
1 8 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 2 0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E

unexpected ways. If the software in question is
security- or safety-critical, this uncertainty is
unacceptable. We must build software that is
correct by construction, not software whose
behavior is uncertain until after delivery.

Correctness by construction is possible
and practical. It demands a development
process that builds correctness into every
step. It demands rigorous requirements defi-
nition, precise system-behavior specification,
solid and verifiable design, and code whose
behavior is precisely understood. It demands
defect removal and prevention at every step.
What it does not demand is massive spend-
ing beyond the bounds of commercial sense.
On the contrary, the attention to correctness
at early stages pays off in reduced rework
costs. When we build software in this way,
we give a warranty that it will behave as
specified, and we don’t lose any sleep over
the cost of honoring this warranty.

This article describes how we applied this
philosophy to the development of a com-
mercial secure system. The system had to
meet normal commercial requirements for
throughput, usability, and cost as well as
stringent security requirements. We used a
systematic process from requirements elici-
tation through formal specification, user in-
terface prototyping, rigorous design, and
coding in Spark, to ensure these objectives’
achievement. System validation included
tool-assisted checking of a formal process
design, top-down testing, system testing
with coverage analysis, and static code
analysis. The system uses commercial off-
the-shelf hardware and software but places
no reliance on COTS correctness for critical
security properties. We show how a process
that achieves normal commercial productiv-
ity can deliver a highly reliable system that
meets all its throughput and usability goals.

focus
Correctness by Construction:
Developing a Commercial
Secure System

Anthony Hall and Roderick Chapman, Praxis Critical Systems

Praxis Critical
Systems recently
developed a secure
Certification
Authority for smart
cards. The CA had to
satisfy demanding
performance
and usability
requirements while
meeting stringent
security constraints.
The authors show
how you can use
techniques such as
formal specification
and static analysis in
a realistic
commercial
development.

W
hen you buy a car, you expect it to work properly. You expect
the manufacturer to build the car so that it’s safe to use, trav-
els at the advertised speed, and can be controlled by anyone
with normal driving experience. When you buy a piece of

software, you would like to have the same expectation that it will behave as
advertised. Unfortunately, conventional software construction methods do
not provide this sort of confidence: software often behaves in completely

building software securely

Background
Praxis Critical Systems recently devel-

oped the Certification Authority for the
Multos smart card scheme on behalf of
Mondex International (MXI).1 (See the
“List of Abbreviations” and “Useful URLs”
sidebars for more information.) The CA
produces the necessary information to en-
able cards and signs the certificates that per-
mit application loading and deletion from
Multos cards.

Obviously, such a system has stringent
security constraints. It must simultaneously
satisfy commercial requirements for high
throughput and good usability by its opera-
tors. The combination of security and
throughput requirements dictated a distrib-
uted system with several processors. Fur-
thermore, to meet the development budget
and timescale, we could not build the sys-
tem from scratch, requiring use of COTS
hardware and infrastructure software.

MXI was keen for a predictable develop-
ment process, with no surprises and mini-
mum risk. They also wanted to develop ac-
cording to the UK Information Technology
Security Evaluation Criteria,2 one of the
forerunners of the Common Criteria.3 The
CA supports smart cards that are certified
to the highest ITSEC level, E6. This requires
a stringent development process including
the use of formal methods at early stages.
Previous experience had shown that, when
properly applied, the E6 process forced the
customer and supplier to explicitly and un-
ambiguously understand system require-
ments, which avoided unpleasant surprises
in late testing. We therefore developed the
CA to the standards of E6.

The development approach
Correctness by construction depends on

knowing what the system needs to do and
being sure that it does it. The first step,
therefore, was to develop a clear require-
ments statement. However, developing code
reliably from requirements is impossible:
the semantic gap is too wide. So, we used a
sequence of intermediate system descrip-
tions to progress in tractable, verifiable
steps from the user-oriented requirements to
the system-oriented code. At each step, we
typically had several different descriptions
of various system aspects. We ensured that
these descriptions were consistent with each

other, and we ensured that they were correct
with respect to earlier descriptions.

At each stage, we used descriptions that
were as formal as possible. This had two
benefits. Formal descriptions are more pre-
cise than informal ones, which forced us to
understand issues and questions before we
actually got to the code. Additionally, more
powerful verification methods for formal
descriptions exist than methods for infor-
mal ones, so we had more confidence in
each step’s correctness.

Figure 1 shows the overall set of deliver-
ables from the development process, grouped
into the main process steps.

Requirements
Before we thought about the CA system,

J a n u a r y / F e b r u a r y 2 0 0 2 I E E E S O F T W A R E 1 9

CA Certification Authority
COTS commercial off-the-shelf
FSPM Formal Security Policy Model
FTLS formal top-level specification
HLD high-level design
ITSEC Information Technology Security Evaluation Criteria
UIS user interface specification
UR user requirements

List of Abbreviations

Requirements

Specification
& architecture

Design

Code

User
requirements

Formal security
policy model

Formal top-level
specification

High-level
design

User interface
specification

Ul
design

Data
dictionary

Build
specification

Process
design

Module
structure

Package
specifications

Process and
task code

Package
bodies

Window
class code

Database
design

Database
code

Supplementary
design documents

Figure 1. Development
deliverables grouped
into the main process
steps.

we had to understand the business environ-
ment in which it would operate. We used our
well-tried requirements-engineering method,
Reveal,4 to define the CA’s environment and
business objectives and to translate these
into requirements for the system.

We wrote the user requirements (UR)
document in English with context diagrams,5

class diagrams, and structured operation
definitions,6 providing a first step toward
formalizing the description. We labeled
every requirement so that we could trace it,
and we traced every requirement to its
source. We traced each security requirement
to the corresponding threats. We carried out
this tracing through all the development
documents down to the code and tests. We
validated user requirements through client
review and manual verification for consis-
tency between different notations.

The highest levels of ITSEC and the
Common Criteria require a Formal Security
Policy Model (FSPM). The user require-
ments included an informal security policy
that identified assets, threats, and countermea-
sures. This contained 28 technical items. Of
these, we formalized the 23 items related to
viewing the system as a black box rather
than the five that dealt with implementation
details.

Specification and architecture
This phase covered two activities, carried

out in parallel:

� detailed system behavior specification
and

� high-level design (HLD).

The system specification comprises two
closely related documents: the user interface
specification and the formal top-level speci-
fication. Together, these completely define
the CA’s black-box behavior.

The UIS defines the system’s look and
feel. We developed it by building a user in-
terface prototype, which we validated with
the CA operational staff.

The FTLS defines the functionality behind

the user interface. We derived it from the
functions identified in the UR, the constraints
in the FSPM, and the user interface proto-
type’s results. We used a typechecker to ver-
ify that the FTLS was well formed, and we
validated it by checking against the user re-
quirements and FSPM and by client review.

The HLD contained descriptions of the
system’s internal structure and explanations
of how the components worked together.
Several different descriptions looked at the
structure in varying ways, such as in terms of

� distribution of functionality over ma-
chines and processes,

� database structure and protection mech-
anisms, and

� mechanisms for transactions and com-
munications.

The HLD aimed mainly to ensure satis-
faction of security and throughput require-
ments. One of the most important parts was
achieving security using inherently insecure
COTS components, such as a commercial
database. We did this on the basis of our ex-
perience using COTS in safety-critical sys-
tems. Specifically, we did not rely on COTS
for confidentiality or integrity. We achieved
these by

� hardware separation;
� confidential information encryption;
� message authentication codes, where data

integrity was needed; and
� individual processing of security-critical

functions to avoid reliance on separa-
tion between processes.

Detailed design
The detailed design defined the set of

software modules and processes and allo-
cated the functionality across them. It also,
when necessary, provided more detail for
particular modules.

We deliberately did not write a detailed
design of every system aspect. Often, the
FTLS and module structure gave enough in-
formation to create software directly. How-
ever, a few cases existed, where the imple-
menter required much more information
than the FTLS had. For example, we used
Z7—a mathematical language supported by
English descriptions—to specify the module
that manages cryptographic keys and their

2 0 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 2

Spark www.sparkada.com
Mondex www.mondex.com
Multos www.multos.com
ITSEC www.cesg.gov.uk
Common Criteria www.commoncriteria.org
Formal methods and Z www.afm.sbu.ac.uk

Useful URLs

verification on system startup. This specifi-
cation helped us resolve many difficult is-
sues before coding.

We used different notations for the de-
sign documents, according to their subject
matter, always following the rule of maxi-
mum practical formality. The most novel
part was the process design.

Code
Coding the CA posed some interesting

challenges. For example, the CA’s expected
life span is some 20 years. With this in
mind, we viewed development technologies
that were particularly fashionable at the
time with some skepticism.

Additionally, although most development
favors the reuse of COTS components, we
tried to avoid these in the CA’s development
as far as was practical. For instance, we im-
plemented a remote procedure call mecha-
nism entirely from scratch, rather than rely-
ing on commercial middleware such as
DCOM or an implementation of Corba.

We aimed for five nines availability (that
is, 99.999 percent) in security-critical parts.
Housed in a tamperproof environment, the
system cannot be rebooted without some ef-
fort, so we spent considerable effort in en-
suring the system’s stability. We estimated
actual maintenance of the system’s tamper-
proof parts (for example, installation of
new software builds) to be possible only
once every six months.

Other challenges included the client’s re-
quirement of a commercial operating sys-
tem (in this case, Windows NT 4) and the
ITSEC (and more recently the Common Cri-
teria) requirements for languages that “un-
ambiguously define the meaning of all state-
ments” used in a system’s implementation.

We soon realized that no single imple-
mentation language could do the job. Our
experience with safety-critical system devel-
opment suggested that implementation in
Ada95 would suit the system’s critical parts.
However, Ada95 was clearly not appropri-
ate at the time for the GUI’s development.
Ultimately, we settled on a “right tools for
the job” mix of languages. So, we imple-
mented the system’s security-enforcing ker-
nel in Spark Ada8—an annotated subset of
Ada95 widely used in safety-critical sys-
tems—whose properties make it suitable for
secure system development. (See the “Spark

and the Development of Secure Systems”
sidebar for more information.) We imple-
mented the system’s infrastructure (for ex-
ample, remote procedure call mechanisms
and concurrency) in Ada95. The system’s
architecture carefully avoids any security-
related functionality in the GUI, so we im-
plemented this in C++, using Microsoft’s
Foundation Classes. We used some small
parts, such as device drivers for crypto-
graphic hardware, and one standard crypto-
graphic algorithm as is. We reviewed the C
source code for these units by hand.

We identified some of the system’s tech-
nical aspects early on as carrying some risk.
These included the implementation of a
concurrent Ada program as a Win32 serv-
ice, use of the Win32 and Open Database
Connectivity APIs from Ada, and linking
the C++ GUI with the underlying Ada ap-
plication software. We attacked these risks
using “trailblazing” activities such as imple-
menting small demonstrator applications.

For all system parts, we enforced rigor-
ous coding standards. We reviewed all the
code against these standards and relevant
source documents, such as the FTLS and
UIS. We also used automatic static-analysis
tools where possible, such as the Spark Ex-
aminer for Ada, and BoundsChecker and
PC-Lint for C++.

Verification and validation
Correctness by construction does not

claim zero defects: we do not believe that
this is achievable in any engineering artifact.
We do, however, have zero tolerance of de-
fects. We try to find them as early as possi-
ble, and then we eliminate them. Further-
more, we collect data on defect introduction
and removal and try to improve the process
to reduce introduction of defects and to
speed defect discovery.

The first line of attack is review. We re-
view all deliverables to check

� correctness with respect to earlier deliv-
erables,

� conformance to standards, and
� internal consistency.

Wherever possible, we carry out auto-
mated verification and validation on deliv-
erables. As you’ll see in the next section, we
were able to do some automated checks on

J a n u a r y / F e b r u a r y 2 0 0 2 I E E E S O F T W A R E 2 1

Although most
development

favors the
reuse of COTS

components, we
tried to avoid

these in the CA’s
development as

far as was
practical.

formal specifications and designs, which
helped to remove defects early in the
process.

Our main verification and validation
method is, of course, testing. Traditionally,
critical-systems testing is very expensive. A
reason for this is that testing occurs several
times: we test individual units, integrate them
and test the integration, and then test the sys-
tem as a whole. Our experience with previ-
ous safety-critical projects9 suggests that this
approach is inefficient and particularly that
unit testing is ineffective and expensive. Unit
testing is ineffective because most errors are
interface errors, not internal errors in units. It
is expensive because we must build test har-
nesses to test units in isolation.

We adopted a more efficient and effective

approach. We incrementally built the sys-
tem from the top down. Each build was a
real, if tiny, system, and we could exercise
all its functions in a real system environ-
ment. This reduced the integration risk. We
derived the tests directly from the system
specification. We ran the tests using Ratio-
nal’s Visual Test, so that all tests were com-
pletely automated. Furthermore, we instru-
mented the code using IPL’s AdaTest so that
we measured the statement and branch cov-
erage we were achieving by the system tests.
We devised extra design-based test scenarios
only where the system tests failed to cover
parts of the code.

Formal methods
We used Z to express the FSPM. We

2 2 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 2

The Spade Ada Kernel (Spark) is a language designed for
constructing high-integrity systems. The language’s executable
part is a subset of Ada95, but the language requires additional
annotations to let it carry out data- and information-flow analy-
sis1 and to prove properties of code, such as partial correctness
and freedom from exceptions.

These are Spark’s design goals:

� Logical soundness. The language should have no ambiguities.
� Simplicity of formal description. It should be possible to de-

scribe the whole language in a relatively simple way.
� Expressive power. The language should be rich enough to

construct real systems.
� Security. It should be possible to determine statically

whether a program conforms to the language rules.
� Verifiability. Formal verification should be theoretically pos-

sible and tractable for industrial-sized systems.

Spark annotations appear as comments (and so are ignored
by a compiler) but are processed by the Examiner tool. These
largely concern strengthening the “contract” between a unit’s
specification and body (for instance, specifying the information
flow between referenced and updated variables). The annota-
tions also enable efficient checking of language rules, which is
crucial for using the language in large, real-world applications.

Spark has its roots in the security community. Research in
the 1970s into information flow in programs2 resulted in Spade
Pascal and, eventually, Spark. Spark is widely used in safety-
critical systems, but we believe it is also well suited for develop-
ing secure systems.

Particularly, it offers programwide, complete data- and in-
formation-flow analysis. These analyses make it impossible for
a Spark program to contain a dataflow error (for example, the
use of an uninitialized variable), a common implementation er-
ror that can cause subtle (and possibly covert) security flaws.

You can also achieve proof of correctness of Spark pro-

grams, which lets you show that a program corresponds with
some suitable formal specification. This allows formality in a
systems’ design and specification to be extended throughout its
implementation.

Proof of the absence of predefined exceptions (for such
things as buffer overflows) offers strong static protection from a
large class of security flaw. Such things are anathema to the
safety-critical community yet remain a common form of attack
against networked computer systems. Attempting such proofs
also yields interesting results. A proof that doesn’t come out
easily often indicates a bug, and the proof forces engineers to
read, think about, and understand their programs in depth. Ex-
perience on other projects suggests that proof is a highly cost-
effective verification technique.3

You can compile Spark without a supporting runtime library,
which implies that you can deliver an application without a
commercial off-the-shelf component. This might offer significant
benefits at the highest assurance levels, where evaluation of
such components remains problematic.

Spark is amenable to the static analysis of timing and mem-
ory usage. This problem is known to the real-time community,
where analysis of worst-case execution time is often required.
When developing secure systems, you might be able to use
such technology to ensure that programs exhibit as little varia-
tion in timing behavior as possible, as a route to protect
against timing-analysis attacks. You can access more informa-
tion about Spark at www.sparkada.com.

References
1. J-F. Bergeretti and B.A. Carré, “Information-Flow and Data-Flow Analy-

sis of While Programs,” ACM Trans. Programming Languages and Sys-
tems, vol. 7, no. 1, Jan. 1985, pp. 37–61.

2. D.E. Denning and P.J. Denning, “Certification of Programs for Secure In-
formation Flow,” Comm. ACM, vol. 20, no. 7, July 1977, pp. 504–513.

3. S. King et al., “Is Proof More Cost-Effective Than Testing?” IEEE Trans.
Software Eng., vol. 26, no. 8, Aug. 2000, pp. 675–686.

Spark and the Development of Secure Systems

based our approach on the Communica-
tions-Electronics Security Group’s Manual
“F”10 but simplified the method.

The informal security policy contained
four different kinds of clause, each giving
rise to a different kind of predicate in the
FSPM:

� Two clauses constrained the system’s
overall state (each became a state invari-
ant in the formal model).

� Eight clauses required the CA to per-
form some function (for example, au-
thentication).

� Sixteen clauses were constraints appli-
cable to every operation (for example,
that only authorized users could per-
form them).

� One clause was an information separa-
tion clause.

Information separation is harder to ex-
press in Z than other properties, and other
formal languages such as CSP can express it
more directly. However, we found the other
24 clauses straightforward to express in Z, so
Z proved a good choice of language overall.

Because we wrote the FSPM in Z, we
could check some aspects of its internal con-
sistency using a typechecker. We reviewed it
for correctness with respect to the informal
security policy. We did not carry out any
proofs of correctness; although, in other
projects, we found these to be effective in
finding errors.9

Formal top-level specification
The FTLS is a fairly conventional Z spec-

ification. However, it contains some special
features to allow checking against the FSPM.
In conventional Z, one or two schemas ex-
press an operation. In the FTLS, we used nu-
merous schemas to capture each operation’s
different security-relevant aspects.

We used separate schemas to define each
operation’s inputs, displayed information,
and outputs. This let us trace clearly to
FSPM restrictions on what is displayed and
how outputs are protected. We used sepa-
rate schemas to define when an operation
was available or valid. This let us distin-
guish both errors that are prevented by the
user interface and those that are checked
once we confirm the operation and thus
cause error messages to be displayed. We

also modeled errors in detail, to satisfy the
requirement of reporting all errors.

Process design
We modeled the process structure in the

CSP language. We mapped sets of Z opera-
tions in the FTLS to CSP actions. We also
introduced actions to represent interprocess
communications. This CSP model let us
check if the overall system was deadlock-
free and if there was no concurrent process-
ing of security-critical functions.

These checks were carried out automati-
cally, using Formal Systems Europe’s failures-
divergence refinement tool. This helped us
find significant flaws in our first design and
gave us much greater confidence in the final
design.

Furthermore, implementing the design
using Ada95 tasks, rendezvous, and pro-
tected objects was straightforward. We de-
vised rules for systematically translating
CSP into code. This successfully yielded
code that worked the first time, a rare expe-
rience among concurrent programmers.

Programming languages and static
analysis

Given the formality of the specification
and design, we hoped to carry this through
into the implementation. ITSEC and Com-
mon Criteria require the use of program-
ming languages with “unambiguous mean-
ing,” yet the use of formal implementation
languages remains rare. Experience suggests
that, despite sound protocols and cryptog-
raphy, sloppy implementation remains a
common source of failure in supposedly se-
cure systems—the ubiquitous “buffer over-
flow” attack, for instance.

A cure for sloppy implementation is a for-
mal implementation language for which we
can carry out static analysis—that is, analyz-
ing program properties such as information
flow without actually running the program.

To enable static analysis to produce use-
ful results, the language must be as precise
as possible. In the presence of ambiguity,
static analysis must make assumptions (for
example, “The compiler evaluates expres-
sions left-to-right”) that can render the re-
sults dubious. Alternatively, it might at-
tempt to cover all possible outcomes of any
ambiguity—this leads to an explosion in
analysis time that makes the tool unusable.

J a n u a r y / F e b r u a r y 2 0 0 2 I E E E S O F T W A R E 2 3

To enable static
analysis to

produce useful
results, the

language must
be as precise
as possible.

Unfortunately, few languages meet this
need. Trends in programming-language de-
sign have favored dynamic behavior (for ex-
ample, late binding of function calls in ob-
ject-oriented languages) and performance
(for example, unchecked arithmetic and ar-
ray access in C) over safety. These features
are dramatically at odds with the needs for
static analysis, and so they are inappropriate
for constructing high-integrity systems. The
safety-critical community, where the use of
high-integrity subset languages such as
Spark is the norm, has broadly accepted this.

Borrowing from Ross Anderson’s well-
known analogy,11 clearly, if you’re program-
ming Satan’s computer, you should not use
Satan’s programming language!

The use of Spark in the CA
In the CA, we used an information flow–

centered software architecture. This maxi-
mizes cohesion and minimizes coupling be-
tween units. We carefully chose between
Spark and Ada95 for each compilation unit,
on the basis of the required separation be-
tween security-related functions in the sys-
tem. Even though an Ada compiler

processes both these languages, it was
worth regarding them as separate languages
for the purposes of the design.

All Spark code had to pass through the
Spark Examiner with no unjustified warn-
ings or errors before any other review or in-
spection activity. This let reviewers focus on
important topics (such as “Does this code
implement the FTLS?”) rather than worry-
ing about more trivial matters such as
dataflow errors or adherence with coding
standards.

We used only the most basic form of an-
notation and analysis the Examiner offered.
We did not perform proof of partial cor-
rectness of the code. We did carry out some
proofs of exception freedom.

Informally, the defect rate in the Spark
code was extremely low. Spark programs
have an uncanny habit of simply running the
first time. The most significant difficulties
arose in the system’s more novel parts, espe-
cially in areas that we had not formally de-
signed or specified, such as the manipulation
of Win32 named pipes, the database inter-
face, and the handling of machine failures.

Results
Overall, the development has been suc-

cessful. The number of system faults is low
compared with systems developed using less
formal approaches.12 The delivered system
satisfies its users, performs well, and is highly
reliable. In the year since acceptance, during
which the system was in productive use, we
found four faults. Of course, we corrected
them as part of our warranty. This rate, 0.04
defects per KLOC, is far better than the in-
dustry average for new developments.12

Figure 2 shows the life-cycle phases
where defects were introduced and where
they were detected and removed. For exam-
ple, 23 errors were introduced at the speci-
fication phase and removed during devel-
oper test. A good development method aims
to find errors as soon as possible after they
are introduced, so the numbers on the right
of Figure 2 should be as small as possible.

The delivered system contained about
100,000 lines of code. Overall productivity
on the development—taking into account all
project activities, including requirements,
testing, and management—was 28 lines of
code per day. The distribution of effort
shows clearly that fault fixing constituted a

2 4 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 2

Specification 0

57
14

38
23

4
1

Architecture

Design

Code

Developer test

Customer test

Operation

3

8
4

1

0
0

0

9
18

3
0

0

117
115

60
0

00
0

0

Figure 2. Life-cycle
phases where
defects were
introduced and
where they were
detected and
removed.

Table 1
Distribution of effort.

Activity Effort (%)

Requirements 2
Specification and architecture 25
Code 14
Test 34
Fault fixing 6
Project management 10
Training 3
Design authority 3
Development- and target-environment 3

relatively small part of the effort (see Table
1); this contrasts with many critical projects
where fixing of late-discovered faults takes a
large proportion of project resources.

T hree significant conclusions that we
can draw from this work concern
the use of COTS for secure systems,

the practicality of formal methods, and the
choice of programming language.

You can build a secure system using inse-
cure components, including COTS. The sys-
tem’s overall architecture must guarantee
that insecure components cannot compro-
mise the security requirements. This resem-
bles the approach taken to safety-critical
systems.

Using formal methods, as required by the
higher levels of ITSEC and the Common
Criteria, is practical. Our experience in this
and other projects show that well-consid-
ered use of formal methods is beneficial. Of
course, neither formal methods nor any
other known method can completely elimi-
nate defects. For example, we didn’t dis-
cover a few specification errors until user
test. We can attribute these to incorrect for-
malization of the detailed requirements.
Nevertheless, formal methods do reduce the
number of late-discovered errors and, thus,
the overall system cost.

Similarly, Spark is certainly not a magic
bullet, but it has a significant track record
of success in the implementation of high-
integrity systems. Spark, we believe, is
unique in actually meeting the implementa-
tion requirements of the ITSEC and CC
schemes. Spark’s support for strong static
analysis and proof of program properties
(for example, partial correctness or excep-
tion freedom) means that you can meet the
CC requirements for formal development
processes. The language subset’s simplicity
and the data- and information-flow analysis
offered by the Examiner make a large class
of common errors simply impossible to ex-
press in Spark.

Acknowledgments
We thank John Beric of Mondex International for

his comments on an early draft of this article. The
SPARC programming language is not sponsored by or
affiliated with SPARC International and is not based
on the SPARC architecture.

References
1. M. Hendry, Smartcard Security and Applications, 2nd

ed., Artech House, Norwood, Mass., 2001.
2. Provisional Harmonised Criteria, version 1.2, Informa-

tion Technology Security Evaluation Criteria (ITSEC),
Cheltenham, UK, June 1991.

3. ISO/IEC 15408:1999, Common Criteria for Informa-
tion Technology Security Evaluation, version 2.1, Int’l
Organization for Standardization, Geneva, 1999;
www.commoncriteria.org (current Nov. 2001).

4. J. Hammond, R. Rawlings, and A. Hall, “Will It
Work?” Proc. Fifth Int’l Symp. Requirements Eng. (RE
01), IEEE CS Press, Los Alamitos, Calif., 2001, pp.
102–109.

5. S. Robertson and J. Robertson, Mastering the Require-
ments Process, Addison-Wesley, Reading, Mass., 1999.

6. D. Coleman et al., Object-Oriented Development: The
Fusion Method, Prentice-Hall, Upper Saddle River, N.J.,
1994.

7. J.M. Spivey, The Z Notation: A Reference Manual, 2nd
ed., Prentice-Hall, Upper Saddle River, N.J., 1992.

8. J. Barnes, High Integrity Ada: The SPARK Approach,
Addison-Wesley, Reading, Mass., 1997.

9. S. King et al., “Is Proof More Cost-Effective Than Test-
ing?” IEEE Trans. Software Eng., vol. 26, no. 8, Aug.
2000, pp. 675–686.

10. CESG Computer Security Manual “F”: A Formal De-
velopment Method for High Assurance Systems, Com-
munications Electronics Security Group, Cheltenham,
UK, 1995.

11. R.J. Anderson, Security Engineering: A Guide to Build-
ing Dependable Distributed Systems, John Wiley &
Sons, New York, 2001.

12. S.L. Pfleeger and L. Hatton, “Investigating the Influence
of Formal Methods,” Computer, vol. 30, no. 2, Feb.
1997, pp. 33–43.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

J a n u a r y / F e b r u a r y 2 0 0 2 I E E E S O F T W A R E 2 5

Spark is
certainly not

a magic bullet,
but it has

a significant
track record of
success in the
implementation

of high-
integrity
systems.

About the Authors

Anthony Hall is a principal consultant with Praxis Critical Systems. He is a specialist in
requirements and specification methods and the development of software-intensive systems.
He has been a keynote speaker at the International Conference on Software Engineering, the
IEEE Conference on Requirements Engineering, and other conferences. He has an MA and a
DPhil from Oxford University. He is a fellow of the British Computer Society and a Chartered
Engineer. Contact him at Praxis Critical Systems Ltd., 20 Manvers St., Bath BA1 1PX, UK;
anthony.hall@praxis-cs.co.uk.

Roderick Chapman is a software engineer with Praxis Critical Systems, specializing in
the design and implementation of high-integrity real-time and embedded systems. He has also
been involved with the development of the Spark language and its associated static-analysis
tools. He received an MEng in computer systems and software engineering and a DPhil in com-
puter science from the University of York. He is a member of the British Computer Society and
is a Chartered Engineer. Contact him at Praxis Critical Systems Ltd., 20 Manvers St., Bath BA1
1PX, UK; rod.chapman@praxis-cs.co.uk.

