
Java Security

Lecture 8

Java Technology
Has been established as important for
enterprise applications

To ease platform independent application
development

Java Servlets, JavaServer Pages (JSP), Enterprise
JavaBeans(EJB)

To provide security for e-business
J2EE builds on J2SE

Introduced fined-grained, policy-based security model that
is customizable and configurable

Traditional Middle-tier Enterprise
Environment

Java 2 Platform
Programming language and runtime environment

In each tier
On multiple OSs
Libraries (WWW, Apache) such as for XML

Additional frameworks are needed
To provide structure and design patterns that

Enable creating and deploying enterprise scalable applications.
J2EE integrates Enterprise technologies

Interpreted through Java API
Distributed transaction support
Asynchronous messaging, and email
Portable Security technologies: Authentication, authorization,
message integrity, and confidentiality

Enables interoperable security across the enterprise

Java Language Environment
Java 2 SDK contain

Tools and library code for
compilation and testing
Java programs

Libraries include
integrated support for
various features
E.g., opening “socket” also
includes defining proper
authorization requirements

Type-safety

Java Language Environment
Execution Environment and Runtime

Mixed use of compiler and interpreter
Process compiled classes at execution time: JIT
compilation
Provides security mechanisms

Type safety verification using dynamic type safety
E.g., array-bounds, type casting

When loaded into the JRE,
the code location is recorded,
If digitally signed, it is verified

For authorization
J2SE V1.4 also contains integrated authentication and
authorization: JAAS Framework

Implemented as
Java.Security.CodeSource}

Java Language Environment
Interface or APIs

Allows interaction with architected subsystems
– where vendors provide services in a vendor
netral manner
Allows interaction with external world

JDBC
JMS,
JCA,
JCE,
JAAS etc.

Java Security Technologies

Integral,
Evolving, &
Interoperable

From Early days: Type Safety and Sandbox

Security had
been a primary
Design goal

Java Security Technologies

Cryptographic services:
Digest, Encryption, etc.Secure Sockets Layer /TLS

Java
Generic
Security
Services

Three tier model

Generalized into N-tier
model

Java technology can
be used in some tier
and interfaced with other
existing technology
- Java Connector

Architecture (JCA)

Middle Tier

CGI – original model for web servers
Did not scale well

Simple HTTP servers did not support multithreading
Lacked security

Buffer overflows, parameter validation issues, code
injection, etc. were easier

Java Servlet Programming model
Simplified server-side programming
Portable, and can use JCA to interface with others
Security services are part of the servlet
architecture

Middle Tier

Enterprise Java Beans
High throughput, scalability, and multiuser secure
distributed transaction processing

Have constraints
Single threaded and may not read from file system
Need to use connectors to do I/O operations

Deployment descriptor (like in Servlets and JSP)
Include security requirements

Complex Application using J2EE

Various protocols mediate
communication between the
client and server

HTTP,
Simple Object Access
Protocol (SOAP)
Remote Method Invocation
(RMI) over the Internet Inter-
Object Request Broker (RMI-
IIOP)

Separation of components
and their mediation by a
container allows

Declarative policies

J2SE Security
Three legs of java security

Class loaders
Determine how and when to load code
Ensures that system-component within RE are not replaced with untrusted
code

Class file verifier
Ensures proper formatting of nonsystem code

type safety requirements
Stacks cannot overflow/underflow

Security Manager
Enforces runtime access control restrictions on attempts to perform file and
network I/O
Create a new class loader
Manipulate threads
Start processes
Terminate JVM

E.g., implements Java sandbox function

JVM components

Access to Classes,
Interfaces, Fields, Methods

Class Loader
Loading classes from a specific location
Multiple class loaders may be active
Set of classes loaded by a class loader is the class loader’s name
space

Security responsibilities
Name space separation

Avoid name clash problems
Package boundary protection

Can refuse to load untrusted classes into the core java packages,
which contain the trusted system classes

Access-right assignment
Set of authorizations for each loaded class – uses security policy
database

Search order enforcement
Establishes search order that prevents trusted classes from being
replaced by classes from less trusted sources

Sources of code
- most trusted to least

Core classes shipped with JVM – system classes
E.g., java.lang, java.io, java.net
No restriction; no integrity verification

Installed JVM extensions
E.g., Cryptographic service providers, XML parsers

Classes from local file system
through CLASSPATH

Classes from remote
Remote web servers

Class loader
Must guarantee

Protection of trusted classes
When name classes occur, trusted local classes are loaded
in preference to untrusted ones

Protection against name collision
Two classes with same name from different URLs

Protection of trusted packages
Otherwise, it could expose classes in trusted packages

Name-space isolation
Loading mechanism must ensure separate name-spaces
for different class loaders

Classes from different name-spaces cannot interfere each other
Java class loaders are organized in a tree structure

Class loader

A cannot directly
instantiate B,
invoke static methods on B or
instance methods on objects of
type B

Many class loaders may be
active at any given time

Loading classes from Trusted
Sources

Primordial class loader
Built in JVM; also known as internal, or null, or
default class loader
Loads trusted classes of java runtime
Loaded classes are not subject to verification
Not subjected to security policy restriction

These are located using boot class path (in Java 2)

Loading classes from untrusted
Sources

Sources include
Application classes, extension classes and remote network
locations

Application class loader
Users classes; not trusted; not by primordial
URLClassLoader an implementation of the java.lang.ClassLoader
Application class path from CLASSPATH
Uses URLs to locate and load user classes
Associate permissions based on security configuration

Extension classes
Trust level is between Application and fully trusted system classes
Typically granted all permissions
Added to extension class path – should be allowed to trusted
users only

Loading classes from untrusted
Sources

Classes from Remote
Network – least trusted

A class loader is
created for each set of
URLs
Classes from different
URLs may result in
multiple ClassLoaders
being created to
maintain separate
name spaces
Safety and integrity
verification checks
Run confined in
sandbox

(Bank)

(Hacker)

Enforcing order - Design
Class A is loaded by x
A references B; hence class loader needs to load B

If x was primordial, getClassLoader() = null
If B already loaded

Checks A has permissions (x interacts with SecurityManager)
Returns reference to object

Else loader checks with SecurityManager to see if A can create B
If yes, checks the boot class path first -> extension class path -> application
class path -> network URL in that order
If found in other than boot class path, verification is done

Delegation hierarchy -
Implementation

Primordial class loader
In general is not a java class
is generated at JVM startup (not loaded)

Every ClassLoader class needs to be
loaded

When a program instantiates a
ClassLoader, the program’s class loader
becomes the ClassLoader’s parent

E.g., extention class loader is created at
JVM start-up by one of the JVM’s system
programs, whose class loader is the
primordial class loader – hence primordial
class loader is parent

Forms parent/child relationships

Referencing classes

The delegation model guarantees
A more trusted class cannot be replaced by the
less trusted
A and its instance can call B and its instances if
both were loaded by the same class loader
C and its instance can call D and its instances if
D’s class loader is an ancestor of C’s loader
E and its instance cannot call F and its instances
E’s class loader is an ancestor of C’s loader
Classes in name space, created by different class
loaders cannot reference each other

Prevents cross visibility
How can such classes exchange information?

Class Verifier
At this point following is guaranteed

Class file loaded
Cannot supplant core classes
Cannot Inveigle into trusted packages
Cannot interfere with safe packages already loaded

However the class file itself may be unsafe
Key sources of unsafe byte code

Malicious java compiler
byte code may itself be from non-Java programs

Class editors, decompilers, disaasemlers

Can be easily edited by hex class editor

ByteCode Example
0: CA FE BA BE 00 00 00 2E 00 ID 0A 00 06 00 0F 09 Eb9<............

10: 00 10 00 11 08 00 12 0A 00 13 00 14 07 00 15 07
20: 00 16 01 00 06 3C 69 6E 69 74 3E 01 00 03 28 29<init>...()
30: 56 01 00 04 43 6F 64 65 01 00 0F 4C 69 6E 65 4E V...Code...LineH
40: 75 6D 62 65 72 54 61 62 6C 65 01 00 04 6D 61 69 umberTable...mai
50: 6E 01 00 16 28 5B 4C 6A 61 76 61 2F 6C 61 6E 67 n...([Ljava/lang
60: 2F 53 74 72 69 6E 67 3B 29 56 01 00 0A 53 6F 75 /String;)V...Sou
70: 72 63 65 46 69 6C 65 01 00 0F 48 65 6C 6C 6F 57 rceFile...HelloW
80: 6F 72 6C 64 2E 6A 61 76 61 0C 00 07 00 08 07 00 orld.Java.......
90: 17 0C 00 18 00 19 01 00 0B 48 65 6C 6C 6F 20 57Hello W
A0: 6F 72 6C 64 07 00 1A 0C 00 1B 00 1C 01 00 0A 48 orld...........H
B0: 65 6C 6C 6F 57 6F 72 6C 64 01 00 10 6A 61 76 61 elloWorld...Java
C0: 2F 6C 61 6E 67 2F 4F 62 6A 65 63 74 01 00 10 6A /lang/Object...j
D0: 61 76 61 2F 6C 61 6E 67 2F 53 79 73 74 65 6D 01 ava/lang/System.
E0: 00 03 6F 75 74 01 00 15 4C 6A 61 76 61 2F 69 6F ..out...Ljava/io
F0: 2F 50 72 69 6E 74 53 74 72 65 61 6D 3B 01 00 13 /PrintStream;...
100: 6A 61 76 61 2F 69 6F 2F 50 72 69 6E 74 53 74 72 java/io/PrintStr
110: 65 61 6D 01 00 07 70 72 69 6E 74 6C 6E 01 00 15 eam...println...
120: 28 4C 6A 61 76 61 2F 6C 61 6E 67 2F 53 74 72 69 (Ljava/lang/Stri
130: 6E 67 3B 29 56 00 20 00 05 00 06 00 00 00 00 00 ng;)V.
140: 02 00 00 00 07 00 08 00 01 00 09 00 00 00 1D 00
150: 01 00 01 00 00 00 05 2A B7 00 01 Bl 00 00 00 01*•..±....
160: 00 0A 00 00 00 06 00 01 00 00 00 01 00 09 00 0B
170: 00 0C 00 01 00 09 00 00 00 25 00 02 00 01 00 00%......
180: 00 09 B2 00 02 12 03 B6 00 04 Bl 00 00 00 01 00 ..2......¶..±.....
190: 0A 00 00 00 0A 00 02 00 00 00 05 00 08 00 06 00
1A0: 01 00 0D 00 00 00 02 00 0E

class HelloWorld
{ public static void main(String args[])

{ System.out.println("Hello World");
}

}

class HelloWorld
{ public static void main(String args[])

{ System.out.println("Hello World");
}

}

Class Verifier
Bytecode can be easily modified to change the
behavior of the class using such hex editors
Decompilers can recreate source code

It can then be modified to create malicious byte
code using a custom compiler
Disassembler generates pseudo assembly code,
which can be modified and reassembled back to
corrupted java code

Class Verifier
Class editors, decompilers and dissemblers can also be used to
perpetrate privacy and intellectual property attacks

Valuable algorithm can be broken
Security mechanism can be revealed and bypassed
Hard-coded confidential information (keys, password) can
be extracted

A break in release-to-release compatibility can cause a class to
be unsafe

A member that was accessible is not available
A member has changed from static to instance
New version has different return, number and type parameters

All these need to be checked by Class Verifier !

Duties of Class File Verifier
Some possible compromise to the integrity of
JVM as follows

Forge illegal pointers
Class confusion attack: obtain reference to an
object of one type and use it as another type

Contain illegal bytecode instructions
Contain illegal parameters for bytecode
instructions
Overflow or underflow the program stack

Underflow – attempting to pop more values than it
pushed
Overflow – placing values on it that it did not
remove

Perform illegal casting operation
Attempt to access classes, fields or methods
illegally

Tag each
object with
type

Tag each
object with
type

Check the
size of stack
before and
after each call

Check the
size of stack
before and
after each call

Class Verifier
Four passes based on Sun JVM

Over the newly loaded class
Any pass fails the class is rejected
First three before the execution and the last during the
execution

Pass 1: File-integrity check
Checks for a signature

The first four bytes is magic number 0xCAFEBABE
Check that the class itself is neither too long nor too short –
otherwise throws exceptions

Class Verifier

Pass 2: Class-integrity check – ensures
Class has a superclass unless it is Object
Superclass is not a final class
Class does not override a final method in its
superclass
Constant pool entries are well formed
All the method and field references have legal
names and signatures

Class Verifier

Pass 3: bytecode-integrity check – the
bytecode verifier runs

Checks how the code will behave at runtime
Dataflow analysis, static type checking

Bytecode verifer is responsible for ensuring
Bytecodes have correct operands and their types
Data types are not accessed illegally
Stack is not overflowed/underflowed
Method calls have appropriate parameters

Class Verifier

The result indicates a class file in one
category

Runtime behavior is demonstrably safe (accept)
Runtime behavior is demonstrably unsafe (reject)
Runtime behavior is neither demonstrably safe
nor demonstrably unsafe

Cannot be completely eliminated
Means bytecode verifier is not enough to prevent
runtime errors – some runtime checking is required

Class Verifier

Pass 4: Runtime-integrity check
Bytecode verification cannot confirm certain
behavior

ClassB b = new ClassB();
ClassA a = b.methodReturningClassA();
ClassB b = new ClassB();
ClassA a = b.methodReturningClassA();

ClassB b = new ClassB();
ClassA a = b.methodReturningClassC();
ClassB b = new ClassB();
ClassA a = b.methodReturningClassC();

Class files are loaded only when a
method call is executed or a field
in an object of that class is
modified

Security Manager
Java environment attacks can be

System modification
A program gets read/write access

Privacy invasion
Read access to restricted information

Denial of service
Program uses up system resources without being invited

Impersonation
Masquerades as a real user of the system

Security manager enforces restriction against first
two attacks and to some extend the last

Security Manager

SecurityManager – concrete class
Implementation supports policy driven security
model
Resource-level, access control facility
checkPermission(Permission object)

Security Manager

Resources protected by default
SecurityManager

Security Manager
SM Automatically grants

a class file java.io.FilePermission necessary to read to all files in
its directory and subdirectory
Java.net.SocketPermission that allows remote code to connect
to, accept, and resolve local host and the host the code is loaded
from

Security Manager Operation
Once installed, a SecurityManager is active only on request – it does not
check anything unless one of its check methods is called by other system
functions

Types of attacks

Some of the security holes in previous java
releases

Infiltrating local classes
JVM implementation bug: allowed an applet to load a
class from any directory on the browser system

OS should be configured to restrict writing access to the
directories pointed to by the boot class path
Extension framework are by default granted full access to
the system resources – only trusted users should be
allowed to add extensions to the runtime environment

Types of attacks
Type confusion

If an attacker can create an object reference that
is not of the type it claims to be, there is possibility
of breaking down protection. JVM flaws

JVM access checking that allowed a method or an object
defined as private in one class to be accessed by another
class as public
JVM bug that failed to distinguish between two classes with
the same name but loaded by different class loaders

Types of attacks
Network lookpholes

Failure to check the source IP address rigorously
This was exploited by abusing the DNS to fool SM in
allowing the remote program to connect to a host that would
normally have been invisible to the server

JavaScript backdoors
Exploit allowed script to persist after the web page has
been exited

Malicious code: Balancing Permission
Cycle stealing
Impersonation

Interdependence of three legs
Although have unique functions, they are inter-
dependent

Class-loading mechanism relies on SM to prevent
trusted code from loading its own class loader
SM relies on class-loading mechanism to keep
untrusted classes and local classes separate
name spaces and to prevent the local trusted
classes from being overwritten
Both the SM and CL system rely on class file
verifier to make sure that class confusion is
avoided and that class protection directives are
honored.

If an attacker can breach one of the defenses – the
security of the whole system can be compromised

Java 2 Permission Model

fine-grained access control model
Ability to grant specific permissions to a particular
piece of code about accessing specific resources

Based on the signers of the code, and
The URL location from which code was loaded

System admin can specify permission on a case-
by-case basis

the policy database is by default implemented as a flat
file, called policy profile

Java 2 Permission Model
In multiuser system, a default system policy data bases
can be defined, and each user can have a separate
policy database
Additionally in an intranet, network admin can define a
corporate wide policy database and install it on a policy
server for all the Java systems in the network to
download and use

At runtime, (corporate wide policy database + system policy
database + user-defined policy database) gives the current
security policy in effect

Java 2 Access control mechanism
Predetermined security policy of the java system dictates
the Java security domains within which a specific piece of
code can reside

Lexical scoping of privilege
modifications

A piece of code can
be defined as
privileged

Caller should have
java.net.SocketPermission
but not necessary to have

java.io.FilePermission

Caller should have
java.net.SocketPermission
but not necessary to have

java.io.FilePermission

Trusted code called opens
socket connection and logs
to a file all the times it has

been accessed

Trusted code called opens
socket connection and logs
to a file all the times it has

been accessed someMethod()
{

// unprivileged code here...
AccessController.doPrivileged(new PrivilegedAction()
{

public Object run()
{

// privileged code goes here, for example:
System.loadLibrary("awt");
return null; // nothing to return

}
});
// unprivileged code here...

}

someMethod()
{

// unprivileged code here...
AccessController.doPrivileged(new PrivilegedAction()
{

public Object run()
{

// privileged code goes here, for example:
System.loadLibrary("awt");
return null; // nothing to return

}
});
// unprivileged code here...

}

Java 2 Security Tools
jar utility

Aggregates and compresses collections of java programs and
related resources
Only JAR files can be signed/sealed

keytool utility
Creates key pairs; imports/exports X.509 certificates; manages
keystore
Keystore – protected database containing keys/certificates

jarsigner utility
To sign JAR files and to verify signatures of JAR files

Policytool
To create and modify policy configuration files

Java Authentication and
Authorization Service

Basic java security model
Grants permissions based on code signers and
URL locations

Insufficient in enterprise environment – as concept of
user running the code is not captured

JAAS complemented basic model by taking
into account users running the code

Java Permissions

java.security package contains abstract
Permission class

Subclasses define specific permission

Permissions API
inheritance tree
Permissions API
inheritance tree

Specific permission class
generally in packages in
which they are most likely to
be used, e.g.,

FilePermission in java.io
package
SocketPermission in
java.net package

Specific permission class
generally in packages in
which they are most likely to
be used, e.g.,

FilePermission in java.io
package
SocketPermission in
java.net package

Java Permissions

Permission may have
A target and optional actions (access mode)
E.g., both target and action included

java.io.FilePermission “C:\AUTOEXEC.BAT”, “read, write, execute”

E.g., target only
java.io.RuntimePermission “exitVM”

E.g., no target
java.security.AllPermission – full access to all system resources

Java Permissions

Classes
PermissionCollections and Permissions

Abstract
class

Abstract
class

Final
class
Final
class

Homogeneous
permission; e.g.,
file permissions

Homogeneous
permission; e.g.,
file permissions

Group of heterogeneous permission objectsGroup of heterogeneous permission objects

Permission class

implies() method – abstract method that
returns true

a implies b means
Granting an application permission a autmatically
grants it permission b also.

Giving AllPermisions implies granting rest of the
permissions
java.io.FilePermission “/tmp/*”, “read” implies
java.io.FilePermission “/tmp/readme.txt”, ‘read”

AllPermissions
Care should be taken when granting AllPermissions
and any of the following Permissions

Permission to define the systems SecurityManager; E.g.,
RuntimePermissions “createSecurityManager” and
RuntimePermissions “setSecurityManager”

Permission to create a class loader
Delegation hierarchy may not be respected

Permission to create native code
Native code runs on OS and hence bypasses java security
restrictions

Permission to set the system’s security policy

Java Security Policy
Policy can be configured – declarative

Can also be easily changed
java.security.policy can be subclassed to develop customized policy
implementation (e.g., encrypted file instead of flat files)

grant [signedBy signers][, codeBase URL] {
permission Perm_class [target][, action][, signedBy signers];
[permission ...]
}; //GRANT Entry syntax

grant [signedBy signers][, codeBase URL] {
permission Perm_class [target][, action][, signedBy signers];
[permission ...]
}; //GRANT Entry syntax

grant signedBy "bob, alice" codeBase "http://www.ibm.com" {
permission java.io.FilePermission "C:\AUTOEXEC.BAT", "read";
permission java.lang.RuntimePermission "setSecurityManager";
};// GRANT entery

grant signedBy "bob, alice" codeBase "http://www.ibm.com" {
permission java.io.FilePermission "C:\AUTOEXEC.BAT", "read";
permission java.lang.RuntimePermission "setSecurityManager";
};// GRANT entery

Keystore used by JVM
should have certificates of
bob AND alice. To do OR,
duplicate the grant
statement

Keystore used by JVM
should have certificates of
bob AND alice. To do OR,
duplicate the grant
statement

Multiple policy files
Code source

Can be combined at runtime to
form single policy object

No risk of conflict as only positive
permissions
By default program is denied any
access

CodeSource
Codebase is the URL location
that the code is coming from
If two classes have the same
codebase and are signed by the
same signers – they have the
same CodeSource

Protection domain
When a class is loaded into JVM

CodeSource of that class is mapped to the Permissions granted
to it by the current policies
Class loader stores CodeSource and Permissions object into a
ProtectionDomain object

That is -> Based on the class’s CodeSource the ClassLoader builds
the ProtectionDomain for each class

System and Application domains

System classes are fully treated
ProtectionDomain (system domain) is pre-built
that grants AllPermissions (also known as null
protection domain)

Application domain
Non system classes
Zero or more application domains

As many application domains as there are non-system
CodeSource

Relationships
All the classes with the same CodeSource belong to the same
ProtectionDomain
Each class belongs to one and only one ProtectionDomain
Classes that have the same Permissions but are different from
CodeSources belong to different ProtectionDomains

Basic Java 2 Access Control
Model

SecurityManager.checkPermission() is called to
allow access to resources

It is an interface
Actually relies on AccessController.checkPermission() to
verify the permission has been granted

Basic Java 2 Access Control
Model

Thread of execution
may occur

Completely within a single Protection domain (e.g., the
system domain), or
May involve one or more application domains and also
the system domain

Contains a number of stack frames – one for each
method invocation

Each stack frame is mapped to the class in which the
method is declared

Basic Java 2 Access Control
Model

AccessController.checkPermission()
Walks through each thread’s stack frames, getting the
protection domain for each class on the thread’s stack
As each ProtectionDomain is located, the implies() method
is invoked to check if Permission is implied by the
ProtectionDomain

Repeats until the end of the stack is reached
If all the classes in the frame have the Permission to
perform the operation – the check is positive
If even one ProtectionDomain fails to imply the
permission – it is negative

Basic Java 2 Access Control
Model

Examples

Less privileged to more privileged

More privileged to less privileged

Privileged Code

Intersection of permission of the
ProtectionDomain can be a limitation

Controlled solution: Wrap the needed code into
AccessController.doPrivileged() to see whether
Permission being checked is implied

The search stops at the stack that implies

Privileged Code

