or infrastructures. More-
over, building such a model required a detailed specification
of the architecture; therefore, the construction of the model
resulted in an enhancement of the level of detail in the de-
sign specifications.
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