IS 2150 / TEL 2810 Information Security \& Privacy

James Joshi Associate Professor, SIS

Lecture 4
Jan 30, 2013

Access Control Model
Foundational Results

Objective

- Understand the basic results of the HRU model
- Saftey issue
- Turing machine
- Undecidability

Safety Problem: formally

Given

- Initial state $X_{0}=\left(S_{0,} O_{0,} A_{0}\right)$
- Set of primitive commands c
- r is not in $A_{d}[s, o]$
- Can we reach a state X_{n} where
- $\exists s, o$ such that $A_{n}[s, o]$ includes a right r not in $A_{[}[s, 0]$?

If so, the system is not safe But is "safe" secure?

Undecidable Problems

- Decidable Problem
- A decision problem can be solved by an algorithm that halts on all inputs in a finite number of steps.
- Undecidable Problem
- A problem that cannot be solved for all cases by any algorithm whatsoever

Decidability Results (Harrison, Ruzzo, Ullman)

- Theorem:
- Given a system where each command consists of a single primitive command (mono-operational), there exists an algorithm that will determine if a protection system with initial state X_{0} is safe with respect to right r.

Decidability Results (Harrison, Ruzzo, Ullman)

- Proof: determine minimum commands k to leak
- Delete/destroy: Can't leak
- Create/enter: new subjects/objects "equal", so treat all new subjects as one
- No test for absence of right
- Tests on $A\left[s_{1}, o_{1}\right]$ and $A\left[s_{2}, o_{2}\right]$ have same result as the same tests on $A\left[s_{1}, o_{1}\right]$ and $A\left[s_{1}, o_{2}\right]=A\left[s_{1}, o_{2}\right] \cup A\left[s_{2}, o_{2}\right]$
- If n rights leak possible, must be able to leak $k=$ $n\left(\left|S_{0}\right|+1\right)\left(\left|O_{0}\right|+1\right)+1$ commands
- Enumerate all possible states to decide

Create Statements

Create s_{1}; Create s_{2}

Discard these

Create Statements

Decidability Results (Harrison, Ruzzo, Ullman)

- Proof: determine minimum commands k to leak
- Delete/destroy: Can't leak
- Create/enter: new subjects/objects "equal", so treat all new subjects as one
- No test for absence of right
- Tests on $A\left[s_{1}, o_{1}\right]$ and $A\left[s_{2}, o_{2}\right]$ have same result as the same tests on $A\left[s_{1}, o_{1}\right]$ and $A\left[s_{1}, o_{2}\right]=A\left[s_{1}, o_{2}\right] \cup A\left[s_{2}, o_{2}\right]$
- If n rights leak possible, must be able to leak $k=$ $n\left(\left|S_{0}\right|+1\right)\left(\left|O_{0}\right|+1\right)+1$ commands
- Enumerate all possible states to decide

Decidability Results
 (Harrison, Ruzzo, Ullman)

- It is undecidable if a given state of a given protection system is safe for a given generic right
- For proof - need to know Turing machines and halting problem

Turing Machine \& halting problem

- The halting problem:
- Given a description of an algorithm and a description of its initial arguments, determine whether the algorithm, when executed with these arguments, ever halts (the alternative is that it runs forever without halting).

Turing Machine \& Safety problem

- Theorem:
- It is undecidable if a given state of a given protection system is safe for a given generic right
- Reduce TM to Safety problem
- If Safety problem is decidable then it implies that TM halts (for all inputs) - showing that the halting problem is decidable (contradiction)
- TM is an abstract model of computer
- Alan Turing in 1936

Turing Machine

- TM consists of
- A tape divided into cells; infinite in one direction
- A set of tape symbols M
- M contains a special blank symbol b
- A set of states K

- A head that can read and write symbols
- An action table that tells the machine how to transition
- What symbol to write
- How to move the head ('L' for left and 'R' for right)
- What is the next state

Turing Machine

- Transition function $\delta(k, m)=$ $\left(k^{\prime}, m^{\prime}, \mathrm{L}\right)$:
- In state k, symbol m on tape location is replaced by symbol m^{\prime},
- Head moves one cell to the left, and TM enters state k^{\prime}
- Halting state is q_{f}
- TM halts when it enters this state

Let $\delta(k, C)=\left(k_{1}, X, R\right)$ where k_{1} is the next state

Turing Machine

Let $\delta(k, C)=\left(k_{1}, X, R\right)$

head

Current state is k
Current symbol is C

Let $\delta\left(k_{1}, D\right)=\left(k_{2}, Y, L\right)$ where k_{2} is the next state

TM2Safety Reduction

Current state is k
Current symbol is C head
Proof: Reduce TM to safety problem

- Symbols, States \Rightarrow rights
- Tape cell \Rightarrow subject
- Cell s_{i} has $A \Rightarrow s_{i}$ has A rights on itself
- Cell $s_{k} \Rightarrow s_{k}$ has end rights on itself
- State $p_{\text {, }}$ head at $s_{i} \Rightarrow s_{i}$ has p rights on itself
- Distinguished Right own:
- s_{i} owns $s_{i}+1$ for $1 \leq i<k$

	s_{1}	s_{2}	s_{3}	s_{4}	
s_{1}	A	$o w n$			
s_{2}		B	$o w n$		
s_{3}			$\mathrm{C} k$	$o w n$	
s_{4}				D end	

Command Mapping (Left move)

Current state is k
Current symbol is C head

$$
\delta(k, \mathrm{C})=\left(k_{1}, \mathrm{X}, \mathrm{~L}\right)
$$

$\delta(k, \mathrm{C})=\left(k_{1}, \mathrm{X}, \mathrm{L}\right)$
If head is not in leftmost command $\mathrm{c}_{k, \mathrm{C}}\left(S_{j ;}, S_{i-1}\right)$ if $o w n$ in $a\left[s_{i-1}, s_{j}\right]$ and k in $a\left[s_{i j}, s_{i}\right]$ and C in $a\left[s_{i j} s_{i}\right]$ then delete k from $A\left[s_{i}, s_{j}\right]$; delete C from $A\left[S_{s}, S_{i}\right]$; enter X into $A\left[s_{i} ; s_{i}\right]$; enter k_{1} into $A\left[S_{i-1}, S_{i-1}\right]$; End

	s_{1}	s_{2}	s_{3}	s_{4}	
s_{1}	A	$o w n$			
s_{2}		B	$o w n$		
s_{3}			$\mathrm{C} k$	$o w n$	
s_{4}				D end	

Command Mapping (Left move)

1			3	4
A	B	X	D	\cdots

Current state is k_{1}
Current symbol is D head

$$
\delta(k, \mathrm{C})=\left(k_{1}, \mathrm{X}, \mathrm{~L}\right)
$$

$\delta(k, \mathrm{C})=\left(k_{1}, \mathrm{X}, \mathrm{L}\right)$
If head is not in leftmost command $\mathrm{c}_{k, \mathrm{C}}\left(S_{j ;}, S_{i-1}\right)$ if $o w n$ in $a\left[s_{i-1}, s_{j}\right]$ and k in $a\left[s_{i} ; s_{i}\right]$ and C in $a\left[s_{i}, s_{i}\right]$ then delete k from $A\left[s_{i}, s_{i}\right]$; delete C from $A\left[S_{j}, S_{j}\right]$; enter X into $A\left[s_{i} ; s_{i}\right]$; enter k_{1} into $A\left[s_{i-1}, s_{i-1}\right]$; End

	s_{1}	s_{2}	s_{3}	s_{4}	
s_{1}	A	$o w n$			
s_{2}		$\mathrm{~B} k_{1}$	$o w n$		
s_{3}			X	$o w n$	
s_{4}				D end	

 Current state is k

Current symbol is C head
$\delta(k, \mathrm{C})=\left(k_{1}, \mathrm{X}, \mathrm{R}\right)$
command $\mathrm{c}_{k, \mathrm{C}}\left(S_{j}, S_{j+1}\right)$
if $o w n$ in $a\left[S_{i} ; S_{i+1}\right]$ and k in $a\left[s_{i}, S_{i}\right]$ and C in $a\left[s_{i}, S_{i}\right]$
then
delete k from $A\left[S_{i}, S_{i}\right]$; delete C from $A\left[s_{i}, S_{i}\right]$; enter X into $A\left[s_{i} ; s_{i}\right]$; enter k_{1} into $A\left[S_{i+1}\right.$, $\left.S_{j+1}\right]$;
end

Command Man in $1=34$ Command Mapping <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">A</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">B</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">C</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">D</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |</table-markdown></div>

Current state is k_{1}
Current symbol is C head
$\delta(k, \mathrm{C})=\left(k_{1}, \mathrm{X}, \mathrm{R}\right)$
command $\mathrm{c}_{k, \mathrm{C}}\left(S_{i}, S_{i+1}\right)$
if $O W n$ in $a\left[S_{i} ; S_{i+1}\right]$ and k in $a\left[s_{i}, S_{i}\right]$ and C in $a\left[S_{i}, S_{i}\right]$
then
delete k from $A\left[S_{i}, S_{i}\right]$; delete C from $A\left[S_{i}, S_{i}\right]$; enter X into $A\left[s_{i} ; s_{i}\right]$; enter k_{1} into $A\left[s_{i+1}\right.$, $\left.S_{i+1}\right]$;
end

	s_{1}	s_{2}	s_{3}	s_{4}	
s_{1}	A	$o w n$			
s_{2}		B	$o w n$		
s_{3}			X	$o w n$	
s_{4}				$\mathrm{D} k_{1}$ end	

Command Mapping (Rightmost move) Current state is k_{1}

Current symbol is C head
$\delta\left(k_{1}, \mathrm{D}\right)=\left(k_{2}, \mathrm{Y}, \mathrm{R}\right)$ at end becomes
command crightmost ${ }_{k, \mathrm{C}}\left(S_{i j}, S_{i+1}\right)$
if end in $a\left[s_{i} ; s_{i}\right]$ and k_{1} in $a\left[s_{i} ; s_{i}\right]$ and D in $a\left[s_{i}, s_{i}\right]$
then

$$
\text { delete end from } a\left[s_{i}, s_{i}\right] \text {; }
$$ create subject S_{i+1}; enter own into als $\left[s_{j} ; s_{i+1}\right]$; enter end into $a\left[s_{i+1}, s_{i+1}\right]$; delete k_{1} from $a\left[s_{i} ; s_{i}\right]$; delete D from $a\left[s_{i} ; s_{i}\right]$; enter Y into $a\left[s_{i} ; s_{i}\right]$; enter k_{2} into $A\left[s_{i}, s_{i}\right]$;

end

	s_{1}	s_{2}	s_{3}	s_{4}	
s_{1}	A	$o w n$			
s_{2}		B	$o w n$		
s_{3}			X	$o w n$	
s_{4}				$\mathrm{D} k_{1} \mathrm{end}$	

Command Mapping (Rightmost move) Current state is k_{1}

Current symbol is $D \quad$ head

1	2	3	4

$\delta\left(k_{1}, \mathrm{D}\right)=\left(k_{2}, \mathrm{Y}, \mathrm{R}\right)$ at end becomes
command crightmost ${ }_{k, \mathrm{C}}\left(S_{i} ; S_{i+1}\right)$
if end in $a\left[s_{i} ; S_{i}\right]$ and K_{1} in $a\left[S_{i} ; s_{i}\right]$ and D in $a\left[s_{j}, s_{i}\right]$
then

$$
\text { delete end from } a\left[s_{i}, s_{i}\right] \text {; }
$$ create subject S_{i+1}; enter own into als $\left[s_{j} ; s_{i+1}\right]$; enter end into a[sill,$\left.s_{i+1}\right]$; delete k_{1} from $a\left[s_{i} ; s_{i}\right]$; delete D from $a\left[s_{j} ; s_{i}\right]$; enter Y into $a\left[s_{i} ; s_{i}\right]$; enter k_{2} into $A\left[s_{j} ; s_{i}\right]$;

end

$$
\delta\left(k_{1}, \mathrm{D}\right)=\left(k_{2}, \mathrm{Y}, \mathrm{R}\right)
$$

	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}
s_{1}	A	$o w n$			
s_{2}		B	$o w n$		
s_{3}			X	$o w n$	
s_{4}				Y	$o w n$
s_{5}					$\mathrm{~b} k_{2}$ end

Rest of Proof

- Protection system exactly simulates a TM
- Exactly 1 end right in ACM
- Only 1 right corresponds to a state
- Thus, at most 1 applicable command in each configuration of the TM
- If TM enters state q_{f} then right has leaked
- If safety question decidable, then represent TM as above and determine if q_{f} leaks
- Leaks halting state \Rightarrow halting state in the matrix \Rightarrow Halting state reached
- Conclusion: safety question undecidable

Other results

- For protection system without the create primitives, (i.e., delete create primitive); the safety question is complete in P-SPACE
- It is undecidable whether a given configuration of a given monotonic protection system is safe for a given generic right
- Delete destroy, delete primitives;
- The system becomes monotonic as they only increase in size and complexity
- The safety question for biconditional monotonic protection systems is undecidable
- The safety question for monoconditional, monotonic protection systems is decidable
- The safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.

