IS 2150 / TEL 2810 Information Security \& Privacy

James Joshi Associate Professor, SIS

Lecture 3.1 Jan 23, 2013

Mathematical Review Security Policies

Objective

- Review some mathematical concepts
- Propositional logic
- Predicate logic
- Mathematical induction
- Lattice

Propositional logic/calculus

- Atomic, declarative statements (propositions)
- that can be shown to be either TRUE or FALSE but not both; E.g., "Sky is blue"; "3 is less than 4"
- Propositions can be composed into compound sentences using connectives
- Negation $\neg \mathrm{p}$ (NOT) highest precedence
- Disjunction $\quad \mathrm{p} \vee \mathrm{q}$ (OR) second precedence
- Conjunction $\quad \mathrm{p} \wedge \mathrm{q}$ (AND) second precedence
- Implication $\quad \mathrm{p} \rightarrow \mathrm{q}$ q logical consequence of p
- Exercise: Truth tables?

Propositional logic/calculus

- Contradiction:
- Formula that is always false : $\mathrm{p} \wedge \neg \mathrm{p}$
- What about: $\neg(\mathrm{p} \wedge \neg \mathrm{p})$?
- Tautology:
- Formula that is always True : $p \vee \neg p$
- What about: $\neg(p \vee \neg p)$?
- Others
- Exclusive OR: $\mathrm{p} \oplus \mathrm{q} ; \mathrm{p}$ or q but not both
- Bi-condition: $\mathrm{p} \leftrightarrow \mathrm{q} \quad$ [p if and only if q (p iff q)]
- Logical equivalence: $p \Leftrightarrow q$ [p is logically equivalent to q]
- Some exercises...

Some Laws of Logic

- Double negation
- DeMorgan's law
- $\neg(p \wedge q) \Leftrightarrow(\neg p \vee \neg q)$
- $\neg(p \vee q) \Leftrightarrow(\neg p \wedge \neg q)$
- Commutative
- $(p \vee q) \Leftrightarrow(q \vee p)$
- Associative law
- $p \vee(q \vee r) \Leftrightarrow(p \vee q) \vee r$
- Distributive law
- $p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r)$
- $p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$

Predicate/first order logic

- Propositional logic
- Variable, quantifiers, constants and functions
- Consider sentence: Every directory contains some files
- Need to capture "every" "some"
- $F(x)$: x is a file
- $D(y): y$ is a directory
- $C(x, y)$: x is a file in directory y

Predicate/first order logic

- Existential quantifiers \exists (There exists)
- E.g., $\exists x$ is read as There exists x
- Universal quantifiers \forall (For all)
- $\forall y \mathrm{D}(\mathrm{y}) \rightarrow(\exists x(F(x) \wedge C(x, y)))$
- read as
- for every y , ify is a directory, then there exists a x such that x is a file and x is in directory y
- What about $\forall x \quad F(x) \rightarrow(\exists y(D(y) \wedge C(x, y)))$?

Mathematical Induction

- Proof technique - to prove some mathematical property
- E.g. want to prove that M(n) holds for all natural numbers
- Base case OR Basis:
- Prove that $\mathrm{M}(1)$ holds
- Induction Hypothesis:
- Assert that $\mathrm{M}(n)$ holds for $n=1, \ldots, k$
- Induction Step:
- Prove that if $\mathrm{M}(k)$ holds then $\mathrm{M}(k+1)$ holds

Mathematical Induction

- Exercise: prove that sum of first n natural numbers is

$$
\mathrm{S}(\mathrm{n}): 1+\ldots+\mathrm{n}=n(n+1) / 2
$$

- Prove
$-S(n): 1^{\wedge} 2+. .+n^{\wedge} 2=n(n+1)(2 n+1) / 6$

Lattice

- Sets
- Collection of unique elements
- Let S, T be sets
- Cartesian product: $S \times T=\{(a, b) \mid a \in A, b \in B\}$
- A set of order pairs
- Binary relation R from S to T is a subset of $\mathrm{S} \times \mathrm{T}$
- Binary relation R on S is a subset of $\mathrm{S} \times \mathrm{S}$
- If $(\mathrm{a}, \mathrm{b}) \in R$ we write $\mathrm{a} R \mathrm{~b}$
- Example:
- R is "less than equal to" (\leq)
- For $S=\{1,2,3\}$
- Example of R on S is $\{(1,1),(1,2),(1,3)$, ????)
- $(1,2) \in R$ is another way of writing $1 \leq 2$

Lattice

- Properties of relations
- Reflexive:
- if aRa for all $a \in S$
- Anti-symmetric:
- if $\mathrm{a} R \mathrm{~b}$ and $\mathrm{b} R \mathrm{a}$ implies $\mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{S}$
- Transitive:
- if aRb and bRc imply that aRc for all a, b, c $\in S$
- Which properties hold for "less than equal to" (\leq)?
- Draw the Hasse diagram
- Captures all the relations

Lattice

- Total ordering:
- when the relation orders all elements
- E.g., "less than equal to" (\leq) on natural numbers
- Partial ordering (poset):
- the relation orders only some elements not all
- E.g. "less than equal to" (\leq) on complex numbers; Consider $(2+4 i)$ and $(3+2 i)$

Lattice

- Upper bound ($u, a, b \in S$)
- u is an upper bound of a and b means $a R u$ and $b R u$
- Least upper bound : lub($a, b)$ closest upper bound
- Lower bound ($l, a, b \in S$)
- l is a lower bound of a and b means $l R a$ and $l R b$
- Greatest lower bound : $\operatorname{glb}(a, b)$ closest lower bound

Lattice

- A lattice is the combination of a set of elements S and a relation R meeting the following criteria
- R is reflexive, antisymmetric, and transitive on the elements of S
- For every $s, t \in \mathrm{~S}$, there exists a greatest lower bound
- For every $s, t \in S$, there exists a lowest upper bound
- Some examples
- $S=\{1,2,3\}$ and $R=\leq$?
- $S=\{2+4 i ; 1+2 i ; 3+2 i, 3+4 i\}$ and $R=\leq$?

Overview of Lattice Based Models

- Confidentiality
- Bell LaPadula Model
- First rigorously developed model for high assurance - for military
- Objects are classified
- Objects may belong to Compartments
- Subjects are given clearance
- Classification/clearance levels form a lattice
- Two rules
- No read-up
- No write-down

