IS 2150 / TEL 2810 Information Security \& Privacy

J ames J oshi
Associate Professor, SIS

Mathematical Review

Objective

- Review some mathematical concepts
- Propositional logic
- Predicate logic
- Mathematical induction
- Lattice

Propositional logic/calculus

- Atomic, declarative statements (propositions)
- that can be shown to be either TRUE or FALSE but not both; E.g., "Sky is blue"; "3 is less than 4"
- Propositions can be composed into compound sentences using connectives
- Negation
$\neg \mathrm{p}$ (NOT) highest precedence
- Disjunction $p \vee q$ (OR) second precedence
- Conjunction $p \wedge q$ (AND) second precedence
- Implication
$p \rightarrow q$ q logical consequence of p
- Exercise: Truth tables?

Propositional logic/calculus

- Contradiction:
- Formula that is always false : $\mathrm{p} \wedge \neg \mathrm{p}$
- What about: $\neg(p \wedge \neg p)$?
- Tautology:
- Formula that is always True : $p \vee \neg p$
- What about: $\neg(p \vee \neg p)$?
- Others
- Exclusive OR: p $\oplus q ; p$ or q but not both
- Bi-condition: $p \leftrightarrow q \quad$ [p if and only if q (p iff q)]
- Logical equivalence: $p \Leftrightarrow q$ [p is logically equivalent to q]
- Some exercises...

Some Laws of Logic

- Double negation
- DeMorgan's law
- $\neg(p \wedge q) \Leftrightarrow(\neg p \vee \neg q)$
- $\neg(p \vee q) \Leftrightarrow(\neg p \wedge \neg q)$
- Commutative
- $(p \vee q) \Leftrightarrow(q \vee p)$
- Associative law
- $p \vee(q \vee r) \Leftrightarrow(p \vee q) \vee r$
- Distributive law
- $p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r)$
- $p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$

Predicate/first order logic

- Propositional logic
- Variable, quantifiers, constants and functions
- Consider sentence: Every directory contains
some files
- Need to capture "every" "some"
- $F(x)$: x is a file
- $D(y): y$ is a directory
- $C(x, y)$: x is a file in directory y

Predicate/first order logic

- Existential quantifiers \exists (There exists)
- E.g., $\exists x$ is read as There exists x
- Universal quantifiers \forall (For all)
- $\forall \mathrm{y} D(\mathrm{y}) \rightarrow(\exists \mathrm{x}(\mathrm{F}(\mathrm{x}) \wedge \mathrm{C}(\mathrm{x}, \mathrm{y})))$
- read as
- for every y, if y is a directory, then there exists a x such that x is a file and x is in directory y
- What about $\forall x \quad F(x) \rightarrow(\exists y(D(y) \wedge C(x, y)))$?

Mathematical Induction

- Proof technique - to prove some mathematical property
- E.g. want to prove that $M(n)$ holds for all natural numbers
- Base case OR Basis:
- Prove that M(1) holds
- I nduction Hypothesis:
- Assert that $\mathrm{M}(n)$ holds for $n=1, \ldots, k$
- I nduction Step:
- Prove that if $\mathrm{M}(k)$ holds then $\mathrm{M}(k+1)$ holds

Mathematical I nduction

- Exercise: prove that sum of first n natural numbers is
- $\mathrm{S}(\mathrm{n}): 1+\ldots+\mathrm{n}=n(n+1) / 2$
- Prove
- $\mathrm{S}(\mathrm{n}): 1^{\wedge} 2+. .+n^{\wedge} 2=n(n+1)(2 n+1) / 6$

Lattice

- Sets
- Collection of unique elements
- Let S, T be sets
- Cartesian product: $S \times T=\{(a, b) \mid a \in A, b \in B\}$
- A set of order pairs
- Binary relation R from S to T is a subset of S $\times \mathrm{T}$
- Binary relation R on S is a subset of $S \times S$

Lattice

- If $(\mathrm{a}, \mathrm{b}) \in R$ we write $\mathrm{a} R \mathrm{~b}$
- Example:
- R is "less than equal to" (\leq)
- For $S=\{1,2,3\}$
- Example of R on S is $\{(1,1)$, (1,2), (1,3), ????)
- $(1,2) \in R$ is another way of writing $1 \leq 2$

Lattice

- Properties of relations
- Reflexive:
- if $a R$ for all $a \in S$
- Anti-symmetric:
- if aR b and b Ra implies $\mathrm{a}=\mathrm{b}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{S}$
- Transitive:
- if aRb and bRc imply that aRc for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{S}$
- Which properties hold for "less than equal to" (\leq)?
- Draw the Hasse diagram
- Captures all the relations

Lattice

- Total ordering:
- when the relation orders all elements
- E.g., "less than equal to" (\leq) on natural numbers
- Partial ordering (poset):
- the relation orders only some elements not all
- E.g. "less than equal to" (\leq) on complex numbers; Consider $(2+4 i)$ and $(3+2 i)$

Lattice

- Upper bound ($u, a, b \in S$)
- u is an upper bound of a and b means $a R u$ and bRu
- Least upper bound : lub($a, b)$ closest upper bound
- Lower bound (l, $a, b \in S$)
- l is a lower bound of a and b means $l R a$ and $l R b$
- Greatest lower bound : glb(a, b) closest lower bound

Lattice

- A lattice is the combination of a set of elements S and a relation R meeting the following criteria
- R is reflexive, antisymmetric, and transitive on the elements of S
- For every $s, t \in S$, there exists a greatest lower bound
- For every $s, t \in S$, there exists a lowest upper bound
- Some examples
- $S=\{1,2,3\}$ and $R=\leq$?
- $S=\{2+4 i ; 1+2 i ; 3+2 i, 3+4 i\}$ and $R=\leq$?

Overview of Lattice Based Models

- Confidentiality
- Bell LaPadula Model
- First rigorously developed model for high assurance - for military
- Objects are classified
- Objects may belong to Compartments
- Subjects are given clearance
- Classification/clearance levels form a lattice
- Two rules
- No read-up
- No write-down

