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ABSTRACT
Software vulnerabilities have been the main contributing
factor to the Internet security problems such as fast spread-
ing worms. Among these software vulnerabilities, memory
corruption vulnerabilities such as buffer overflow and for-
mat string bugs have been the most common ones exploited
by network-based attacks. Many security countermeasures
(e.g., patching, automatic signature generation for intrusion
detection systems) require vulnerability information to func-
tion correctly. However, despite many years of research,
automatically identifying unknown software vulnerabilities
still remains an open problem.

In this paper, we present the development of a security de-
bugging tool named MemSherlock, which can automatically
identify unknown memory corruption vulnerabilities upon
the detection of malicious payloads that exploit such vulner-
abilities. MemSherlock provides critical information for un-
known memory corruption vulnerabilities, including (1) the
corruption point in the source code (i.e., the statement that
allows the exploitation of memory corruption vulnerability),
(2) the slice of source code that helps the malicious input to
reach the corruption point, and (3) the description of how
the malicious input exploits the unknown vulnerability. We
evaluate MemSherlock with a set of 11 real-world applica-
tions that have buffer overflow, heap overflow, and format
string vulnerabilities. The evaluation results indicate that
MemSherlock is a useful tool to facilitate the automatic vul-
nerability analysis process.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security
and Protection; D.4.6 [Operating Systems]: Security and
Protection—invasive software
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1. INTRODUCTION
Software vulnerabilities have been the main contributing

factor to the Internet security problems such as fast spread-
ing worms. Among the software vulnerabilities, memory
corruption vulnerabilities such as buffer overflow and for-
mat string have been most commonly exploited by network-
based attacks.

There have been attempts to retrofit legacy code to pre-
vent memory corruption and guarantee memory safety, as
represented by CCured [17, 18]. However, these approaches
require porting, and are not automated fully. Furthermore,
due to the conservative memory protection, the additional
instrumentation imposes permanent non-negligible perfor-
mance overhead. For example, CCured requires annotation
of program with pointer qualifiers, and introduces in the
worst case 87% performance overhead in its evaluation [17].
Thus, identifying and removing software vulnerabilities is
still an attractive option to provide software security.

Many security countermeasures have been proposed to re-
move software vulnerabilities once they are identified. Patch-
ing has been adopted by almost all mainstream operating
systems and applications, such as Microsoft Windows, Linux,
Mac OS, and Microsoft Office, to remove newly discovered
vulnerabilities. Moreover, Shield [27] was developed to pro-
vide temporary protection of vulnerable systems after the
vulnerabilities are identified but before patches are properly
applied. Recently, a filtering technique was developed to
defend against (polymorphic) exploits of known vulnerabili-
ties [9], and automatic generation of vulnerability-based sig-
natures (for known vulnerabilities) was also investigated [1].
All these approaches require specific vulnerability informa-
tion in order to function correctly.

There have been many years of research efforts to iden-
tify software vulnerabilities automatically. Static analysis
techniques have been applied to find potential software vul-
nerabilities (e.g., [2, 3,8,14]). However, most static analysis
techniques tend to generate a large number of false positives
without guaranteeing the detection of all vulnerabilities.

Dynamic approaches have also been investigated. In par-
ticular, several dynamic approaches have been proposed re-
cently to detect exploits of (unknown) vulnerabilities (e.g.,
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address space randomization [10, 21], TaintCheck [20], Mi-
nos [6]), analyze such exploits (e.g., DACODA [7], COV-
ERS [15]), and sometimes recover from such attacks (e.g.,
DIRA [25], STEM [23], [29]). However, despite the detection
of potentially unknown attacks, most of such approaches
cannot give precise information of the exploited vulnerabil-
ities. One exception is [29], which identifies the corruption
points used by exploits of unknown memory corruption vul-
nerabilities through back tracing from the program crash
point [29]. However, as indicated in [29], this method can
handle special cases only, and does not guarantee the identi-
fication of the corruption point in general. Moreover, it does
not give specific information about the exploit of unknown
memory corruption vulnerabilities either. As a result, it may
still take hours or days of manual effort to understand and
patch the unknown vulnerabilities being exploited.

In this paper, we present the development of a security de-
bugging tool named MemSherlock, which is aimed at auto-
matically identifying unknown memory corruption vulnera-
bilities upon the detection of malicious payloads that exploit
such vulnerabilities. MemSherlock provides three pieces of
information for unknown memory corruption vulnerabilities:
(1) the corruption point in the source code (i.e., the state-
ment that allows the exploit of memory corruption vulnera-
bility), (2) the slice of source code that helps the malicious
input to reach the corruption point, and (3) the description
of how the malicious input exploits the vulnerability.

Unlike previously proposed methods (e.g., [6,7,15,20,29]),
MemSherlock detects memory corruption of not only con-
trol flow data (e.g., return addresses), but also non-control
data (e.g., local variables). This feature is critical in detect-
ing non-control-flow attacks, such as those identified in [4].
Moreover, MemSherlock automatically analyzes the vulner-
ability that leads to the memory corruption, and outputs
the vulnerability information at the programming language
level, with variable names and line numbers involved in the
vulnerability in source code as well as the connection be-
tween them. Such information is presented in an intuitive
way to the programmer to facilitate the understanding and
patching of the vulnerability. Finally, MemSherlock keeps a
mapping for the entire virtual memory, providing monitor-
ing at multiple levels of granularity.

We evaluate the security debugging tool with a set of 11
real-world applications with known vulnerabilities, includ-
ing stack overflow, heap overflow, and format string vulner-
abilities. MemSherlock is able to identify all but one of the
vulnerabilities with very few false positives. It is important
to note that the false negative and false positives are due to
the limitation of the proof-of-concept implementation, not
the proposed method.

The contribution of this paper is three-fold. First, we
develop a suite of source code rewriting, static analysis,
and dynamic monitoring techniques to provide automated
debugging of unknown memory corruption vulnerabilities.
Second, we implement the proposed techniques as a secu-
rity debugging tool, MemSherlock, which allows automated
and efficient identification of unknown memory corruption
vulnerabilities in real-world applications. Third, we perform
substantial experimental evaluation of MemSherlock using a
set of real-world applications, demonstrating the feasibility
of this approach.

The rest of the paper is organized as follows. The next sec-
tion gives an overview of the proposed approach. Section 3
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Figure 1: Overview of MemSherlock

discusses pre-debugging phase preparation for MemSherlock.
Section 4 describes the debugging process aimed at iden-
tifying the memory corruption vulnerabilities. Section 5
presents the implementation of MemSherlock. Section 6
gives the experimental evaluation of MemSherlock using a
set of real-world applications. Section 7 discusses related
work. Section 8 concludes this paper and identifies several
future research directions.

2. OVERVIEW OF MEMSHERLOCK
The goal of MemSherlock is to assist programmers in un-

derstanding and patching unknown memory corruption vul-
nerabilities by automatically detecting and providing infor-
mation about such vulnerabilities. We concentrate on mem-
ory corruption vulnerabilities in network service programs
(e.g., httpd, ftpd) in this paper, since they are the primary
targets of network-based attacks (e.g., worms).

To identify memory corruption, we take advantage of an
observation made in [30]. That is, in most programs, a given
variable typically is accessed by only a few instructions (or
the corresponding statements in the source code). This ob-
servation can be further extended in the context of memory
corruption attacks: in order for a memory corruption attack
to succeed, an attacker needs to use an instruction (in the
victim program) to modify a memory region onto which the
instruction should not write. To exploit this observation,
we keep track of memory operations during the debugging
process, and verify whether an instruction writes to a mem-
ory location that it is not supposed to modify. Specifically,
we determine the memory regions and associate with each
of them a set of instructions that can modify it. For a given
memory region m, the set of instructions that can modify
m is called the write set of m, denoted WS(m).

Figure 1 illustrates the procedure for using MemSherlock.
MemSherlock requires a pre-debugging phase to collect the
information needed for security debugging. In particular, it
needs to collect the write set of each critical memory region.
It is non-trivial to obtain such write sets and track the write
operations during debugging, particularly due to the compli-
cations caused by pointers and complex program constructs.
As illustrated in Figure 1, during the pre-debugging phase,
MemSherlock first performs source code rewriting to handle
pointers and complex program constructs, then uses static
analysis of source code to collect information necessary for
debugging (e.g., write set information), and finally invokes
static analysis of binary code to associate the collected in-
formation with memory locations.
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Once invoked for debugging, MemSherlock takes as in-
put the instrumented version of the program, the auxiliary
debugging information (e.g., the variables in the program
along with their sizes and their write sets) generated dur-
ing the pre-debugging phase, and malicious network pay-
loads. During the debugging process, MemSherlock verifies
the modifications to memory regions with the write set in-
formation, and identifies an illegal write when the updating
instruction is not in the write set. Thus, MemSherlock can
capture memory corruption at the time of the modification,
pinpointing the exact instruction or statement in source code
that is responsible for the corruption.

In addition to the above verification, MemSherlock also
keeps track of the propagation of input data as well as the
program instructions involved in the propagation. As a re-
sult, upon the detection of memory corruption, MemSher-
lock can identify precisely parts of the program involved in
the propagation of the malicious input and determine how
the malicious input lead to the memory corruption. By fur-
ther integrating the auxiliary information collected during
the pre-debugging phase, MemSherlock presents all the vul-
nerability information at source code level to facilitate the
understanding and patching of the vulnerabilities.

One critical input to MemSherlock is malicious network
payloads that exploit memory corruption vulnerabilities. We
assume the method used in [16, 29] to capture such data.
For example, we may run network service applications us-
ing address space randomization (e.g., PaX ASLR [21]), and
log the messages to the service programs in a message log.
(Note that the logged messages can be discarded upon the
completion of a non-crash session.) When a memory corrup-
tion attack (e.g., a new worm) attempts to exploit an un-
known vulnerability in such a service program, it typically
causes the corresponding process to crash [10,21], which trig-
gers the automated debugging of the vulnerability. We then
run the instrumented version of the service program under
MemSherlock, with the logged network messages replayed to
replicate the error and obtain the vulnerability information.

Though based on the same observation as AccMon [30],
MemSherlock differs from AccMon in several ways. AccMon
relies on a training phase to collect the access instructions
for the monitored objects, and offers no guarantee of collect-
ing all access instructions. Indeed, missing instructions will
result in false alarms during access monitoring. In contrast,
MemSherlock uses static analysis combined with dynamic
monitoring to get precise write set information, not suffer-
ing from the same problems. Moreover, AccMon requires
hardware architectural supports, such as iWatcher [31] and
Check Look-aside Buffer (CLB) [30], which are not available
in current computer systems. AccMon uses Bloom filter to
implement the CLB, and may introduce false positives in
recognizing normal instructions, which imply false negatives
in detecting memory related bugs. This gives a malicious
attacker an opportunity to bypass detection. In contrast,
MemSherlock assumes existing hardware and software sup-
ports in modern computer systems, and does not suffer from
the same false negative problem.

3. GENERATING WRITE SETS
The primary objective of the pre-debugging phase is to

generate the write sets of memory regions used by appli-
cations. In this phase, we need to determine all program
variables and extract their write sets. Moreover, we need to

provide information for the debugging agent so that during
the debugging phase, it can link memory regions to pro-
gram variables and their write sets. A particular challenge
in this phase is handling pointers and certain dereferences
(e.g., chained dereferences and struct).

3.1 Extracting Write Sets from Source Code
We perform source code analysis to determine all the pro-

gram variables and extract their write sets. The write set
of a variable v includes statements that assign v or library
function calls where v is passed as a modifiable argument
(e.g., memcpy(v, src)). To facilitate this process, we pro-
vide the static analyzer with not only the source code, but
also a specification file for every shared library linked to
the program. The specification file includes the names of
library functions that modify their arguments and identifies
the modified arguments. An entry in the write set is a pair
consisting of a file name and a line number. We believe that
using line numbers is a reasonable approximation to using
instructions. As an immediate benefit, this method provides
information directly at the source code level. The static an-
alyzer also determines the size of the variables, and for local
variables, the function they appear in. Such information will
be used by MemSherlock during the debugging phase.

3.1.1 Handling Pointers
Pointers require some special attention, since given a pointer

variable, the statements that modify the pointer variable
and those that modify the pointer’s referent object mod-
ify two different memory regions. To address this issue, we
keep two separate write sets for every pointer variable p:
One for the pointer variable itself (WS(p)), and the other
for the referent object ref(p) (WS(ref(p))). Note that a
pointer may point to different objects during the course of
execution. During the debugging process, when the refer-
ent object ref(p) is determined, the debugging agent adds
WS(ref(p)) to the referent object’s write set.

Note that WS(ref(p)) represents the write set of p’s refer-
ent object possibly updated through pointer p. Thus, when
p is updated, for example, to point to a different object,
WS(ref(p)) should be removed from the write set of the ref-
erent object to which p previously pointed, since it is no
longer possible to update this object through pointer p.

1  int i = 0;

2  int *p = &i;

3  *p = 1;

4  p = NULL;

WS(i) = {1}

WS(p) = {2,4}

WS(ref(p)) = {3}

(a) Code example

Line

1

2

3

4

ref(p)

N/A

i

i

NULL

WS(i)

{1}

{1,3}

{1,3}

{1}

(b) Write sets after static 

analysis

(c) ref(p) and WS(i) during monitoring

Figure 2: Example illustrating model of pointers
during static analysis and security debugging

Figure 2 shows an example of the write sets of pointers and
their referent objects. We can see that after static analysis,
WS(i) contains the instruction on line 1 and WS(ref(p))
contains only line 3. Note that ref(p) remains unresolved
during static analysis. During security debugging, however,
p’s value is updated on lines 2 and 4. At these points, we
can see that ref(p) is resolved to i and NULL, respectively.
During the execution of lines 2 and 3, while p points to i,
WS(i) changes to include the instructions in WS(ref(p)).
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However, once p’s referent object changes to NULL on line 4,
WS(i) goes back to its original value.

Since we use the debugging agent to determine dynami-
cally when a pointer variable is updated and find the corre-
sponding memory region, we can avoid pointer alias analysis
during static analysis. Indeed, general pointer alias analy-
sis is known to be an undecidable problem [13, 22]. Our
approach allows us to bypass it without sacrificing the anal-
ysis accuracy. We will discuss the details of pointer updating
and tracking in Section 4, since it occurs during debugging.

3.1.2 Handling Chained Dereferences
Chained dereferences make it difficult for the debugging

agent to track the memory writes and verify the write set
constraint. Examples of chained dereferences include **p,
array[1][2] and *(p+q). We use source code rewriting to
transform chained dereferences to simple ones so that the
techniques discussed in Section 3.1 can be applied. We per-
form this transformation only if the expression potentially
is updated. For example, x = var.arr[5]->name need not
be transformed since the modified variable x is already in a
simple form and var.arr[5]->name is not updated at all.

1 int z;
2 int *y = &z;
3 int **x = &y;
4 **x = 10;

1 int z;
2 int *y = &z;
3 int **x = &y;
4 int *temp = *x;
5 *temp = 10;

Figure 3: Example of chained dereference

Figure 3 shows an example of chained dereferencing on
the left. The static analyzer models the chained derefer-
ence on line 4 as a simple dereference, and adds line 4 to
WS(ref(x)). This is because we model variable updates as
low-level write instructions, which do not have any access to
type information. However, we cannot determine the num-
ber of dereferences that have occurred in calculating the final
target address of a write instruction. Thus, at line 4, the
agent is unable to determine the relationship between x and
z. When it detects a write to z, it first checks if line 4 is
in WS(z) and then WS(y). Both checks fail, since line 4 is
only in WS(ref(x)) and z is not the referent of x.

To handle such chained dereferences, we use automatic
source code rewriting. Any chained dereference can be trans-
lated into simple dereferences by introducing one or a few
temporary variables. For a chained dereference of the form
∗X, we declare a temporary variable t whose type is that of
X and assign the value of X to t. In the above example, we
can replace line 4 with lines 4 and 5 on the right in Figure 3.

After the transformation, upon executing line 4, the de-
bugging agent sets temp’s referent to z and adds temp to z’s
list of references. When line 6 attempts to write to z, the
debugging agent determines it as a legitimate write, because
temp is one of z’s references and line 6 is in WS(ref(temp)).

3.1.3 Separating struct fields
Another complication with C is in dealing with struct

constructs. Modeling a struct variable as a single memory
region can introduce false negatives. An instruction that op-
erates on one field could illegitimately modify another field
without being detected. This may happen since the instruc-
tion is in the struct variable’s write set and is therefore
considered as a legitimate instruction. For example, in the
code segment shown in the left part of Figure 4, strcpy

typedef struct {
char str[4];
int num;

} entry;

1 int main() {
2 entry var;
3 strcpy(var.str,

"Hello");
4 }

typedef struct {
char str[4];
int num;

} entry;

1 int main() {
2 entry var;
3 char* temp;
4 temp = var.str;
5 strcpy(temp,

"Hello");
6 }

Figure 4: Example of struct field dereference

overflows the str field and writes into the  num field.

In order to solve this problem, we need to treat each field
in a struct as a separately monitored memory region. Once
again, we turn to source code rewriting to generate individ-
ual memory regions for each field in a struct. A field ref-
erence of a struct is considered a dereferencing itself. We
replace every field expression with a temporary variable of
the same type. For the example shown in Figure 4, MemSh-
erlock adds a temporary variable of char * type and assigns
it var.str before line 4. Line 4 is then added to the WS
of temp. When the statement in line 5 overflows the buffer
and modifies the memory region of num, the debugger can
detect the overflow and raise an error, since temp points to
the memory region of str and not of num.

The current implementation of MemSherlock treats an ar-
ray or a union as a single memory region. Therefore, arrays
of structs or structs within unions cannot be handled in
the same way. This prevents MemSherlock from capturing
overflows from one field (or element) to another. In prac-
tice, we have not observed any false negatives due to this
limitation. We will discuss more implementation details on
structs in section 5.2, and point out the possible false pos-
itives and false negatives that may arise in Section 6.

3.2 Mapping Variables to Memory Regions
The aforementioned static analysis at the source code level

allows us to extract write sets of variables. To facilitate the
debugging process, we have to provide additional informa-
tion to the debugging agent so that it can associate the
variables with memory regions and identify the write sets of
those memory regions during debugging time.

We perform binary analysis to determine the location of
memory regions corresponding to variables. This is trivial
for global variables, since global variables are assigned static
addresses after compilation. Local variables, however, have
dynamic addresses depending on when the functions con-
taining the local variables are called. To address this issue,
we use the addresses of functions that contain the local vari-
ables and their frame pointer offset values to identify local
variables. The debugging agent can use these values and
the actual function calls to calculate the real memory ad-
dresses during debugging. The binary analysis also provides
information about segment sizes and locations as well as the
addresses of functions.

3.3 Output of Pre-debugging Phase
The information gathered during the pre-debugging phase

is written to a text file and passed to the debugging agent.
The pre-debugging phase need be done only once per pro-
gram. The file contains a listing of variables along with their
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write sets in the form of file name and line number pairs. It
contains additional information about variables to simplify
the debugging process. Variables are distinguished as global
or local. For local variables, we also output the variable’s en-
closing function. In addition, pointer variables and formal
parameters that are pointers are flagged as such. Finally,
line numbers in a pointer’s write set are marked with a flag
if the statement modifies the referent instead of the pointer.
This enables the debugging agent to divide the write set of a
pointer variable into two separate write sets for the pointer
and its referent, respectively.

4. DEBUGGING VULNERABILITIES
During the debugging phase, MemSherlock monitors the

program execution to detect memory corruption and infer
vulnerability information. As discussed earlier, MemSher-
lock verifies the modifications to memory regions with the
write set information, and identifies an illegal write when the
updating instruction is not in the write set. To accomplish
automated vulnerability analysis, the MemSherlock debug-
ging agent needs to perform three primary tasks:

1. State Maintenance: Keep track of the memory regions
along with their write sets as program executes. This
is necessary, because the active memory regions and
their write sets change as program executes.

2. Memory Checking: Track and verify memory update
operations to detect memory corruption.

3. Vulnerability Extraction: Generate vulnerability infor-
mation once a memory corruption is detected.

In the following, we first discuss a few key data structures,
which will be used in the later discussion, and then explain
the three primary tasks in detail.

4.1 Key Data Structures
The MemSherlock debugging agent uses several key data

structures. For each monitored memory region r, the agent
creates a MemoryRegion object m, which stores r’s address,
size and write set. Additionally, the MemoryRegion object
for each pointer p stores WS(ref(p)) and a pointer to its ref-
erent object’s MemoryRegion. At any time during debugging,
MemSherlock maintains all the active memory regions. For
the sake of presentation, we collectively refer to these mem-
ory regions as ActiveMemoryRegions, though our implemen-
tation manages global variables, local variables, and heap-
allocated variables separately for performance reasons. For
each user-defined function in the executable, a Procedure

object is created to store the function’s name, its address in
the code segment, and a list of MemoryRegions correspond-
ing to its local variables. For local variables, their addresses
are stored as frame pointer offsets.

Certain memory regions, such as a function’s return ad-
dress or saved registers, should never be written by source-
level instructions1. These memory regions, along with meta
data adjacent to dynamically allocated memory regions and
segments in the virtual memory that do not have write per-
missions (e.g., code segment, kernel space), are stored in
NonWritableRegions.

Since functions may be called recursively, MemSherlock
maintains a ProcedureStack, a stack of Procedures whose

1MemSherlock begins monitoring these regions after the
frame pointer is set. Therefore, they should not be updated
until the function returns

elements correspond to the user-level functions currently on
the execution stack. Maintaining this stack is necessary to
ensure that MemSherlock can monitor local variables cor-
rectly when there are several instances of the same function
on the execution stack.

These key data structures facilitate the MemSherlock de-
bugging process. In particular, state maintenance actions
update the data structures so that the current state of exe-
cution is reflected accurately, while memory checking actions
ensure that only legitimate write instructions are executed.

4.2 State Maintenance
It is necessary to maintain the list of active memory re-

gions and their current write sets at any time of program ex-
ecution. MemSherlock updates its internal data structures
at certain runtime events. For example, when a function call
is made, the local variables of the function should be added
to the list of monitored memory regions and their write sets
should be generated accordingly.

We discuss the critical events and the corresponding state
maintenance in detail below:

Pointer Value Updates and Pointer-Type Function
Arguments: When an update to a pointer variable p with
the address of a MemoryRegion m is detected, the MemSher-
lock debugging agent first determines the new referent object
by searching through ActiveMemoryRegions. The referent
pointer of m is set accordingly if m is found. If the new
referent cannot be matched to a monitored memory region,
this implies that there could be a potential dangling pointer
or misuse of a pointer.

Function Calls and Returns: When a user-defined
function is called, MemSherlock pushes a Procedure record
associated with this function onto ProcedureStack. MemSh-
erlock then calculates the real addresses of its local vari-
ables by adding their offsets to the current frame pointer.
The function’s return address, the saved frame pointer, and
any padded regions between local variables are added to
NonWritableRegions, enabling MemSherlock to capture il-
legal writes to these regions. (Note that the static analysis
performed in the pre-debugging phase does not provide suf-
ficient information about these memory regions.) This is
especially useful in detecting stack buffer overruns. When
the function returns, MemSherlock pops the corresponding
Procedure record off the ProcedureStack, and removes its
return address, the saved frame pointer, and the padded
regions from NonWritableRegions.

MemSherlock uses the knowledge of frame pointers. There-
fore, the above operations can be done once the frame pointer
is set, rather than when a call instruction is executed. A
side benefit is that all the memory writes that take place
to initialize a function’s activation record on stack do not
cause alarms, since the memory regions are not added yet
to ActiveMemoryRegions. When the frame pointer is ini-
tialized, MemSherlock looks for any pointer-type formal-in
arguments. If the procedure has any, MemSherlock reads
them and determines the referent object in the same way
as when a pointer is updated. Again, this allows the static
analysis performed in the pre-debugging phase to be fairly
simple, since the MemSherlock debugging agent takes care
of inter-procedural dependencies.

Heap Memory Management: When a heap mem-
ory region is allocated using the malloc family of func-
tions, MemSherlock creates a new MemoryRegion object and
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adds it to ActiveMemoryRegions. In addition, any mem-
ory manager meta data adjacent to the block is added to
NonWritableRegions. This not only ensures that the meta
data is protected, but also facilitates the detection of heap
buffer overruns.

When free is invoked on a memory region, MemSherlock
first checks that the region is in ActiveMemoryRegions. If
so, MemSherlock frees the region, and removes the corre-
sponding MemoryRegion record from ActiveMemoryRegions.
Otherwise, MemSherlock generates an error message, indi-
cating that the program has tried to free a non-heap allo-
cated region, which might indicate a double free error.

Dynamically Linked Libraries: MemSherlock keeps
track of memory regions allocated for shared libraries. Each
shared library has an executable region and a read-only re-
gion. In some cases, libraries also have .bss sections. Shared
libraries can be loaded to arbitrary locations in the virtual
memory and their location is determined at runtime. An-
other feature is lazy binding, which loads a library only when
a function from that library is called. MemSherlock reads
the memory region information from the process map in the
proc file system, and can infer that a new library has been
loaded while performing write checks. It then checks if the
global offset table (GOT) has been modified, and reads the
map file only if GOT has changed. MemSherlock groups
library regions with respect to their permissions and allows
a library to modify any writable regions of the library. We
discuss the ramification of this simplification in section 6.3.

4.3 Memory Checking
When a memory write to an address addr occurs, MemSh-

erlock searches through ActiveMemoryRegions to look for
a MemoryRegion that covers addr (i.e., addr falls in this
MemoryRegion). Moreover, MemSherlock also searches for
pointer-type MemoryRegions pointing to such a MemoryRegion.
Once found, MemSherlock verifies that the write instruc-
tion’s address is in the WS of this MemoryRegion, or in one
of the memory regions whose pointers point to it. Note that
this implies that the memory region m for a pointer-type
variable p can be verified in two ways. If the destination
address is in m then the membership is checked for WS(p).
If the destination address is in the referent object’s memory
region then the membership is checked for WS(ref(p)).

If MemSherlock cannot find a MemoryRegion correspond-
ing to the write destination address addr, it will perform the
same search in NonWritableRegions. If a match is found,
this means the write instruction is trying to corrupt a non-
writable region, and MemSherlock emits an error message.

If the destination address does not match any of the en-
tries in ActiveMemoryRegions or NonWritableRegions, there
are several things that could be happening. Depending on
the program counter (PC) and the destination address, this
could be a call instruction pushing values onto the stack.
Since the frame pointer of the callee is not set, we do not
monitor its memory regions at this time. Second, it could
be a library function writing onto its stack. MemSherlock
keeps track of the lowest memory address of client function
activation records for this purpose. Third, this could be a
library function writing to dynamically allocated memory.

Because the static analyzer outputs write sets as file name
and line number pairs, the PC must be translated into a
file name and line number before performing a write check.
The translation from instruction address to file name makes

library functions a challenge. When a library function is
called, the execution jumps to the shared library memory
region where multiple function calls may occur. When this
occurs, the PC is an instruction address in the shared library
region for which no source code is available. In order to
address this problem, the agent needs to find the call site of
the library function in the user code. This can be done either
through a stack walk or by keeping track of the last jump
instruction. Once the original call site has been recovered,
the memory write check can proceed as describe before.

4.4 Generating Vulnerability Information
Unlike most other memory level monitoring tools, MemSh-

erlock detects memory corruption at the time of memory
write. This enables MemSherlock to pinpoint the exact
statement in the source code responsible for the corruption.
In many cases, just knowing the point of corruption is suf-
ficient to determine the vulnerability. For example, most
programmers look for a buffer overflow when the problem
statement is a strcpy. However, to provide more vulnerabil-
ity information, MemSherlock incorporates the taint anal-
ysis from TaintCheck [20] to check if the value written to
the destination address during the corruption is tainted. If
so, MemSherlock performs additional analysis to report the
source of the tainted data (e.g., network packet) and a dy-
namic slice of the source code that propagated the tainted
data. The programmer can see how the tainted data is in-
troduced and causes the vulnerability to be exploited.

As described earlier, MemSherlock keeps a close watch on
memory regions and operations performed on them. In re-
turn, MemSherlock can determine the memory region being
modified and the program variable to which the memory re-
gion corresponds. It also determines if the memory region
was updated through the use of the variable or dereferenc-
ing of a pointer variable. This greatly simplifies the analysis
of the vulnerability, since the programmer does not have to
iterate through the call stack and pointer aliasing to deter-
mine the original memory region being modified.

When generating the dynamic program slice for the ex-
ploited vulnerability, MemSherlock uses the Taint data struc-
ture from TaintCheck. Every tainted memory region is asso-
ciated with a Taint data structure. When the taint is prop-
agated to a new memory region, a new Taint data structure
is created. This data structure stores the instruction that
propagated the taint, the tainted memory address, the cur-
rent execution stack, and a reference to the Taint structure
of the source memory regions. By using these data struc-
tures, particularly the execution stacks, MemSherlock can
identify the part of the program that propagated malicious
network input, the involved memory regions, and the depen-
dency among the memory regions.

When generating the output of the analysis, we can high-
light the statements in the source code (through the trans-
lation from instructions to file name and line number pairs),
and associate these statements with the memory regions in-
volved in the exploit. Figure 6 in Section 6.1 shows an ex-
ample of the output, using one of our test cases.

In most cases, checking whether the value being written is
tainted is sufficient. One exception is when a tainted value
is used as a size argument during memory allocation. One of
our test cases (Null HTTPD) has such an overflow vulnera-
bility, where a user-provided value is used in calculating the
size for a heap buffer, which is then overflowed. In this ex-
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ample, the influence of the tainted data is indirect. In order
to deal with such indirect effects, we use source code rewrit-
ing and a functionality of Valgrind that allows it to receive
client calls from the client program during debugging. We
modify the source code such that every time a user variable
is passed as a size argument to a malloc family of function
call, a client call is made to the debugging agent to inform
the memory location of the variable. When a buffer overflow
occurs, we not only check if the value is tainted but also if
the size used during allocation is tainted as well.

5. IMPLEMENTATION
MemSherlock is implemented as two pre-debugging tools

and a security debugging agent. In this implementation,
we try to reuse existing software as much as possible to
reduce the development cycle. In the following, we present
the implementation details.

5.1 MemSherlock Preprocessing Tools
In the current implementation, MemSherlock uses two

programs to facilitate the pre-debugging phase: SrcRewrite
performs source code rewriting, as discussed in Section 3.1.2,
while WriteSetGen performs source code and binary static
analysis to generate write sets and auxiliary information.

5.1.1 Source Code Rewriting via SrcRewrite

SrcRewrite uses C Intermediate Language (CIL) to rewrite
source code files. The CIL executable cilly supports an
OCaml scripting interface that allows users to define their
own rewriting rules. cilly supports rewriting at different lev-
els such as per function, per statement and even per l-value.
We use statement based rewriting, which allows us to define
new temporary variables and insert new statements or alter
the existing one.

For every l-value and function argument that is a chained
dereference or a reference to a field of a struct, we insert
a temporary variable temp of compatible type and insert
an assignment statement that sets temp to the expression.
The l-value is then replaced with temp in the assignment
statement.

For each library, SrcRewrite takes as input a specification
file for the library which lists the functions that modify their
arguments and the argument numbers that are modified.
SrcRewrite rewrites all such arguments in the source code
and converts them to simple dereferences if necessary.

Finally, in order to aid MemSherlock in security debug-
ging phase, SrcRewrite inserts client calls into the source
code whenever a malloc family of function call is passed a
non-static size (i.e., variable or expression). Expressions are
first transformed to l-values. This client call informs the de-
bugger of the location of the variable being used as the size,
which in turn is checked for taintedness.

5.1.2 Generating Write Sets via WriteSetGen

During the pre-debugging phase, WriteSetGen performs
static analysis in two steps to produce the information for
its debugging agent. In step 1, WriteSetGen uses Code
Surfer [5], a commercial static analysis tool, to identify vari-
ables and their write sets. Code Surfer analyzes a program
and creates its own internal data structures, including data
and control-flow dependency graphs. It is equipped with a
scripting interface that allows users to access these internal
data structures. WriteSetGen uses a script to determine the

variables and their legitimate write sets automatically. This
script also contains specifications for standard library func-
tions that potentially modify their arguments just as in Sr-
cRewrite). When such a function is called with a monitored
variable as a potentially modified argument, WriteSetGen
adds the call site to the variable’s legitimate write set.

The Code Surfer script outputs a text file listing every
variable along with its WS in the form of file and line num-
ber pairs. Variables are distinguished as global or local.
For local variables, it also outputs the variable’s enclosing
function. In addition, pointer variables, pointer type for-
mal parameters and struct variables are flagged as such.
Finally, line numbers in a pointer’s WS are marked with a
flag if the statement modifies the referent object instead of
the pointer. This enables the MemSherlock debugging agent
to distinguish between the write sets of the pointer and its
referent object.

In step 2, WriteSetGen analyzes the program executable
to determine the global variable addresses, function addresses,
and offsets of local variables. To further facilitate the de-
bugging process, we compile the code using debugging flags,
and use the dwarfdump tool to determine the addresses for
global variables and functions, and offsets for local variables.
dwarfdump’s output effectively provides a mapping from pro-
gram source variables to their corresponding runtime mem-
ory locations. WriteSetGen includes a pre-debugging script
written in Ruby to parse dwarfdump’s output and combine
the relevant data with Code Surfer’s output to produce the
final input file for the debugging agent. The script also splits
struct variables into its fields, and outputs individual mem-
ory region information for each field as well as its WS.

5.2 MemSherlock Debugging Agent
The MemSherlock debugging agent is implemented as an

extension to Valgrind [19], which is an open-source CPU em-
ulator for x86 architectures that provides facilities to mon-
itor all aspects of program execution, including memory
writes, memory allocation events, function calls and system
calls. The MemSherlock debugging agent is implemented
as a Valgrind skin that logs all memory operations, mon-
itors memory regions, and performs checks to ensure that
only legitimate memory writes occur. When a program is
executed under Valgrind, the binary code undergoes certain
transformations one basic block at a time. In our implemen-
tation of the MemSherlock debugging agent, we instrument
the basic blocks with calls to our own functions when certain
events are observed, including function calls, returns, mem-
ory writes, and system calls. MemSherlock also incorporates
the taint analysis from TaintCheck [20]. This information is
used in extracting the dynamic slice of the program respon-
sible for the vulnerability.

Another implementation detail worth mentioning is the
way MemSherlock handles struct type pointer assignments.
MemSherlock assumes MemoryRegions are non-overlapping.
Moreover, to capture overflows from one struct field onto
another, we represent these fields as individual memory re-
gions. The challenge then, is to determine whether a pointer
points to the field itself or the entire struct variable. Essen-
tially, the two are differentiated by a flag associated with the
pointer variable during pre-debugging static analysis. Dur-
ing memory write checking, when this pointer is analyzed,
MemSherlock first checks the MemoryRegion of the variable
itself, and then its referent object’s MemoryRegion, just like
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--20361--
--20361-- Error type: Heap Buffer Overflow
--20361-- Dest Addr: 3AB3E360
--20361-- IP: 0x804E5C7: ReadPOSTData (http.c:108)
--20361-- Dest address resolved to:
--20361-- Global variable "heap var"

@ 3AB3E280 (size: 224)
--20361--
--20361-- Memory allocated by 0x804E531:

ReadPOSTData (http.c:100)
--20361--
--20361-- TAINTED destination 3AB3E360
--20361-- Fully tainted from:
--20361-- 0x804E5C7: ReadPOSTData (http.c:108)
--20361--
--20361-- TAINTED size used during allocation
--20361-- Tainted from:
--20361-- 0x804E456: ReadPOSTData (http.c:100)
--20361-- 0x804FBB5: read_header (http.c:153)
--20361-- 0x805121B: sgets (server.c:211)
--20361--

Figure 5: A typical error message from the debugger

any other pointer variable. In the case when the pointer
variable is flagged as a struct pointer, the debugger further
checks the MemoryRegions of the subsequent fields. There-
fore, the struct flag determines whether this instruction is
allowed to modify the field alone or the entire struct.

6. EXPERIMENTAL EVALUATION
We performed a series of experiments to evaluate MemSh-

erlock. In our evaluation, we used 11 real-world applications
with a variety of vulnerabilities, along with the attack pro-
grams that exploit these vulnerable applications. Table 1
gives the information about these test applications. The
first three columns in Table 1 show the list of applications,
their vulnerability type and a brief description. Six of the
test cases have stack buffer overflow vulnerabilities, three
have heap overflow vulnerabilities, and the other two have
format string vulnerabilities. It is worth noting that other
types of memory corruption attacks rely on these three vul-
nerabilities. For example, return-to-library attacks are a
variation of stack overflows, whereas the malloc-free attack
relies on overflowing a heap buffer and corrupting the meta
data used by the memory manager.

Table 1 also summarizes the evaluation results, including
whether the vulnerabilities are captured and the number of
false positives. Moreover, Table 1 presents the false positives
in three classes based on their reasons. It is worth pointing
out that all the false positives were due to the limitation of
our implementation rather than the proposed method. In
the following, we describe the evaluation results in detail.

6.1 Automated Debugging
MemSherlock can provide crucial information about ex-

ploited vulnerabilities to aid programmers in debugging, sig-
nature generation, patching, etc. To demonstrate the depth
of information MemSherlock can provide, we use the vulner-
ability output from Null HTTP as an example.

Figure 5 shows the error message displayed by MemSher-
lock when NullHTTP’s heap is overflowed. The first para-
graph displays the location of the error; both the instruction
number and the source file location which states that line
108 was responsible for this memory corruption. The error
message then provides the destination memory address and
the memory region to which it corresponds. In this particu-

lar example, since the destination address is the meta data
of the heap memory region, the heap memory region that
was allocated is shown rather than the meta data’s.

Knowing the corruption point, a programmer easily can
guess that the recv function call is responsible for the over-
flow. What is not apparent from this information alone is
that the reason the buffer is overflowed is not due to an
oversized packet alone. The size of the overflowed buffer is
calculated from user data, and a negative value provided by
the user can cause the buffer to be smaller than expected.
The error message states that the buffer was allocated from
line 100 in http.c and also performs taint analysis on both
the array and the size value that was used during allocation.

MemSherlock produces enough information to detail this
vulnerability. A more intuitive display of the vulnerabil-
ity can be generated by extracting a dynamic slice of the
program and presenting it as a graph. Figure 6 shows the
fragments from the source code, highlighting the statements
involved in the propagation of the tainted data. It includes
the critical program steps from the time when the malicious
input is introduced to the time of memory corruption.

As highlighted in Figure 6, the function read header calls
sgets, passing its local variable line as an argument. The
sgets function taints the memory region belonging to line

through the recv library function call. Note that the ar-
gument used while calling recv is buffer. This assign-
ment is captured during the function call to sgets and the
connection is clearly shown in Figure 6. Once sgets re-
turns, the value in line is converted into a decimal num-
ber at line 153 in read header. This statement propagates
the taint into another heap memory region belonging to
conn[sid].dat->in ContentLength. The dotted line be-
tween the two memory regions show the taint propagation.
Later, the tainted heap memory region is used as the size ar-
gument in ReadPOSTData at line 100, where the calloc func-
tion call at line 100 creates a new memory region. (Note that
TaintCheck itself cannot capture the connection between the
tainted size argument and the newly created memory re-
gion. MemSherlock uses a Valgrind client call inserted by
SrcRewrite to capture it.) Finally, with the call to recv at
line 108, ReadPOSTData taints the newly created memory re-
gion and also overflows it at the same time, for which the
debugger issues the error message.

As illustrated in Figure 6, MemSherlock can simplify the
security debugging process greatly by providing the informa-
tion on how a memory corruption vulnerability is exploited,
and thus significantly reduce the time and effort required
in understanding and fixing unknown memory corruption
vulnerabilities.

6.2 False Positive Analysis
Our evaluation shows that MemSherlock generates very

few false positives. We observed a total of 25 false positives
in our 11 test applications. Most of them were due to the
same implementation limitations manifesting themselves in
different locations within the program. We categorize these
false positives into three groups, as discussed below.

Embedded Assembly: Code Surfer cannot perform source
code analysis on embedded assembly code. This prevents
WriteSetGen from including the statement in the WS of
the variable on which it operates. This missing information
causes the debugger to label the memory modification as
illegal.

569



Application Vuln. Description Captured #FP #FP #FP #FP
Name Type (total) due to due to due to

asm clib struct

GHTTP S A small HTTP server Yes 7 4 2 1
Icecast S A mp3 broadcast server Yes 0 0 0 0
Sumus S A game server for ’mus’ Yes 0 0 0 0
Monit S Multi-purpose anomaly detector Yes 0 0 0 0
Newspost S Automatic news posting Yes 2 0 1 1
Prozilla S A download accelerator for Linux No 0 0 0 0
NullHTTP H Null HTTP, HTTP server Yes 0 0 0 0
Xtelnet H A telnet server Yes 4 0 4 0
Wsmp3 H Web server with mp3 broadcasting Yes 0 0 0 0
OpenVMPS F Open source VLan management policy server Yes 2 0 2 0
Power F UPS monitoring utility Yes 10 6 4 0

Table 1: List of test applications. Type abbreviations: (S)tack overflow, (H)eap overflow and (F)ormat string.

~~http.c:~~

119: int read_header(int sid)

120: {

121: char line[2048];

122: char *pTemp;

...

127: do {

128: memset(line, 0, sizeof(line));

129: sgets(line, sizeof(line)-1, conn[sid].socket);

130: striprn(line);

...

151: strncpy(conn[sid].dat->in_Connection, (char *)&line+12,

sizeof(conn[sid].dat->in_Connection)-1);

152: if (strncasecmp(line, "Content-Length: ", 16)==0) 

153: conn[sid].dat->in_ContentLength=atoi((char *)&line+16);

154: if (strncasecmp(line, "Cookie: ", 8)==0)

...

169: if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

170;  ReadPOSTData(sid);

171: } else {

...

~~server.c~~

202: int sgets(char *buffer, int max, int fd)

203: {

...

209: conn[sid].atime=time((time_t*)0);

210: while (n<max) {

211: if ((rc=recv(conn[sid].socket, buffer, 1, 0))<0) {

212: conn[sid].dat->out_headdone=1;

...

~~http.c~~

91: void ReadPOSTData(int sid) {

92: char *pPostData;

...

98: conn[sid].PostData=NULL;

99: }

100: conn[sid].PostData=calloc(

conn[sid].dat->in_ContentLength+1024, sizeof(char));

101: if (conn[sid].PostData==NULL) {

...

106: /* reading beyond PostContentLength is required 

for IE5.5 and NS6 (HTTP 1.1) */

107: do {

108: rc=recv(conn[sid].socket, pPostData, 1024, 0);

109: if (rc==-1) {

...

Create

Taint

Memory Region:

Type: local 

Name: “line”

Memory Region:

Type: heap 

Use

Use

Taint

Memory Region:

Type: heap 

Create

Taint

**Corruption Point**

Figure 6: A graphical representation of the vulnerability in Null HTTP

Incomplete Library Specification: Our testing al-
lowed us to observe certain properties of the C library which
require a more expressive specification than the one our cur-
rent implementation uses. strtok(char *str, char *delim)

is a C library function that tokenizes a given string. It tra-
verses the string until a delimiter character is reached and
returns the pointer to the beginning of the token. The orig-
inal string can be parsed further by calling strtok with a
NULL argument. These subsequent calls are not included
in the WS of the original string, since the string does not
appear as an argument. This results in the memory write
being interpreted as illegal during debugging.

Certain library functions modify global variables as side
effects. For example, the function that parses the program
argument getopt returns the argument through the global
variable optarg. The statements issuing the function calls
are not in optarg’s WS, causing false positives during de-
bugging. Another example is errno, which is used to return
the error number throughout the C library.

Finally, some library functions return pointers to global
variables that are hidden from the client program through
the use of attribute-hidden. Examples include getdatetime,
gmtime in time.h and gethostbyaddr, gethostbyname in
socket.h. When the returned value is assigned to a pro-
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gram variable, MemSherlock fails to find a corresponding
MemoryRegion and raises a false alarm.

The false positives due to library functions can be pre-
vented by the use of a more expressive library specification.
struct Pointers: MemSherlock relies on type informa-

tion as little as possible. Unfortunately, struct pointers is
one of the few instances where MemSherlock requires type
information supplied through flagging the variable. As men-
tioned earlier, this allows the debugger to determine if the
pointer is pointing to a field or the entire struct. Two of our
test applications use void * type pointers to refer to struct

variables using explicit type casting. When the struct vari-
able is modified through the use of this pointer, MemSher-
lock raises an error upon the modification of the second and
later fields. These false positives can be prevented by check-
ing for such type casting during static analysis and commu-
nicating this information to the debugger either through the
input file or client calls at debugging time.

6.3 False Negative Analysis
The MemSherlock debugging agent is implemented as a

Valgrind skin. Unfortunately, Valgrind is unable to trace
into kernel instructions. As a result, our current implemen-
tation cannot detect memory region modifications done by
kernel instructions. This case is different from system calls
which are handled successfully. While experimenting with
Prozzilla, we noticed that vfprintf makes a call to mempcpy,
which is identical to memcpy except that it returns the desti-
nation pointer instead of the number of bytes copied. When
copying large chunks of memory that span multiple virtual
memory pages, mempcpy uses kernel functions to modify the
page table. The current implementation of MemSherlock
debugging agent is not able to see such memory writes, and
failed to detect the memory corruption.

It is easy to prevent such false negatives by writing wrap-
pers for library functions that modify memory without using
client program instructions. Newer versions of Valgrind sup-
port wrapper functions which can intercept calls to library
functions. Such a wrapper function simply would check if
the write is legitimate before the actual call to the library
is made and perform any pointer related assignments once
the function returns.

Although we have not encountered any other false nega-
tives during our experiments, we are aware that the current
implementation can cause several types of false negatives.
The most obvious one is the use of structs within arrays
or unions. Since we currently handle such memory regions
as single blocks, we cannot distinguish writes to individual
fields. In the case of arrays, it is possible to subdivide the
memory region and monitor each element. The problem is
that arrays can be quite large, and increasing the number
of memory regions to monitor can degrade performance to
an unacceptable level. We observe that this problem can be
solved by using compressed data structures; however, due
to time limitations, we did not include this functionality in
our proof of concept implementation.

Another type of false negatives can occur when dealing
with chained dereferencing expressions such as var[i].field[j]
= some exp. SrcRewrite would convert the l-value into a
temporary variable temp = var[i].field. Our current imple-
mentation fails to detect an illegal write when the index i is
out of bounds. Bounds checking on these indices can remove
the possibility of false negatives. Inserting bounds checking

for arrays can be done during source code rewriting, since
the bounds are known. For heap buffers, the bounds check-
ing can be deferred to the debugger via client calls.

Ideally, we would have liked to perform fine-grained moni-
toring on library regions as well. However, in our current im-
plementation, we treat dynamically linked libraries as grey
boxes, in which they are only defined by their specifications.
Even though this could potentially cause a false negative, an
attack that exploits this shortcoming would have to modify
library data alone to succeed.

7. RELATED WORK
MemSherlock is related closely to intrusion detection sys-

tems that perform memory level monitoring [20,25,30]. Mi-
nos [6] and TaintCheck [20] can detect the improper use
of tainted data by tracking the propagation of untrusted
data. MemSherlock also incorporates taint tracking; how-
ever, it relies on completely different detection mechanisms,
and thus can provide vulnerability information that Minos
and TaintCheck cannot offer.

Brumley et al. [1] recently investigated automatic gener-
ation of vulnerability-based signatures. A precondition of
their approach is the specification of vulnerability point and
vulnerability condition. Moreover, Newsome et. al. pro-
posed self-hardening programs [9], which can remove vul-
nerabilities from the program to make it immune to exploits
attacking the vulnerability. MemSherlock can complement
these approaches by providing vulnerability information.

A few address space randomization techniques, such as
PaX ASLR [21], TRR [28] and ASLP [10], have been pro-
posed to detect memory corruption attacks. Such approaches
can be used to trigger the MemSherlock debugging phase.

Network based IDSs such as [11,12,24] can automatically
generate signatures for unknown attacks. These systems do
not provide vulnerability information, rather extract com-
mon syntax from the network packets. However, IPSs re-
lying on such syntactic signatures have been shown to be
vulnerable to attacks [26].

8. CONCLUSION AND FUTURE WORK
In this paper, we presented the development of MemSh-

erlock, a security debugging tool that can identify unknown
memory corruption vulnerabilities automatically upon the
detection of malicious payloads that exploit such vulnera-
bilities. MemSherlock provides critical information for un-
known memory corruption vulnerabilities, including (1) the
corruption point in the source code, (2) the slice of source
code that helps the malicious input to reach the corruption
point, and (3) the description of how the malicious input ex-
ploits the unknown vulnerability. We evaluated MemSher-
lock with a set of 11 real-world applications that have buffer
overflow, heap overflow, and format string vulnerabilities.
Our results demonstrated that MemSherlock is a useful tool
to facilitate the vulnerability analysis process.

Our future work is two-fold. First, we will improve the
implementation of MemSherlock to address its implementa-
tion oriented limitations, such as the inability to deal with
assembly code and the coarse-grained monitoring of mem-
ory regions allocated by shared libraries. Second, we will
improve the automated analysis and the presentation of the
analysis results so that the analysis results are more intuitive
and easier to use.
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