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ABSTRACT
We describe a new, general approach for safeguarding systems a-
gainstany type of code-injection attack. We apply Kerckhoff’s
principle, by creating process-specific randomized instruction sets
(e.g.,machine instructions) of the system executing potentially vul-
nerable software. An attacker who does not know the key to the
randomization algorithm will inject code that is invalid for that ran-
domized processor, causing a runtime exception. To determine the
difficulty of integrating support for the proposed mechanism in the
operating system, we modified the Linux kernel, the GNUbinu-
tils tools, and thebochs-x86emulator. Although the performance
penalty is significant, our prototype demonstrates the feasibility of
the approach, and should be directly usable on a suitable-modified
processor (e.g.,the Transmeta Crusoe).

Our approach is equally applicable against code-injecting attacks
in scripting and interpreted languages,e.g.,web-based SQL injec-
tion. We demonstrate this by modifying the Perl interpreter to per-
mit randomized script execution. The performance penalty in this
case is minimal. Where our proposed approach is feasible (i.e.,
in an emulated environment, in the presence of programmable or
specialized hardware, or in interpreted languages), it can serve as
a low-overhead protection mechanism, and can easily complement
other mechanisms.

Categories and Subject Descriptors
D.2.0 [Protection Mechanisms]: Software Randomization

General Terms
Security, Performance.

Keywords
Interpreters, Emulators, Buffer Overflows.

1. INTRODUCTION
Software vulnerabilities have been the cause of many computer

security incidents. Among these, buffer overflows are perhaps the
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most widely exploited type of vulnerability, accounting for approx-
imately half the CERT advisories in the past few years [58]. Buffer
overflow attacks exploit weaknesses in software that allow them to
alter the execution flow of a program and cause arbitrary code to
execute. This code is usually inserted in the targeted program, as
part of the attack, and allows the attacker to subsume the privileges
of the program under attack. Because such attacks can be launched
over a network, they are regularly used to break into hosts or as an
infection vector for computer worms [54, 4, 9, 10, 45, 63].

In their original form [12], such attacks seek to overflow a buffer
in the program stack and cause control to be transfered to the in-
jected code. Similar attacks overflow buffers in the program heap
[42, 5] or use other injection vectors (e.g.,format strings [6]). Such
code-injectionattacks are by no means restricted to languages like
C; attackers have exploited failures in input validation of web CGI
scripts to permit them to execute arbitrary SQL [7] and unix com-
mand line [8] instructions respectively on the target system. There
has been some speculation on similar attacks againstPerl scripts
(that is, causing Perl scripts to execute arbitrary code that is in-
jected as part of input arguments). Although the specific techniques
used in each attack differ, they all result in the attacker executing
code of their choice, whether machine code, shell commands, SQL
queries,etc.The natural implication is that the attacker knows what
“type” of code (e.g., x86machine code, SQL queries, unix shell
commands) can be injected.

This observation has led us to consider a new, general approach
for preventing code-injection attacks,instruction-set randomiza-
tion. By randomizing the underlying system’s instructions, “for-
eign” code introduced by an attack would fail to execute correctly,
regardless of the injection approach.Thus, our approach addresses
not only stack- and heap-based buffer overflow attacks, butany
type of code-injection attack. What constitutes the instruction set to
be randomized depends on the system under consideration: com-
mon stack or heap-based buffer overflow attacks typically inject
machine code that corresponds to the underlying processor (e.g.,
Intel x86 instructions). For Perl injection attacks, the “instruction
set” is the Perl language, since any injected code will be executed
by the Perl interpreter. To simplify the discussion, we will focus
on machine code randomization for the remainder of this paper,
although we discuss our prototype randomized Perl in Section 3.2.

Randomizing an arbitrary instruction set,e.g.,thex86 machine
code, involves three components: the randomizing element, the ex-
ecution environment (e.g., an appropriately modified processor),
and the loader. Where the processor supports such functionality
(e.g., the TransMeta Crusoe, some ARM-based systems [55], or
other programmable processors), our approach can be implemented
without noticeable loss of performance, since the randomization
process can be fairly straightforward, as we report in Section 2. We
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describe the necessary modifications to the operating system and
the randomizing element. We use a modified version of thebochs-
x86 Pentiumemulator to validate our design. Generally, the loss of
performance associated with an emulator is unacceptable for most
(but not all [61]) applications: we present a small but concrete ex-
ample of this in Section 3.1.3. Our prototype demonstrates the sim-
plicity of the necessary software support. In the case of interpreted
languages, our approach does not lead to any measurable loss in
performance. Compared to previous techniques, we offer greater
transparency to languages, applications and compilers, as well as a
smaller impact on performance.

Paper Organization.The remainder of this paper is organized
as follows. Section 2 presents the details of our approach. Sec-
tion 3 describes two prototype implementations, forx86 executa-
bles and Perl scripts respectively. We discuss some details of the
approach, limitations, and future work in Section 4. Section 5 gives
an overview of related work aimed at protecting against code-in-
jection attacks or their effects. We conclude the paper in Section 6.

2. INSTRUCTION-SET RANDOMIZATION
Code-injection attacks attempt to deposit executable code (typi-

cally machine code, but there are cases where intermediate or inter-
preted code has been used) within the address space of the victim
process, and then pass control to this code. These attacks can only
succeed if the injected code is compatible with the execution en-
vironment. For example, injectingx86 machine code to a process
running on a SUN/SPARC system may crash the process (either by
causing the CPU to execute an illegal op-code, or through an ille-
gal memory reference), but will not cause a security breach. Notice
that in this example, there may well exist sequences of bytes that
will crash on neither processor.

Our approach leverages this observation: we create an execution
environment that is unique to the running process, so that the at-
tacker does not know the “language” used and hence cannot “speak”
to the machine. We achieve this by applying a reversible transfor-
mation between the processor and main memory. Effectively, we
create new instruction sets for each process executing within the
same system. Code-injection attacks against this system are un-
likely to succeed as the attacker cannot guess the transformation
that has been applied to the currently executing process. Of course,
if the attackers had access to the machine and the randomized bina-
ries through other means, they could easily mount a dictionary or
known-plaintext attack against the transformation and thus “learn
the language”. However, we are primarily concerned with attacks
againstremote services(e.g.,http, dhcp, DNS, and so on). Vulner-
abilities in this type of server allow external attacks (i.e., attacks
that do not require a local account on the target system), and thus
enable large-scale (automated) exploitation. Protecting against in-
ternal users is a much more difficult problem, which we do not
address in this work.

2.1 Randomization Process
The machine instructions for practically all common CPUs con-

sist of opcodesthat may be followed by one or more arguments.
For example, in the Intelx86architecture, the code for the software
interrupt instruction is0xCD. This is followed by a single one-byte
argument which specifies the type of interrupt. By changing the re-
lationship between the op code (0xCD) and the instruction (INT),
we can effectively create a new instruction without affecting the
processor architecture.

For this technique to be effective, the number of possible instruc-
tion sets must be relatively large. If the randomization process is

driven by a key1, we would like this key to be as large as possible.
If we consider a generic CPU with fixed 32-bit instructions (like
most popular RISC processors), hardware-efficient randomization
techniques would consist of XOR’ing each instruction with the key
or randomly (based on the key) transposing all the bits within the
instruction, respectively (see Figure 1). An attacker trying to guess
the correct key would have a worst-case work factor of232 and32!
for XOR and transposition respectively (notice that32! >> 232).

STREAM

ENCODING KEY

PROCESSOR

XOR

ENCODED

INSTRUCTION

Figure 1: Previously encoded instructions are decoded before being
processed by the CPU.

Notice that, in the case of XOR, using a larger block size does
not necessarily improve security, since the attacker may be able to
attack the key in a piece-meal fashion (i.e., guess the first 32 bits
by trying to guess only one instruction, then proceed with guess-
ing the second instruction in a sequence,etc.). In any case, we
believe that a 32-bit key is sufficient for protecting against code-
injection attacks, since the rate at which an attacker can launch
these brute-force probing attacks is much smaller than in the case
of modern cryptanalysis. Processors with 64-bit instructions (and
thus 64-bit keys, when using XOR for the randomization) are even
more resistant to brute-force attacks. When using bit-transposition
within a 32-bit instruction, we need 160 bits to represent the key,
although not all possible permutations are valid (the effective key
size islog2(32!)). Increasing the block size (i.e., transposing bits
between adjacent instructions) can further increase the work fac-
tor for an attacker. The drawback of using larger blocks is that the
processor must have simultaneous access to the whole block (i.e.,
multiple instructions) at a time, before it can decode any one of
them. Because we believe this greatly increases complexity, we
would avoid this scheme on a RISC processor. Unfortunately, the
situation is more complicated on thex86 architecture, which uses
variable-size instructions, as we discuss in Section 3.

Finally, note that the security of the scheme depends on the fact
that injected code, after it has been transformed by the processor as
part of the de-randomizing sequence, will raise an exception (e.g.,
by accessing an illegal address or using an invalid op code). While
this will generally be true, there are a few permutations of injected
code that will result in working code that performs the attacker’s
task. We believe that this number will be statistically insignificant
— the same probability as creating a valid buffer-overflow exploit
for a known vulnerability by using the output of a random number
generator as the injected code.

2.2 System Operation
Let us consider a typical system with an operating system kernel

and a number of processes. Since code-injection attacks usually
target applications, rather than the kernel, we consider using this
mechanism only when the processor runs in “user” mode. There-
fore, the kernel always runs the native instruction set of the proces-

1The meaning of the term “key” here is similar to its use in mod-
ern cryptography,i.e., the security of the randomization process
depends on the entropy and secrecy of a random bit-string.
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sor, although it is possible to run the kernel itself under our scheme
as well. The only complications relate to interrupt handling, pro-
cessor initialization, and calling system ROM code. In all of these
cases, the operating system is using the native instruction set and
can thus handle external code,e.g.,ROM. Randomization is in ef-
fect only while a process is executing in user-level mode.

The code section of each process is loaded from an executable
file stored on some mass-storage device. The executable file con-
tains the appropriate decoding key in a header, embedded there by
the randomizing component of our architecture, described in sec-
tion 2.3. For the time being, we will assume that the executables
are statically linked (i.e., there is no code loaded from dynamically
linked libraries). We expect only a small number of programs to re-
quire static linking,i.e.,network services. The decoding key in the
program header is associated with the encoding key used for the
encoding of the text segment. Specifically, it would be the same
when using XOR as the randomization function, and a key speci-
fying the inverse transposition in the second scheme we discussed
earlier. When a new process is loaded from disk, the operating sys-
tem extracts the key from the header, and stores it in the process
control block (PCB) structure.

Our approach provides for a special processor register where the
decoding key will be stored, and a special privileged instruction
(calledGAVL) that allows write-only access to this register. Thus,
when the operating system is ready to schedule the execution of a
process, theGAVLinstruction is used to copy the de-randomization
key from the PCB to the decoding register. To accommodate pro-
grams that have not been randomized, we provide a special key
that, when loaded via theGAVL instruction, disables the decoding
process. For programs that have not been randomized, the operat-
ing system will load the null decoding key in the PCB. Since the
key is always brought in from the PCB, there is no need to save its
value during context switches. There is thus no instruction to read
the value of the decoding register.

As we mentioned earlier, the decoding key is associated with
an entire process. It is thus difficult to accommodate dynamically
linked libraries, as these would either have to be encoded as they are
loaded from disk, or be encoded and copied into a completely dis-
joint set of memory pages in the case of already memory-resident
libraries. In both cases, the memory occupied by the encrypted
code for the libraries will not be shareable with other processes, or
all the processes would have to share the same key (the one used by
the libraries). Since neither approach is appealing, we decided to
require statically-linked executables. In practice, we would seek
to randomize (and thus statically-link) only those programs that
are exposed to remote exploits,i.e., network daemons, thus min-
imizing the overall impact of static linking to the system. Another
way of addressing this problem is to associate keys with segments
rather than processes. The processor would then decode instruc-
tions based on which segment they were located. We hope to be
able to evaluate this approach in the future.

2.3 Randomized ELF Executables
The Executable and Linking Format (ELF) [56] was developed

by UNIX System Laboratories and is the standard file format used
with the gcc compiler, and associated utilities like the assembler
and linker in many architectures for encoding executable and li-
brary files. The most outstanding innovation of ELF over earlier
file formats likea.out andcoff is the complete separation of code
and data sections. This was very useful for us to be able to single
out the executable sections in an ELF executable so that we could
then carry out their block-randomization. At the time this paper
was being written, OpenBSD implemented extensions to thea.out

format that also allow for separation of program text from read-
only data (which were lumped together in the.text segment).
The latest versions of OpenBSD use ELF.

Rather than build a complete ELF parsing and transmutation sys-
tem from scratch, we found it easier to modify an existing utility
that already had the means of performing general-purpose transfor-
mations on ELF files. Theobjcopyprogram that is incorporated
into the GNUbinutils package was chosen for this task. Not only
did objcopyhandle processing the ELF headers, but it also conve-
niently provided a reference to a byte-array (representing the ma-
chine instruction block) for each given code section in the file. We
were then able to take advantage of this fact by randomizing each
16-bit block in this array before letting the rest of the original pro-
gram continue producing the target file. Our modifiedobjcopycan
process all text sections in an executable in a single pass.

3. IMPLEMENTATION
To determine the feasibility of our approach, we built a proto-

type of the proposed architecture using thebochsemulator [1] for
thex86processor family. As we discussed in Section 2.1, random-
ization on thex86 is more complicated than with other RISC-type
processors because of its use of variable-size instructions. How-
ever, we decided to implement the randomization for thex86both
to test its feasibility in a worst-case scenario and because of the
processor’s wide use.

Recalling our discussion in Section 2.1, we should use the largest
possible block size (and corresponding key). However, thex86has
several 1-byte instructions. A block size of 8 bits is insufficient, as
the attacker only needs to try at most216 different versions of the
exploit, when using bit-permutation as the randomizing principle
(8! ≈ 216) . A 16-bit block size yields an effective key size of 41
bits (16! ≈ 241). Thus, we have to ensure that the processor always
has access to 16 bits at a time. If we try to pad all instructions with
an odd number of bytes with 1-byte NOP (No OPeration) instruc-
tions, the code size will be increased and execution time will suffer,
as the processor will have to process the additional NOPs.

Our workaround is to ensure that the program always branches
to even addresses. The GNU C compiler conveniently allows this
to be specified at compile time (using the “-falign-labels=2” com-
mand line option, which ensures that all branch-instruction targets
are aligned on a 2-byte boundary), but we have also modified the
GNU Assembler to force all labels to be aligned to 16-bit bound-
aries. It does so by appending a NOP instruction, as necessary.
Surprisingly, in the few experiments we performed (statically link-
ing thectagsutility, with and without the “-falign-labels=2” com-
pilation flag) we did not notice a large increase in size. In par-
ticular, there was only a 0.12% increase in the size ofglibc when
compiled with the alignment flag. Examining the produced code
revealed that, although new NOPs were added to ensure proper
alignment, some NOPs that were present when compiling without
the flag were not produced in the second version. Consequently,
the performance impact of additional NOPs is minimal.

The decoding is performed when instructions and associated ar-
guments are fetched from main memory. Since the randomization
block size is 16 bits, we have to be careful to always start decoding
from even addresses. Assuming we start executing code from an
even address (which is the default forgcc-produced code), the de-
coding process can proceed without complications as we continue
reading pairs of bytes.

This is the technique we used in the original prototype. It has
a number of limitations, which include the need to have access to
the program source code (since the program has to be compiled
with the special alignment flag, and then processed by our modified
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assembler) and increased overhead when moving to larger block
sizes. Instead, we can use XOR of each 32-bit word with a 32-bit
key. The use of this scheme has a major advantage: there is no
longer any need for alignment, since the address of the memory ac-
cess allows us to select which part of the 32-bit key to use for the
decoding. In any case, a real processor with a 32-bit or 64-bit data
bus will always be performing memory accesses aligned to 32 or 64
bit boundaries (in fact, the Pentium uses a 16-byte “streaming” in-
struction cache inside the processor), so the decoding process can
be easily integrated into this part of the processor. The danger is
that the effective key size is not really 32 or 64 bits: many of the
“interesting” instructions in thex86are 2 bytes long. Thus, an at-
tacker will have to guess two (or four) independent sub-keys of 16
bits each. At first glance, it appears that the work factor remains
the same (232 = 216×2), it may possible for an attacker to inde-
pendently attack each of the sub-keys. We intend to investigate the
feasibility of such an attack in the future.

3.1 Runtime Environment
Even without a specially-modified CPU, the benefits of random-

ized executables can be reaped by combining a sandboxed environ-
ment that emulates a conventional CPU with the instruction ran-
domization primitives discussed earlier. Such a sandboxing envi-
ronment would need to include a CPU emulator likebochs[1], its
own operating system, and the process(es) we wish to protect.

3.1.1 Bochs Modifications
Bochsis an open-source emulator of thex86architecture. Since

it interprets each machine instruction in software,bochsallows
us to perform any restoration operations on the instruction bytes
as they are fetched from instruction memory. The core ofbochs
is implemented in the functioncpu loop() that uses another func-
tion, fetchDecode(), passing a reference into an array representing
a block of instruction code. ThefetchDecode()function incremen-
tally extracts a byte from that array until it can complete decoding
of the current instruction. This behavior closely simulates thei486
andPentiumprocessors, with their instruction “prefetch streaming
buffers”. On thei486, this buffer held the next 16-bytes worth of
instructions; on later processors, this has typically been 32 bytes.

We carry out our de-randomizing of this instruction at the begin-
ning of fetchDecode()by restoring the next 16 bytes in the prefetch
block so that further processing can proceed normally in actually
decoding the correct instruction. To ensure that future calls to
fetchDecode()execute in the same manner, we reverse the de-rando-
mization at the end of each invocation offetchDecode(). Both the
de-randomization and re-randomization are conditionally carried
out based on the decoding key value that is currently in the spe-
cial processor register as discussed in section 2.

3.1.2 Single-System Image Prototype
To minimize configuration and administration overheads, the op-

erating system running within the sandbox should offer a minimal
runtime environment and should include a fully automated instal-
lation. For our prototype, we adopted the techniques we used to
construct embedded systems for VPN gateways [50]. We use auto-
mated scripts to produce compact (2-4MB) bootable single-system
images that contain a system kernel and applications. We achieve
this by linking the code of all the executables that we wish to be
available at runtime in a single executable using thecrunchgen
utility. The single executable alters its behavior depending on the
name under which it is run (argv[0]). By associating this ex-
ecutable with the names of the individual utilities (via file sys-
tem hard-links), we can create a fully functional/bin directory

where all the system commands are accessible as apparently dis-
tinct files. This aggregation of the system executables in a single
image greatly simplifies the randomization process, as we do not
need to support multiple executables or dynamic libraries. The root
of the run-time file system, together with the executable and associ-
ated links, are placed in a RAM-disk that is stored within the kernel
binary. The kernel is then compressed (usinggzip) and placed on
a bootable medium (in our case a file thatbochsconsiders to be its
boot device). This file system image also contains the/etc di-
rectory of the running system in uncompressed form, to allow easy
configuration of the runtime parameters.

At boot time, the kernel is copied from the boot image tobochs’
main memory, and is uncompressed and executed. The file system
root is then located in the RAM-disk. The/etc directory copied
to the RAM-disk from the temporarily mounted boot partition. The
system is running entirely off the RAM-disk and proceeds with
the regular initialization process. This organization allows multi-
ple applications to be combined within a single kernel where they
are compressed, while leaving the configuration files in the/etc
directory on the boot partition. Thus, these files can be easily ac-
cessed and modified. This allows a single image to be produced
and the configuration of each sandbox to be applied to it just before
it is copied to this separate boot partition.

3.1.3 Performance
Since our goal was simply to demonstrate the feasibility of our

approach, we chose a few, very simple benchmarks. Generally,
interpreting emulators (as opposed to virtual machine emulators,
such as VMWare) impose a considerable performance penalty; de-
pending on the application, the slow-down can range from one to
several orders of magnitude. This makes such an emulator gen-
erally inappropriate for high-performance applications, although it
may be suitable for certain high-availability environments.

The first two columns in table 1 compare the time taken by the
respective server applications to handle some fairly involved client
activity. The times recorded for theftp server was for a client car-
rying out a sequence of common file and directory operations,viz.,
repeated upload and download of a≈ 200KB file, and creation,
deletion and renaming of directories, and generating directory list-
ings by means of an automated script. This script was executed 10
times to produce the times listed. Thisftp result illustrates how a
network I/O-intensive process does not suffer execution time slow-
down proportional to the reduction in processor speed. Thesend-
mail numbers, taken from the mail server’s logging file, represent
the overall time taken to receive 100 short e-mails (≈ 1KB) from
a remote host.

Table 1: Experimental results: execution times (in seconds) for
identical binaries on Bochs and a regular Linux machine (the
one that hosted the bochs emulator).

ftp sendmail fibonacci
bochs 39.0s ≈ 28s 5.73s (93s)
linux 29.2s ≈ 1.35s 0.322s

The final column demonstrates the tremendous slowdown in-
curred in the emulator when running a CPU-intensive application
(as opposed to the I/O-bound jobs represented in the first two ex-
amples), such as computation of thefibonaccinumbers. However,
this only helps confirm the existence of real-world applications for
emulators. Note though that the execution time reported by the
emulator itself (5.73 seconds) is actually less than that reported
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for executing thefibonacci experiment on a real linux machine.
The actual wall time for runningfibonacci in the emulator is 93
seconds. All the applications were compiled with the-static
-falign-labels option forgcc,with zero optimization.

Emulator-based approaches have also been proposed in the con-
text of intrusion and anomaly detection [25, 31], as well as one
way to retain backward compatibility with older processors2 — of-
ten exhibiting better performance. However, to make our proposal
fully practical, we will need to modify an actual CPU.

3.2 Randomized Perl
In the Perl prototype, we randomized all the keywords, operators,

and function calls in a script. We did so by appending a random 9-
digit number (“tag”) to each of these. For example, the code snippet

foreach $k (sort keys %$tre) {
$v = $tre->{$k};
die ‘‘duplicate key $k\n’’

if defined $list{$k};
push @list, @{ $list{$k} };

}

by using “123456789” as the tag, becomes

foreach123456789 $k (sort123456789 keys %$tre)
{

$v =1234567889 $tre->{$k};
die123456789 ‘‘duplicate key $k\n’’

if123456789 defined123456789 $list{$k};
push123456789 @list, @{ $list{$k} };

}

Perl code injected by an attacker will fail to execute, since the
parser will fail to recognize the (missing or wrong) tag.

We implemented the randomization by modifying the Perl inter-
preter’s lexical analyzer to recognize keywords followed by the cor-
rect tag. The key is provided to the Perl interpreter via a command-
line argument, thus allowing us to embed it inside the randomized
script itself,e.g.,by using “#!/usr/bin/perl -r123456789” as the first
line of the script. Upon reading the tag, the interpreter zeroes it out
so that it is not available to the script itself via the ARGV array.
These modifications were fairly straightforward, and took less than
a day to implement. To generate the randomized code, we used the
Perltidy [2] script, which was originally used to indent and reformat
Perl scripts to make them easier to read. This allowed us to easily
parse valid Perl scripts and emit the randomized tags as needed.

One problem we encountered was the use of external modules.
These play the role of code libraries, and are usually shared by
many different scripts and users. To allow their sharing in ran-
domized scripts, we use two tags: the first is supplied by the user
via the command line, as discussed above, while the second is a
system-wide key known to the Perl interpreter. We extended the
lexical analyzer to accept either of these tags. Using this scheme,
the administrator can periodically randomize the system modules,
without requiring any action from the users. Also, note that we
do not randomize the function definitions themselves. This allows
scripts that are not run in randomized mode to use the same mod-
ules. Although the size of the scripts increases considerably due to
the randomization process, some preliminary measurements indi-
cate that performance is unaffected.

A similar approach can counter attacks against web CGI scripts
that dynamically generate SQL queries to a back-end database.
Such attacks can have serious security and privacy impact [7]. In
such a scenario, we would modify the SQL interpreter along the
same lines as we described for Perl, and generate randomized SQL
queries in the CGI script. To avoid modifying the database front-
end, we can use a validating proxy that intercepts randomized SQL
2Recent versions of a popular PDA use a StrongARM processor,
while older versions use a Motorola 68K variant.

queries. If the queries are syntactically correct (i.e., appropriately
randomized), they are de-randomized and passed on to the database.

We can also use randomization with CGI scripts that issue unix
shell commands — randomizing the shell interpreter, we can avoid
attacks such as [8]. In this scenario, we would also randomize the
program names, as shown in the following fictional script:

#!/bin/sh

if987654 [ x$1 ==987654 x""; then987654
echo987654 "Must provide directory name."
exit987654 1

fi987654

/bin/ls987654 -l $1
exit987654 0

In all cases, we must hide low-level (e.g.,parsing) errors from the
remote user, as these could reveal the tag and thus compromise the
security of the scheme. Other applications of our scheme include
VBS and other email- or web-accessible scripting languages.

4. FURTHER DISCUSSION

4.1 Advantages
Randomizing network services and scripts not only hardens an

individual system against code-injection attacks, but also minimizes
the possibility of network worms spreading by exploiting the same
vulnerability against a popular software package: such malicious
code will have to “guess” the correct key. As we saw in Section 2,
the length of the key depends on certain architectural characteris-
tics of the underlying processor, and is typically much shorter than
cryptographic keys. Nonetheless, the workload for a worm can in-
crease by216 to 232, or even more. Periodically re-randomizing
programs (e.g., when the system is re-compiled for open-source
operating systems, or at installation time and then periodically by
an automated script for binary-only distributions) will further min-
imize the risk of persistent guessing attacks.

Compared to other protection techniques, our approach offers
greater transparency to applications, languages and compilers, none
of which need to be modified, and better performance at a fairly
low complexity. Based on the ease with which we implemented the
necessary extensions on thebochsemulator, we speculate that de-
signers of new processors could easily include the appropriate cir-
cuitry. Since security is becoming increasingly important, adding
security features in processors is seen as a way to increase market
penetration. The Trusted Computing Platform Alliance (TCPA) ar-
chitecture [3] already has some provisions for cryptographic func-
tionality embedded inside the processor, and the latest Crusoe pro-
cessor includes a DES encryption engine. Although these seem to
have been designed with digital-rights management (DRM) appli-
cations in mind, it may be possible to use the same mechanisms to
enhance security in a different application domain. However, us-
ing a full-featured block cipher such as DES or AES in our system
is likely to prove too expensive, even if it is implemented inside
the processor [36]. In the future, we intend to experiment with the
Crusoe TM5800 processor, both to evaluate the feasibility of using
the built-in DES engine and to further investigate any issues our
approach may uncover, when embedded in the processor.

4.2 Disadvantages
Perhaps the main drawback of our approach as applied to code

that is meant to execute on a processor is the need for special sup-
port by the processor. In some programmable processors, it is pos-
sible to introduce such functionality in already-deployed systems.
However, the vast majority of current processors do not allow for
such flexibility. Thus, we are considering a more general approach
of randomizing software as a way of introducing enough diversity
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among different instances of the same version of a piece of popu-
lar software that large-scale exploitation of vulnerabilities becomes
infeasible. We view that work, which is still in progress, as com-
plementary to the work we presented in this paper.

A second drawback of our approach is that applications have to
be statically linked, thus increasing their size. In our prototype
of Section 3, we worked around this issue by using a single-image
version of OpenBSD. In practice, we would seek to randomize (and
thus statically-link) only those programs that are exposed to remote
exploits,i.e.,network daemons, thus minimizing the overall impact
of static linking to the system. Furthermore, it must be noted that
avoiding static linking is going to help reduce only the disk usage,
not the runtime memory requirements. Each randomized process
will need to acquire (as part of process loading) and maintain its
own copy of the encrypted libraries using either of the following
two mechanisms, neither of which is desirable. Firstly, the process
loader can load just the main program image initially, and dynam-
ically copy/load and encrypt librarieson-demand. This will incur
considerable runtime overhead and also require complex process
management logic, in the absence of which it will degrade to the
other mechanism, described next. The second approach is to load
and encrypt the program code, and all libraries that are referenced,
right at the beginning. It is obvious that this will result in large
amounts of physical RAM being used to store multiple copies of
the same code, some of which may never be executed during the
entire life of the process.

Also note that our form of code randomization effectively pre-
cludes polymorphic and self-modifying code, as the randomization
key and relevant code would then have to be encoded inside the
program itself, potentially allowing an attacker to use them.

Instruction randomization should be viewed as a self-destruct
mechanism: the program under attack is likely to go out of con-
trol and be terminated by the runtime environment. Thus, this tech-
nique cannot protect against denial of service attacks and should be
considered as a safeguard of last resort,i.e., it should be used in
conjunction with other techniques that prevent vulnerabilities lead-
ing to code-injection attacks from occurring in the first place.

Debugging is made more difficult by the randomization process,
since the debugger must be aware of it. The most straightforward
solution is to de-randomize the executable prior to debugging; the
debugger can do this in a manner transparent to the use, since the
secret key is embedded in the ELF executable. Similarly, the de-
bugger can use the key to de-randomize core dumps.

Finally, our approach does not protect against all types of buffer
overflow attacks. In particular, overflows that only modify the con-
tents of variables in the stack or the heap and cause changes in
the control flow or logical operation of the program cannot be de-
fended against using randomization. Similarly, our scheme does
not protect against attacks that cause bad data to propagate in the
system,e.g.,not checking for certain Unix shell characters on input
that is passed to thesystem()call. None of the systems we exam-
ined in Section 5 protect against the latter, and very few can deter
the former type of attack. A more insidious overflow attack would
transfer the control flow to some library function (e.g., system()).
To defend against this, we propose to combine our scheme with
randomizing the layout of code in memory at the granularity of in-
dividual functions, thus denying to an attacker the ability to jump
to an already-known location in existing code.

5. RELATED WORK
In the past, encrypted software has been proposed in the con-

text of software piracy, treating code as content (see digital rights
management). Users were considered part of the threat model, and

those approaches focused on the complex task of key management
in such an environment (typically requiring custom-made proces-
sors with a built-in decryption engine such as DES [46]). Our re-
quirements for the randomization process are much more modest,
allowing us to implement it on certain modern processors, emula-
tors, and interpreters. However, we can easily take advantage of
any built-in functionality in the processor that allows for encrypted
software (e.g.,the Transmeta Crusoe TM5800 processor).

PointGuard [22] encrypts all pointers while they reside in mem-
ory and decrypts them only before they are loaded to a CPU reg-
ister. This is implemented as an extension to the GCC compiler,
which injects the necessary instructions at compilation time, al-
lowing a pure-software implementation of the scheme. Another
approach, address obfuscation [18], randomizes the absolute loca-
tions of all code and data, as well as the distances between different
data items. Several transformations are used, such as randomizing
the base addresses of memory regions (stack, heap, dynamically-
linked libraries, routines, static data,etc.), permuting the order of
variables/routines, and introducing random gaps between objects
(e.g.,randomly pad stack frames ormalloc()’ed regions). Although
very effective againstjump-into-libc attacks, it is less so against
other common attacks, due to the fact that the amount of possi-
ble randomization is relatively small (especially when compared to
our key sizes). However, address obfuscation can protect against
attacks that aim to corrupt variables or other data. This approach
can be effectively combined with instruction randomization to offer
comprehensive protection against all memory-corrupting attacks.

There has been considerable research in preventing buffer over-
flow attacks. Broadly, it can be classified into four categories: safe
languages and libraries, source code analysis, process sandboxing,
and, for lack of a better term, compiler tricks.

Safe Languages and Compilers Safe languages, (e.g., Java)
eliminate various software vulnerabilities altogether by introduc-
ing constructs that programmers cannot misuse (or abuse). Unfor-
tunately, programmers do not seem eager to port older software to
these languages. In particular, most widely-used operating systems
(Windows, Linux, *BSD,etc.) are written in C and are unlikely to
be ported to a safe language anytime soon. Furthermore, learning a
new language is often considered a considerable barrier to its use.
Java has arguably overcome this barrier, and other safe languages
that are more C-like (e.g.,Cyclone [34]) may result in wider use of
safe languages. In the short and medium term however, “unsafe”
languages (in the form of C and C++) are unlikely to disappear, and
they will in any case remain popular in certain specialized domains,
such as programmable embedded systems.

One step toward the use of safe constructs in unsafe languages is
the use of “safe” APIs (e.g.,the strl*() API [43]) and libraries (e.g.,
libsafe[16]). While these are, in theory, easier for programmers to
use than a completely new language (in the case of libsafe, they are
completely transparent to the programmer), they only help protect
specific functions that are commonly abused (e.g.,the str*() family
of string-manipulation function in the standard C library). Vulner-
abilities elsewhere in the program remain open to exploitation.

[14] describes some design principles for safe interpreters, with
a focus on JavaScript. The Perl interpreter can be run in a mode that
implements some of these principles (access to external interfaces,
namespace management,etc.). While this approach can somewhat
mitigate the effects of an attack, it cannot altogether prevent, or
even contain it in certain cases (e.g.,in the case of a Perl CGI script
that generates an SQL query to the backend database).

Source Code Analysis Increasingly, source code analysis tech-
niques are brought to bear on the problem of detecting potential
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code vulnerabilities. The most simple approach has been that of
the compiler warning on the use of certain unsafe functions,e.g.,
gets(). More recent approaches [27, 58, 38, 53] have focused on de-
tecting specific types of problems, rather than try to solve the gen-
eral “bad code” issue, with considerable success. While such tools
can greatly help programmers ensure the safety of their code, espe-
cially when used in conjunction with other protection techniques,
they (as well as dynamic analysis tools such as [40, 39]) offer in-
complete protection, as they can only protect against and detect
knownclasses of attacks and vulnerabilities. MOPS [20] is an au-
tomated formal-methods framework for finding bugs in security-
relevant software, or verifying their absence. They model pro-
grams as pushdown automata, represent security properties as fi-
nite state automata, and use model-checking techniques to identify
whether any state violating the desired security goal is reachable
in the program. While this is a powerful and scalable (in terms
of performance and size of program to be verified) technique, it
does not help against buffer overflow or other code-injection at-
tacks. CCured [47] combines type inference and run-time checking
to make C programs type safe, by classifying pointers according to
their usage. Those pointers that cannot be verified statically to be
type safe are protected by compiler-injected run-time checks. De-
pending on the particular application, the overhead of the approach
can be up to 150%.

Process Sandboxing Process sandboxing [48] is perhaps the
best understood and widely researched area of containing bad code,
as evidenced by the plethora of available systems like Janus [33],
Consh [13], Mapbox [11], OpenBSD’ssystrace[52], and the Me-
diating Connectors [15]. These operate at user level and confine
applications by filtering access to system calls. To accomplish this,
they rely onptrace(2), the/proc file system, and/or special shared
libraries. Another category of systems, such as Tron [17], SubDo-
main [23] and others [29, 32, 59, 44, 60, 41, 51], go a step further.
They intercept system calls inside the kernel, and use policy en-
gines to decide whether to permit the call or not. The main problem
with all these is that the attack is not prevented: rather, the system
tries to limit the damage such code can do, such as obtain super-
user privileges. Thus, the system does not protect against attacks
that use the subverted process’ privileges to bypass application-
specific access control checks (e.g.,read all the pages a web server
has access to), nor does it protect against attacks that simply use the
subverted program as a stepping stone, as is the case with network
worms. [30] identifies several common security-related problems
with such systems, such as their susceptibility to various types of
race conditions.

Another approach is that of program shepherding [37], where
an interpreter is used to verify the source and target of any branch
instruction, according to some security policy. To avoid the perfor-
mance penalty of interpretation, their system caches verified code
segments and reuses them as needed. Despite this, there is a con-
siderable performance penalty for some applications. A somewhat
similar approach is used bylibverify [16], which dynamically re-
writes executed binaries to add run-time return-address checks, thus
imposing a significant overhead.

Compiler Tricks Perhaps the best-known approach to counter-
ing buffer overflows is Stack Guard [24]. This is a patch to the
populargcc compiler that inserts acanary word right before the
return address in a function’s activation record on the stack. The
canary is checked just before the function returns, and execution
is halted if it is not the correct value, which would be the case if a
stack-smashing attack had overwritten it. This protects against sim-
ple stack-based attacks, although some attacks were demonstrated

against the original approach [19], which has since been amended
to address the problem.

A similar approach [35], also implemented as agccpatch, adds
bounds-checking for pointers and arrays without changing the mem-
ory model used for representing pointers. This helps to prevent
buffer overflow exploits, but at a high performance cost, since all
indirect memory accesses are checked, greatly slowing program
execution. Stack Shield [57] is anothergcc extension with an ac-
tivation record-based approach. Their technique involves saving
the return address to a write-protected memory area, which is im-
pervious to buffer overflows, when the function is entered. Be-
fore returning from the function, the system restores the proper
return address value. Return Address Defense [49] is very simi-
lar in that it uses a redundant copy of the return address to detect
stack-overflow attacks. Its innovation lies in the ability to work on
pre-compiled binaries using disassembly techniques, which makes
it usable for protecting legacy libraries and applications without
requiring access to the original source code. These methods are
very good at ensuring that the flow of control is never altered via
a function-return. However, they cannot detect the presence of any
data memory corruption, and hence are susceptible to attacks that
do not rely solely on the return address. ProPolice [26], another
patch forgcc, is also similar to Stack Guard in its use of a canary
value to detect attacks on the stack. The novelty is the protection of
stack-allocated variables by rearranging the local variables so that
charbuffers are always allocated at the bottom of the record. Thus,
overflowing these buffers cannot harm other local variables, espe-
cially function-pointer variables. This avoids attacks that overflow
part of the record and modify the values of local variables without
overwriting the canary and the return-address pointer.

MemGuard [24] makes the location of the return address in the
function prologue read-only and restores it upon function return,
effectively disallowing any writes to the whole section of memory
containing the return address. It permits writes to other locations in
the same virtual memory page, but slows them down considerably
because they must be handled by kernel code. StackGhost [28] is a
kernel patch for OpenBSD for the Sun SPARC architecture, which
has many general-purpose registers. These registers are used by the
OpenBSD kernel for function invocations as register windows. The
return address for a function is stored in a register instead of on the
stack. As a result, applications compiled for this architecture are
more resilient against normal input string exploits. However, for
deeply-nested function calls, the kernel will have to perform a reg-
ister window switch, which involves saving some of the registers
onto the stack. StackGhost removes the possibility of malicious
data overwriting the stored register values by using techniques like
write-protecting or encrypting the saved state on the stack. Format-
Guard [21] is a library patch for eliminating format string vulnera-
bilities. It provides wrappers for theprintf family of functions that
count the number of arguments and match them to the specifiers.

Generally, these approaches have three limitations. First, the per-
formance implications (at least for some of them) are non-trivial.
Second, they do not seem to offer sufficient protection against stack-
smashing attacks on their own, as shown in [19, 62] (although
work-arounds exist against some of the attacks). Finally, they do
not protect against other types of code-injection attacks, such as
heap overflows [42]. Our goal is to develop a system that can pro-
tect against any type of code-injection attack, regardless of the en-
try point of the malicious code, with minimal performance impact.

6. CONCLUSIONS
We described ourinstruction-set randomizationscheme for coun-

tering code-injection attacks. We protect againstany type of code-
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injection attacks by creating an execution environment that is unique
to the running process. Injected code will be invalid for that exe-
cution environment, and thus cause an exception. This approach
is equally applicable to machine-code executables and interpreted
code. To evaluate the feasibility of our scheme, we built two pro-
totypes, using thebochsemulator for thex86processor family, and
the Perl interpreter respectively. The ease of implementation in
both cases leads us to believe that our approach is feasible in hard-
ware, and offers significant benefits in terms of transparency and
performance, compared to previously proposed techniques. Fur-
thermore, the operating system modifications were minimal, mak-
ing this an easy feature to support. In the future, we plan to evaluate
our system by modifying a fully-programmable processor.

Admittedly, our solution does not address the core issue of soft-
ware vulnerabilities, which is the bad quality of code. Given the
apparent resistance to the wide adoption of safe languages, and not
foreseeing any improvement in programming practices in the near
future, we believe our approach can play a significant role in hard-
ening systems and invalidating the “write-once exploit-everywhere”
principle of software exploits.
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