
Java Tutorial

Write Once, Run Anywhere

Java - General

 Java is:

– platform independent programming
language

– similar to C++ in syntax

– similar to Smalltalk in mental paradigm

 Pros: also ubiquitous to net

 Cons: interpreted, and still under
development (moving target)

Java - General

 Java has some interesting features:

– automatic type checking,

– automatic garbage collection,

– simplifies pointers; no directly accessible

pointer to memory,

– simplified network access,

– multi-threading!

Compile-time Environment Compile-time Environment

Java

Bytecodes

move locally

or through

network

Java

Source

(.java)

Java

Compiler

Java

Bytecode

(.class)

Java

Interpreter

Just in

Time

Compiler

Runtime System

Class

Loader

Bytecode

Verifier

Java

Class

Libraries

Operating System

Hardware

Java

Virtual

machine

How it works…!

How it works…!

 Java is independent only for one reason:

– Only depends on the Java Virtual Machine

(JVM),

– code is compiled to bytecode, which is

interpreted by the resident JVM,

– JIT (just in time) compilers attempt to

increase speed.

Java - Security

 Pointer denial - reduces chances of

virulent programs corrupting host,

 Applets even more restricted -

– May not

• run local executables,

• Read or write to local file system,

• Communicate with any server other than the

originating server.

Object-Oriented

 Java supports OOD

– Polymorphism

– Inheritance

– Encapsulation

 Java programs contain nothing but

definitions and instantiations of classes

– Everything is encapsulated in a class!

Java Advantages

 Portable - Write Once, Run Anywhere

 Security has been well thought through

 Robust memory management

 Designed for network programming

 Multi-threaded (multiple simultaneous tasks)

 Dynamic & extensible (loads of libraries)

– Classes stored in separate files

– Loaded only when needed

Basic Java Syntax

Primitive Types and Variables

 boolean, char, byte, short, int, long, float, double etc.

 These basic (or primitive) types are the only types

that are not objects (due to performance issues).

 This means that you don’t use the new operator to

create a primitive variable.

 Declaring primitive variables:

float initVal;

int retVal, index = 2;

double gamma = 1.2, brightness

boolean valueOk = false;

Initialisation

 If no value is assigned prior to use, then the

compiler will give an error

 Java sets primitive variables to zero or false

in the case of a boolean variable

 All object references are initially set to null

 An array of anything is an object

– Set to null on declaration

– Elements to zero false or null on creation

Declarations

int index = 1.2; // compiler error

boolean retOk = 1; // compiler error

double fiveFourths = 5 / 4; // no error!

float ratio = 5.8f; // correct

double fiveFourths = 5.0 / 4.0; // correct

 1.2f is a float value accurate to 7 decimal places.

 1.2 is a double value accurate to 15 decimal places.

 All Java assignments are right associative

 int a = 1, b = 2, c = 5

 a = b = c

 System.out.print(

 “a= “ + a + “b= “ + b + “c= “ + c)

 What is the value of a, b & c

 Done right to left: a = (b = c);

Assignment

Basic Mathematical Operators

 * / % + - are the mathematical operators

 * / % have a higher precedence than + or -

double myVal = a + b % d – c * d / b;

 Is the same as:
double myVal = (a + (b % d)) –

 ((c * d) / b);

Statements & Blocks

 A simple statement is a command terminated by

a semi-colon:

 name = “Fred”;

 A block is a compound statement enclosed in

curly brackets:

 {

 name1 = “Fred”; name2 = “Bill”;

 }

 Blocks may contain other blocks

Flow of Control

 Java executes one statement after the other

in the order they are written

 Many Java statements are flow control

statements:

Alternation: if, if else, switch

Looping: for, while, do while

Escapes: break, continue, return

If – The Conditional Statement

 The if statement evaluates an expression and if that

evaluation is true then the specified action is taken

if (x < 10) x = 10;

 If the value of x is less than 10, make x equal to 10

 It could have been written:

if (x < 10)

x = 10;

 Or, alternatively:

if (x < 10) { x = 10; }

Relational Operators

== Equal (careful)

!= Not equal

>= Greater than or equal

<= Less than or equal

> Greater than

< Less than

If… else

 The if … else statement evaluates an expression and

performs one action if that evaluation is true or a

different action if it is false.

 if (x != oldx) {

 System.out.print(“x was changed”);

}

else {

 System.out.print(“x is unchanged”);

}

Nested if … else

if (myVal > 100) {

 if (remainderOn == true) {

 myVal = mVal % 100;

 }

 else {

 myVal = myVal / 100.0;

 }

}

else

{

 System.out.print(“myVal is in range”);

}

else if

 Useful for choosing between alternatives:
if (n == 1) {

 // execute code block #1

}

else if (j == 2) {

 // execute code block #2

}

else {

 // if all previous tests have failed,

execute code block #3

}

A Warning…

WRONG!

if(i == j)

 if (j == k)

 System.out.print(

 “i equals k”);

 else

 System.out.print(

 “i is not equal

 to j”);

CORRECT!

if(i == j) {

 if (j == k)

 System.out.print(

 “i equals k”);

}

else

 System.out.print(“

i is not equal to

j”); // Correct!

The switch Statement
switch (n) {

 case 1:

 // execute code block #1

 break;

 case 2:

 // execute code block #2

 break;

 default:

 // if all previous tests fail then

 //execute code block #4

 break;

}

The for loop

 Loop n times

for (i = 0; i < n; n++) {

 // this code body will execute n times

 // i from 0 to n-1

}

 Nested for:

for (j = 0; j < 10; j++) {

 for (i = 0; i < 20; i++){

 // this code body will execute 200 times

 }

}

while loops

while(response == 1) {

 System.out.print(“ID =” +

userID[n]);

 n++;

 response = readInt(“Enter “);

}

What is the minimum number of times the loop
is executed?

What is the maximum number of times?

do {… } while loops

do {

 System.out.print(“ID =” + userID[n]);

 n++;

 response = readInt(“Enter ”);

}while (response == 1);

What is the minimum number of times the loop
is executed?

What is the maximum number of times?

Break

 A break statement causes an exit from the

innermost containing while, do, for or

switch statement.

for (int i = 0; i < maxID, i++) {

 if (userID[i] == targetID) {

 index = i;

 break;

 }

} // program jumps here after break

Continue

 Can only be used with while, do or for.

 The continue statement causes the innermost loop to

start the next iteration immediately
for (int i = 0; i < maxID; i++) {

 if (userID[i] != -1) continue;

 System.out.print(“UserID ” + i + “ :” +

 userID);

}

Arrays

 Am array is a list of similar things

 An array has a fixed:

– name

– type

– length

 These must be declared when the array is created.

 Arrays sizes cannot be changed during the execution

of the code

myArray has room for 8 elements

 the elements are accessed by their index

 in Java, array indices start at 0

3 6 3 1 6 3 4 1 myArray =

0 1 2 3 4 5 6 7

Declaring Arrays

int myArray[];

declares myArray to be an array of integers

myArray = new int[8];

sets up 8 integer-sized spaces in memory,

labelled myArray[0] to myArray[7]

int myArray[] = new int[8];

combines the two statements in one line

Assigning Values

 refer to the array elements by index to store values in

them.

myArray[0] = 3;

myArray[1] = 6;

myArray[2] = 3; ...

 can create and initialise in one step:

int myArray[] = {3, 6, 3, 1, 6, 3, 4, 1};

Iterating Through Arrays

 for loops are useful when dealing with arrays:

for (int i = 0; i <

myArray.length; i++) {

 myArray[i] = getsomevalue();

}

Arrays of Objects

 So far we have looked at an array of primitive types.

– integers

– could also use doubles, floats, characters…

 Often want to have an array of objects

– Students, Books, Loans ……

 Need to follow 3 steps.

Declaring the Array

1. Declare the array

 private Student studentList[];

– this declares studentList

2 .Create the array
 studentList = new Student[10];

– this sets up 10 spaces in memory that can
hold references to Student objects

3. Create Student objects and add them to the

array: studentList[0] = new
Student("Cathy", "Computing");

Java Methods & Classes

Classes ARE Object Definitions

 OOP - object oriented programming

 code built from objects

 Java these are called classes

 Each class definition is coded in a

separate .java file

 Name of the object must match the

class/object name

The three principles of OOP

 Encapsulation
– Objects hide their

functions (methods) and
data (instance
variables)

 Inheritance
– Each subclass inherits

all variables of its
superclass

 Polymorphism
– Interface same despite

different data types

car

auto-

matic
manual

Super class

Subclasses

draw() draw()

Simple Class and Method

Class Fruit{

 int grams;

 int cals_per_gram;

 int total_calories() {

 return(grams*cals_per_gram);

 }

}

Methods

 A method is a named sequence of code that can be
invoked by other Java code.

 A method takes some parameters, performs some
computations and then optionally returns a value (or
object).

 Methods can be used as part of an expression
statement.

public float convertCelsius(float tempC) {

 return(((tempC * 9.0f) / 5.0f) + 32.0);

 }

Method Signatures

 A method signature specifies:

– The name of the method.

– The type and name of each parameter.

– The type of the value (or object) returned by the method.

– The checked exceptions thrown by the method.

– Various method modifiers.

– modifiers type name (parameter list) [throws exceptions]

public float convertCelsius (float tCelsius) {}

public boolean setUserInfo (int i, int j, String name) throws

IndexOutOfBoundsException {}

Public/private

 Methods/data may be declared public or

private meaning they may or may not be

accessed by code in other classes …

 Good practice:

– keep data private

– keep most methods private

 well-defined interface between classes -

helps to eliminate errors

Using objects

 Here, code in one class creates an instance

of another class and does something with it

…

Fruit plum=new Fruit();

int cals;

cals = plum.total_calories();

 Dot operator allows you to access (public)

data/methods inside Fruit class

Constructors

 The line

plum = new Fruit();

 invokes a constructor method with which you

can set the initial data of an object

 You may choose several different type of

constructor with different argument lists

 eg Fruit(), Fruit(a) ...

Overloading

 Can have several versions of a method

in class with different types/numbers of

arguments
 Fruit() {grams=50;}

 Fruit(a,b) { grams=a; cals_per_gram=b;}

 By looking at arguments Java decides

which version to use

Java Development Kit

 javac - The Java Compiler

 java - The Java Interpreter

 jdb - The Java Debugger

 appletviewer -Tool to run the applets

 javap - to print the Java bytecodes

 javaprof - Java profiler

 javadoc - documentation generator

 javah - creates C header files

Stream Manipulation

48

Streams and I/O

 basic classes for file IO

– FileInputStream, for reading from a file

– FileOutputStream, for writing to a file

 Example:

Open a file "myfile.txt" for reading

FileInputStream fis = new FileInputStream("myfile.txt");

Open a file "outfile.txt" for writing

FileOutputStream fos = new FileOutputStream ("myfile.txt");

49

Display File Contents

import java.io.*;

public class FileToOut1 {

 public static void main(String args[]) {

 try {

 FileInputStream infile = new FileInputStream("testfile.txt");

 byte buffer[] = new byte[50];

 int nBytesRead;

 do {

 nBytesRead = infile.read(buffer);

 System.out.write(buffer, 0, nBytesRead);

 } while (nBytesRead == buffer.length);

 }

 catch (FileNotFoundException e) {

 System.err.println("File not found");

 }

 catch (IOException e) { System.err.println("Read failed"); }

 }

}

50

Filters

•Once a stream (e.g., file) has been opened, we

can attach filters

•Filters make reading/writing more efficient

•Most popular filters:

• For basic types:

•DataInputStream, DataOutputStream

• For objects:

•ObjectInputStream, ObjectOutputStream

51

Writing data to a file using Filters

import java.io.*;

public class GenerateData {

 public static void main(String args[]) {

 try {

 FileOutputStream fos = new FileOutputStream("stuff.dat");

 DataOutputStream dos = new DataOutputStream(fos);

 dos.writeInt(2);

 dos.writeDouble(2.7182818284590451);

 dos.writeDouble(3.1415926535);

 dos.close(); fos.close();

 }

 catch (FileNotFoundException e) {

 System.err.println("File not found");

 }

 catch (IOException e) {

 System.err.println("Read or write failed");

 }

 }

}

52

Reading data from a file using filters

import java.io.*;

public class ReadData {

 public static void main(String args[]) {

 try {

 FileInputStream fis = new FileInputStream("stuff.dat");

 DataInputStream dis = new DataInputStream(fis);

 int n = dis.readInt();

 System.out.println(n);

 for(int i = 0; i < n; i++) { System.out.println(dis.readDouble());

 }

 dis.close(); fis.close();

 }

 catch (FileNotFoundException e) {

 System.err.println("File not found");

 }

 catch (IOException e) { System.err.println("Read or write failed");

 }

 }

}

53

Object serialization

Write objects to a file, instead of writing primitive

types.

Use the ObjectInputStream, ObjectOutputStream

classes, the same way that filters are used.

54

Write an object to a file

import java.io.*;

import java.util.*;

public class WriteDate {

 public WriteDate () {

 Date d = new Date();

 try {

 FileOutputStream f = new FileOutputStream("date.ser");

 ObjectOutputStream s = new ObjectOutputStream (f);

 s.writeObject (d);

 s.close ();

 }

 catch (IOException e) { e.printStackTrace(); }

 public static void main (String args[]) {

 new WriteDate ();

 }

}

55

Read an object from a file

import java.util.*;

public class ReadDate {

 public ReadDate () {

 Date d = null;

 ObjectInputStream s = null;

 try { FileInputStream f = new FileInputStream ("date.ser");

 s = new ObjectInputStream (f);

 } catch (IOException e) { e.printStackTrace(); }

 try { d = (Date)s.readObject (); }

 catch (ClassNotFoundException e) { e.printStackTrace(); }

 catch (InvalidClassException e) { e.printStackTrace(); }

 catch (StreamCorruptedException e) { e.printStackTrace(); }

 catch (OptionalDataException e) { e.printStackTrace(); }

 catch (IOException e) { e.printStackTrace(); }

 System.out.println ("Date serialized at: "+ d);

 }

 public static void main (String args[]) { new ReadDate (); }

}

