IS 2150 / TEL 2810 Information Security \& Privacy

James Joshi
Associate Professor, SIS

Access Control Model
Foundational Results

Lecture 3
Sept 16, 2015

Objective

- Understand the basic results of the HRU model
- Saftey issue
- Turing machine
- Undecidability

Protection System

- State of a system
- Current values of
- memory locations, registers, secondary storage, etc.
- other system components
- Protection state (P)
- A system state that is considered secure
- A protection system
- Captures the conditions for state transition
- Consists of two parts:
- A set of generic rights
- A set of commands

Protection System

- Subject (S: set of all subjects)
- Eg.: users, processes, agents, etc.
- Object (O : set of all objects)
- Eg.:Processes, files, devices
- Right (R : set of all rights)
- An action/operation that a subject is allowed/disallowed on objects
- Access Matrix A : $a[s, 0] \subseteq R$
- Set of Protection States: (S, O, A)
- Initial state $X_{0}=\left(S_{0} O_{0}, A_{0}\right)$

State Transitions

$X_{i} \mid-\tau_{i+1} X_{i+1}$: upon transition τ_{i+1}, the system moves from state X_{i} to X_{i+1}
$X \vdash^{*} Y$: the system moves from state X to Y after a set of transitions

$X_{i} \vdash c_{i+1}\left(p_{i+1,1}, p_{i+1,2}, \ldots, p_{i+1, \mathrm{~m}}\right) X_{i+1}$: state transition upon a command For every command there is a sequence of state transition operations

Drinnitive connnanas (HR

Create subject s	Creates new row, column in ACM; s does not exist prior to this		
Create object o	Creates new column in ACM o does not exist prior to this		
Enter r into $a[s, o]$	Adds r right for subject s over object o Ineffective if r is already there		
Delete r from $a[s, o]$	Removes r right from subject s over object o	\quad	Destroy subject s
:---			
Destroy object o	Deletes column from ACM		

Primitive commands (HRU)

Create subject s

Creates new row, column in ACM;
s does not exist prior to this

Precondition: $s \notin S$

Postconditions:

$$
\begin{aligned}
& S=S \cup\{s\}, O^{\prime}=O \cup\{s\} \\
& \left(\forall y \in O^{\prime}\right)\left[a^{\prime}[s, y]=\varnothing\right] \text { (row entries for s) } \\
& (\forall x \in S)\left[a^{\prime}[x, S]=\varnothing\right] \text { (column entries for s) } \\
& (\forall x \in S)(\forall y \in O)\left[a^{\prime}[x, y]=a[x, y]\right]
\end{aligned}
$$

Primitive commands (HRU)

Enter r into $a[s, o]$
Adds r right for subject s over object o Ineffective if r is already there

Precondition: $s \in S, 0 \in O$
Postconditions:

$$
\begin{aligned}
& S=S, O^{\prime}=0 \\
& a^{\prime}[S, o]=a[S, 0] \cup\{r\} \\
& (\forall x \in S)\left(\forall y \in O^{\prime}\right) \\
& {\left[(x, y) \neq(s, o) \rightarrow a^{\prime}[x, y]=a[x, y]\right]}
\end{aligned}
$$

System commands

- [Unix] process p creates file f with owner read and write (r, w) will be represented by the following:

Command create_file(p, f)
Create object f
Enter own into $a[p, f]$
Enter r into $a[p, f]$
Enter w into $a[p, f]$
End

System commands

- Process p creates a new process q

Command spawn_process(p, q)
Create subject q;
Enter own into $a[p, q]$
Enter r into $a[p, q]$
Enter w into $a[p, q]$
Enter r into $a[q, p]$
Enter winto $a[q, p]$

End

System commands

- Defined commands can be used to update ACM

Command make_owner(p, f)
Enter own into $a[p, f]$
End

- Mono-operational:
- the command invokes only one primitive

Conditional Commands

. Mono-operational + monoconditional

Command grant_read_file (p, f, q)
If own in $a[p, f]$
Then
Enter r into $a[q, f]$
End

Conditional Commands

- Mono-operational + biconditional

Command grant_read_file (p, f, q)

If r in $a[p, f]$ and c in $a[p, f]$
Then
Enter r into $a[q, f]$
End

- Why not "OR"??

Command grant_read_file1 (p, f, q) If r in $a[p, f]$
Then
Enter r into $a[q, f]$
End
Command grant_read_file2 (p, f, q)
If c in $a[p, f]$
Then
Enter r into $a[q, f]$ End

Fundamental questions

- How can we determine that a system is secure?
- Need to define what we mean by a system being "secure"
- Is there a generic algorithm that allows us to determine whether a computer system is secure?

What is a secure system?

- A simple definition
- A secure system doesn't allow violations of a security policy
- Alternative view: based on distribution of rights
- Leakage of rights: (unsafe with respect to right r)
- Assume that A representing a secure state does not contain a right r in an element of A.
- A right r is said to be leaked, if a sequence of operations/commands adds r to an element of A, which did not contain r

What is a secure system?

- Safety of a system with initial protection state X_{o}
- Safe with respect to r: System is safe with respect to r if r can never be leaked
- Else it is called unsafe with respect to right r.

Safety Problem:
 formally

- Given
- Initial state $X_{0}=\left(S_{0,} O_{0}, A_{0}\right)$
- Set of primitive commands c
- r is not in $A_{0}[s, o]$
- Can we reach a state X_{n} where
- $\exists s, 0$ such that $A_{n}[s, 0]$ includes a right r not in $A_{[}[s, 0]$?

If so, the system is not safe But is "safe" secure?

Undecidable Problems

- Decidable Problem
- A decision problem can be solved by an algorithm that halts on all inputs in a finite number of steps.
- Undecidable Problem
- A problem that cannot be solved for all cases by any algorithm whatsoever

Decidability Results (Harrison, Ruzzo, Ullman)

- Theorem:
- Given a system where each command consists of a single primitive command (mono-operational), there exists an algorithm that will determine if a protection system with initial state X_{0} is safe with respect to right r.

Decidability Results (Harrison, Ruzzo, Ullman)

- Proof: determine minimum commands k to leak
- Delete/destroy: Can't leak
- Create/enter: new subjects/objects "equal", so treat all new subjects as one
- No test for absence of right
- Tests on $A\left[s_{1}, o_{1}\right]$ and $A\left[s_{2}, O_{2}\right]$ have same result as the same tests on $A\left[s_{1}, o_{1}\right]$ and $A\left[s_{1}, o_{2}\right]=A\left[s_{1}, o_{2}\right] \cup A\left[s_{2}, o_{2}\right]$
- If n rights leak possible, must be able to leak $k=$ $n\left(\left|S_{0}\right|+1\right)\left(\left|O_{0}\right|+1\right)+1$ commands
- Enumerate all possible states to decide

Create Statements

Create Statements

Decidability Results (Harrison, Ruzzo, Ullman)

- Proof: determine minimum commands k to leak
- Delete/destroy: Can't leak
- Create/enter: new subjects/objects "equal", so treat all new subjects as one
- No test for absence of right
- Tests on $A\left[s_{1}, o_{1}\right]$ and $A\left[s_{2}, O_{2}\right]$ have same result as the same tests on $A\left[s_{1}, o_{1}\right]$ and $A\left[s_{1}, o_{2}\right]=A\left[s_{1}, o_{2}\right] \cup A\left[s_{2}, o_{2}\right]$
- If n rights leak possible, must be able to leak $k=$ $n\left(\left|S_{0}\right|+1\right)\left(\left|O_{0}\right|+1\right)+1$ commands
- Enumerate all possible states to decide

Decidability Results
 (Harrison, Ruzzo, Ullman)

- It is undecidable if a given state of a given protection system is safe for a given generic right
- For proof - need to know Turing machines and halting problem

Turing Machine \& halting problem

- The halting problem:
- Given a description of an algorithm and a description of its initial arguments, determine whether the algorithm, when executed with these arguments, ever halts (the alternative is that it runs forever without halting).

Turing Machine \& Safety problem

- Theorem:
- It is undecidable if a given state of a given protection system is safe for a given generic right
- Reduce TM to Safety problem
- If Safety problem is decidable then it implies that TM halts (for all inputs) - showing that the halting problem is decidable (contradiction)
- TM is an abstract model of computer
- Alan Turing in 1936

Turing Machine

- TM consists of
- A tape divided into cells; infinite in one direction
- A set of tape symbols M
- M contains a special blank symbol b
- A set of states K
- A head that can read and write symbols
- An action table that tells the machine how to transition
- What symbol to write
- How to move the head ('L' for left and ' R ' for right)
- What is the next state

Turing Machine

- Transition function $\delta(k, m)=$ ($k^{\prime}, m^{\prime}, \mathrm{L}$):
- In state k, symbol m on tape location is replaced by symbol m^{\prime},
- Head moves one cell to the left, and TM enters state k^{\prime}
- Halting state is q_{f}
- TM halts when it enters this state

head

Current state is k
Current symbol is C
Let $\delta(k, C)=\left(k_{1}, X, R\right)$
where k_{1} is the next state

Turing Machine

Let $\delta(k, C)=\left(k_{1}, X, R\right)$

head
where k_{1} is the next state ${ }_{1}$

Let $\delta\left(k_{1}, D\right)=\left(k_{2}, Y, L\right)$ where k_{2} is the next state

TM2Safety Reduction

Current state is k
Current symbol is C
head

Proof: Reduce TM to safety problem

- Symbols, States \Rightarrow rights
- Tape cell \Rightarrow subject
- Cell s_{i} has $A \Rightarrow s_{i}$ has A rights on itself
- Cell $s_{k} \Rightarrow s_{k}$ has end rights on itself
- State $p_{\text {, }}$ head at $s_{i} \Rightarrow s_{i}$ has p rights on itself
- Distinguished Right own:
- s_{i} owns s_{i+1} for $1 \leq i<k$

	s_{1}	s_{2}	s_{3}	s_{4}	
s_{1}	A	own			
s_{2}		B	own		
s_{3}			$\mathrm{C} k$	own	
s_{4}				D end	

Command Mapping (Left move)

Current state is k
Current symbol is C head

$$
\delta(k, \mathrm{C})=\left(k_{1}, \mathrm{X}, \mathrm{~L}\right)
$$

$\delta(k, \mathrm{C})=\left(k_{1}, \mathrm{X}, \mathrm{L}\right)$
If head is not in leftmost command $\mathrm{c}_{k, \mathrm{C}}\left(S_{i}, S_{i-1}\right)$ if $o w n$ in $a\left[s_{i-1}, s_{i}\right]$ and k in $a\left[s_{i}, s_{i}\right]$ and C in $a\left[s_{i j}, s_{i}\right]$ then
delete k from $a\left[S_{i}, S_{i}\right]$;
delete C from $a\left[S_{i}, S_{j}\right]$;
enter X into a[$\left.s_{j} ; S_{i}\right]$;
enter k_{1} into a $\left[S_{i-1}, S_{i-1}\right]$;
End

	s_{1}	s_{2}	s_{3}	s_{4}	
s_{1}	A	own			
s_{2}		B	own		
s_{3}			$\mathrm{C} k$	own	
s_{4}				D end	

Command Mapping (Left move)

7	2	3	4	
A	B	X	D	\cdots

Current state is k_{1}
Current symbol is D head

$$
\delta(k, \mathrm{C})=\left(k_{1}, \mathrm{X}, \mathrm{~L}\right)
$$

$\delta(k, \mathrm{C})=\left(k_{1}, \mathrm{X}, \mathrm{L}\right)$
If head is not in leftmost command $\mathrm{c}_{k, \mathrm{C}}\left(S_{i}, S_{i-1}\right)$
if $o w n$ in $a\left[s_{i-1}, s_{i}\right]$ and k in $a\left[s_{i j}, s_{i}\right]$ and C in $a\left[s_{i j}, s_{i}\right]$
then
delete k from $a\left[S_{i}, S_{i}\right]$;
delete C from $a\left[S_{i}, S_{i}\right]$;
enter X into a[$\left.s_{j} ; S_{i}\right]$;
enter k_{1} into a $\left[S_{i-1}, S_{i-1}\right]$;
End

If head is in leftmost both s_{i} and s_{i-1} are s_{1}

	s_{1}	s_{2}	s_{3}	s_{4}	
s_{1}	A	own			
s_{2}		$\mathrm{~B} k_{1}$	own		
s_{3}			X	own	
s_{4}				D end	

Command Mapping (Right move)
 Current state is k

Current symbol is C head
$\delta(k, \mathrm{C})=\left(k_{1}, \mathrm{X}, \mathrm{R}\right)$
command $\mathrm{c}_{k, \mathrm{C}}\left(S_{j}, S_{i+1}\right)$
if $o w n$ in $a\left[S_{i} ; S_{i+1}\right]$ and k in $a\left[S_{i}, S_{i}\right]$ and C in $a\left[S_{i}, S_{i}\right]$ then delete k from $a\left[s_{i} ; s_{i}\right]$; delete C from $a\left[s_{i}, S_{i}\right]$; enter X into $a\left[s_{i}, S_{i}\right]$; enter k_{1} into a $\left[s_{i+1}, s_{i+1}\right]$; end

	s_{1}	s_{2}	s_{3}	s_{4}	
s_{1}	A	own			
s_{2}		B	own		
s_{3}			$\mathrm{C} k$	own	
s_{4}				D end	

Command Mapping (Right move)
 Current state is k_{1}
 Current symbol is C
 head
 $\delta(k, \mathrm{C})=\left(k_{1}, \mathrm{X}, \mathrm{R}\right)$

command $\mathrm{c}_{k, \mathrm{C}}\left(S_{j}, S_{j+1}\right)$
if $o w n$ in $a\left[S_{i}, S_{i+1}\right]$ and k in $a\left[S_{i}, S_{i}\right]$ and C in $a\left[S_{i}, S_{i}\right]$ then delete k from $a\left[s_{i} ; S_{i}\right]$; delete C from $a\left[s_{i}, S_{i}\right]$; enter X into $a\left[s_{i}, s_{i}\right]$; enter k_{1} into a $\left[s_{i+1}, s_{i+1}\right]$; end

	s_{1}	s_{2}	s_{3}	s_{4}	
s_{1}	A	own			
s_{2}		B	own		
s_{3}			X	own	
s_{4}				$\mathrm{D} k_{1}$ end	

Command Mapping (Rightmost move)

Current state is k_{1}
Current symbol is C
$\delta\left(k_{1}, \mathrm{D}\right)=\left(k_{2}, \mathrm{Y}, \mathrm{R}\right)$ at end becomes command rightmost ${ }_{k C}\left(S_{i j} S_{i+1}\right)$ if end in $a\left[s_{i} ; s_{i}\right]$ and k_{1} in $a\left[s_{i} ; s_{i}\right]$ and D in $a\left[s_{i}, s_{i}\right]$
then
delete end from $a\left[s_{i} ; s_{i}\right]$;
create subject S_{i+1};
enter own into $a\left[s_{j i}, s_{i+1}\right]$; enter end into $a\left[s_{j+1}, S_{i+1}\right]$; delete k_{1} from $a\left[s_{j} j_{i}\right]$; delete D from $a\left[s_{i j} s_{i}\right]$; enter Y into $a\left[s_{j} s_{i}\right] ;$ enter k_{2} into $a\left[s_{i}, s_{i}\right]$;
end

$$
\delta\left(k_{1}, \mathrm{C}\right)=\left(k_{2}, \mathrm{Y}, \mathrm{R}\right)
$$

	s_{1}	s_{2}	s_{3}	s_{4}	
s_{1}	A	own			
s_{2}		B	own		
s_{3}			X	own	
s_{4}				$\mathrm{D} k_{1}$ end	

Command Mapping (Rightmost move)

1	2	3		
A	B	X	Y	

Current state is k_{1}
Current symbol is D
$\delta\left(k_{1}, \mathrm{D}\right)=\left(k_{2}, \mathrm{Y}, \mathrm{R}\right)$ at end becomes

$$
\delta\left(k_{1}, \mathrm{D}\right)=\left(k_{2}, \mathrm{Y}, \mathrm{R}\right)
$$

command crightmost ${ }_{k C_{C}}\left(s_{i j} s_{i+1}\right)$
if end in $a\left[s_{i} ; s_{i}\right]$ and k_{1} in $a\left[s_{i} ; s_{i}\right]$ and D in $a\left[s_{i}, s_{i}\right]$
then
delete end from $a\left[s_{i} ; s_{i}\right]$;
create subject S_{i+1};
enter own into a $\left[s_{i j}, s_{i+1}\right]$;
enter end into $a\left[s_{j+1}, S_{i+1}\right]$;
delete k_{1} from $a\left[s_{i j}, s_{i}\right]$;
delete D from $a\left[s_{i j} s_{i}\right]$;
enter Y into $a\left[s_{j} s_{i}\right] ;$
enter k_{2} into $a\left[s_{j}, s_{i}\right]$;
end

	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}
s_{1}	A	own			
s_{2}		B	own		
s_{3}			X	own	
s_{4}				Y	own
s_{5}					$\mathrm{~b} k_{2}$ end

Rest of Proof

- Protection system exactly simulates a TM
- Exactly 1 end right in ACM
- Only 1 right corresponds to a state
- Thus, at most 1 applicable command in each configuration of the TM
- If TM enters state q_{f} then right has leaked
- If safety question decidable, then represent TM as above and determine if q_{f} leaks
- Leaks halting state \Rightarrow halting state in the matrix \Rightarrow Halting state reached
- Conclusion: safety question undecidable

Other results

- For protection system without the create primitives, (i.e., delete create primitive); the safety question is complete in P-SPACE
- It is undecidable whether a given configuration of a given monotonic protection system is safe for a given generic right
- Delete destroy, delete primitives;
- The system becomes monotonic as they only increase in size and complexity
- The safety question for biconditional monotonic protection systems is undecidable
- The safety question for monoconditional, monotonic protection systems is decidable
- The safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.

Summary

- HRU Model
- Some foundational results showing that guaranteeing security is hard problem

