IS 2150 / TEL 2810 Introduction to Security



James Joshi Associate Professor, SIS

> Lecture 6 September 27, 2011

Take Grant Model

Objective

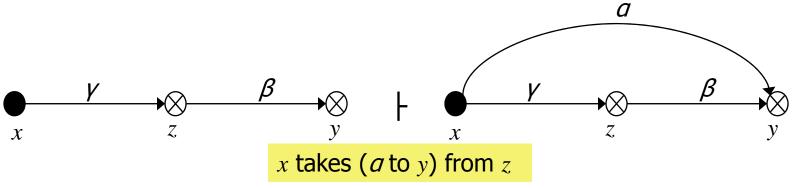
Understand Take-Grant model

- Specific, restricted
- Analyze
 - Right Sharing
 - Stealing/Theft
 - conspiracy

Take-Grant Protection Model

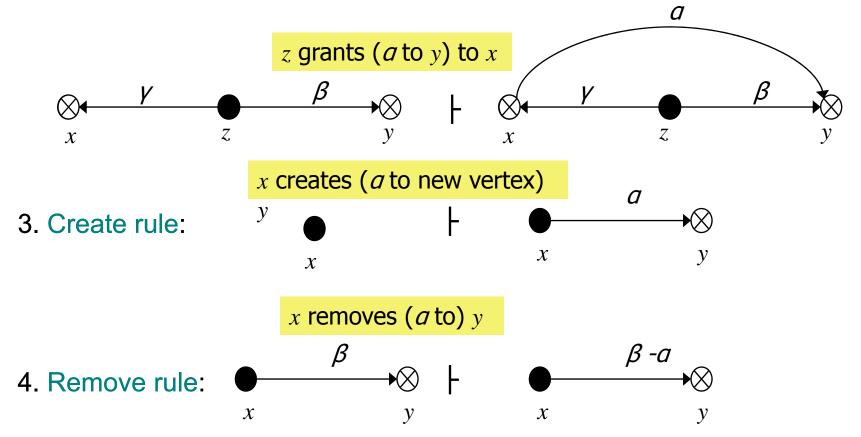
- System is represented as a directed graph (\times)
 - Either: Subject:
 - Object:

- Labeled edge indicate the rights that the source object has on the destination object
- Four graph rewriting rules ("de jure", "by law", "by rights")
 - The graph changes as the protection state changes according to
- if $t \in Y$, the take rule produces another graph with a 1 Take rule: transitive edge $a \subseteq \beta$ added.



Take-Grant Protection Model

2. Grant rule: if $g \in \gamma$, the take rule produces another graph with a transitive edge $a \subseteq \beta$ added.



4

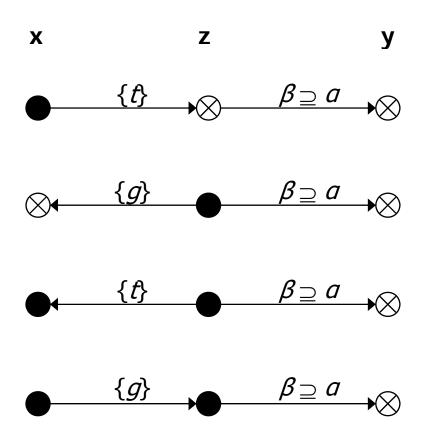
Take-Grant Protection Model: Sharing

- Given *G*₀, can vertex **x** obtain a rights over **y**?
 - Can_share(a,x, y, G₀) is true iff
 - $G_0 \models * G_n$ using the four rules, &
 - There is an a edge from x to y in G_n
- *tg-path*: v₀,...,v_n with *t* or *g* edge between any pair of vertices v_i, v_{i+1}
 - Vertices tg-connected if tg-path between them
- Theorem: Any two subjects with *tg-path* of length 1 can share rights

Any two subjects with *tg-path* of length 1 can share rights

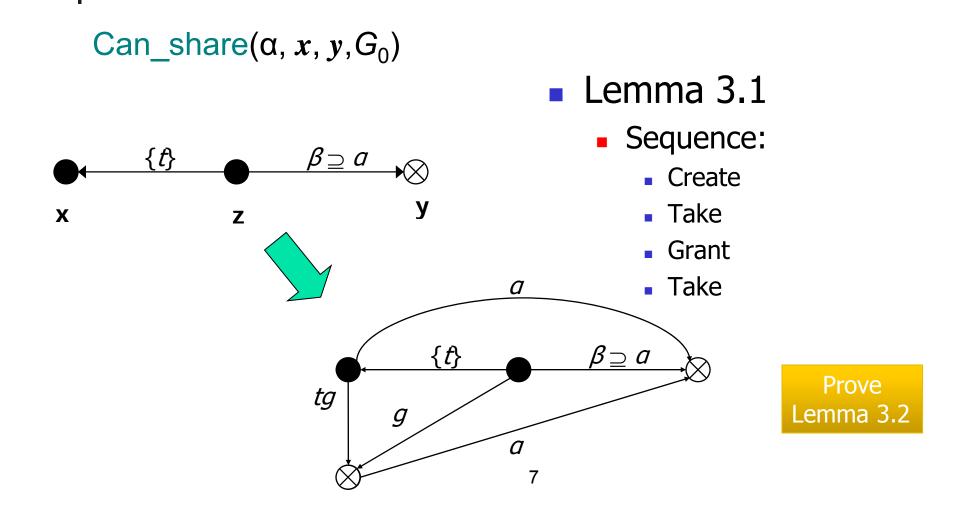
6

Can_share(α , x, y, G_0)



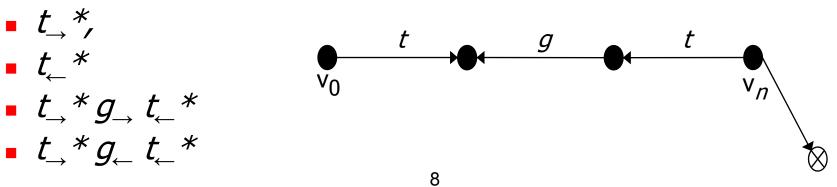
- Four possible length 1
 tg-paths
 - 1. Take rule
 - 2. Grant rule
 - 3. Lemma 3.1
 - 4. Lemma 3.2

Any two subjects with *tg-path* of length 1 can share rights

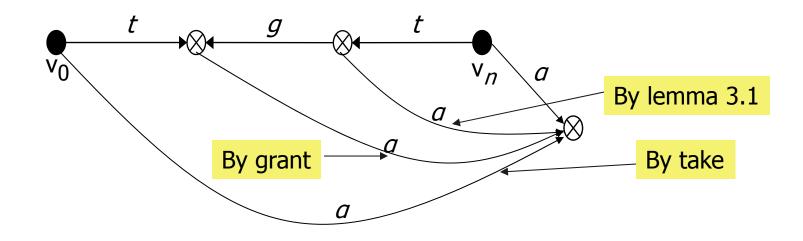


Other definitions

- Island: Maximal *tg*-connected subjectonly subgraph
 - Can_share all rights in island
 - Proof: Induction from previous theorem
- Bridge: tg-path between subjects v₀ and v_n with edges of the following form:

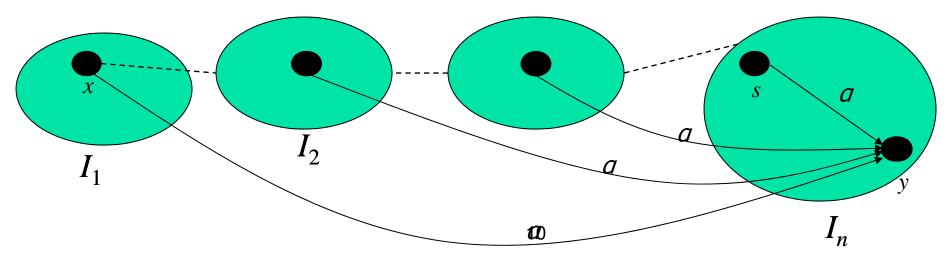


Bridge -- example



Theorem: Can_share(a,**x**,**y**,*G*₀) (for subjects)

- Subject_can_share(a, x, y, G₀) is true iff if x and y are subjects and
 - there is an a edge from x to y in G₀
 OR if:
 - \exists a subject s \in G_0 with an *s*-to-*y* a edge, and
 - \exists islands $I_1, ..., I_n$ such that $x \in I_1$, $s \in I_n$, and there is a bridge from I_j to I_{j+1}



What about objects? Initial, terminal spans

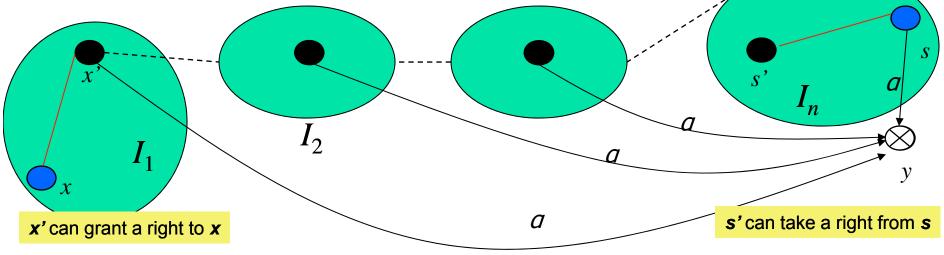
x initially spans to y if x is a subject and there is a tg-path between them with t edges ending in a g edge (i.e., t_→*g_→)

x can grant a right to y

- x terminally spans to y if x is a subject and there is a tg-path between them with t edges (i.e., t, *)
 - *x* can take a right from *y*

Theorem: Can_share(a,x,y,G₀)

- Can_share(a,x, y, G₀) iff there is an a edge from x to y in G₀ or if:
 - \exists a vertex $s \in G_0$ with an s to y a edge,
 - \exists a subject x' such that x'=x or x' *initially spans* to x,
 - \exists a subject s' such that s'=s or s' *terminally spans* to s, and
 - \exists islands $I_1, ..., I_n$ such that $x' \in I_1, s' \in I_n$, and there is a bridge from I_j to I_{j+1}



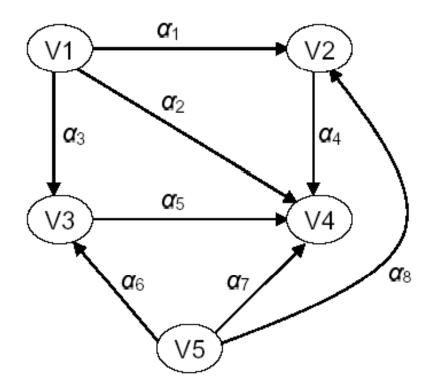
Theorem: Can_share(a,x,y,G₀)

- Corollary: There is an O(|V|+|E) algorithm to test can_share: Decidable in linear time!!
- Theorem:
 - Let *G*₀ contain exactly one vertex and no edges,
 - *R* a set of rights.
 - $G_0 \models * G$ iff G is a finite directed acyclic graph, with edges labeled from R, and at least one subject with no incoming edge.
 - Only if part: v is initial subject and $G_0 \models * G_i$
 - No rule allows the deletion of a vertex
 - No rule allows an incoming edge to be added to a vertex without any incoming edges. Hence, as v has no incoming edges, it cannot be assigned any

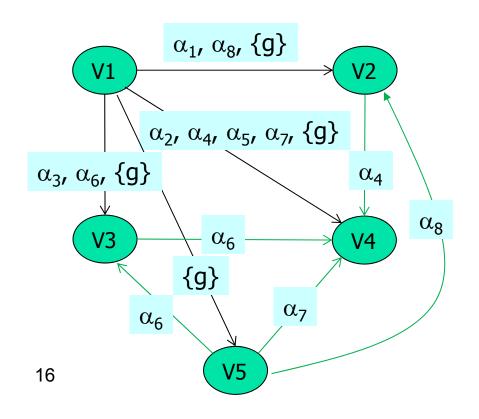
Theorem: Can_share(a,**x**,**y**,*G*₀)

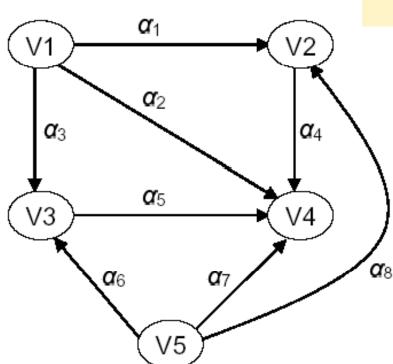
If part : G meets the requirement

- Assume v is the vertex with no incoming edge and apply rules
- 1. Perform "v creates (a \cup {g} to) new x_i" for all 2<=i <= n, and a is union of all labels on the incoming edges going into x_i in G
- For all pairs x, y with x having a over y in G, perform "v grants (a to y) to x"
- 3. If β is the set of rights x has over y in G, perform "v removes ((a \cup {g}) β) to y"



- V1 is the vertex with no incoming edge
- 1. Perform "v creates (a \cup {g} to) new x_i" for all 2<=i <= n, and a is union of all labels on the incoming edges going into x_i in G
- For all pairs x, y with x having a over y in G, perform "v grants (a to y) to x"
- 3. If β is the set of rights x has over y in G, perform "v removes (($a \cup \{g\}$) β) to y"

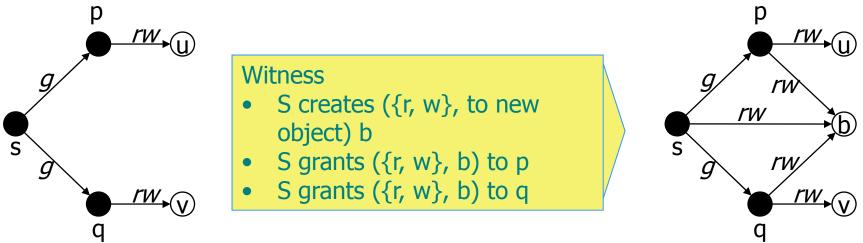




Example

Take-Grant Model: Sharing through a Trusted Entity

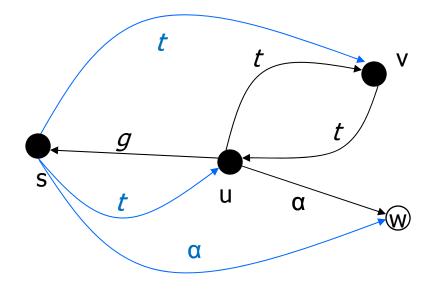
- Let *p* and *q* be two processes
- Let *b* be a buffer that they share to communicate
- Let s be third party (e.g. operating system) that controls b



Theft in Take-Grant Model

- Can_steal(a, x, y, G_0) is true if there is no a edge from x to y in G_0 and \exists sequence $G_1, ..., G_n$ s. t.:
 - \exists a edge from **x** to **y** in $G_{n,r}$
 - \exists rules ρ_1, \dots, ρ_n that take $G_{i+1} \models \rho_i G_i$, and
 - $\forall \mathbf{v}, \mathbf{w} \in G_{i-1}, 1 \le i < n$, if \exists a edge from \mathbf{v} to \mathbf{y} in G_0 then ρ_i is not " \mathbf{v} grants (a to \mathbf{y}) to \mathbf{w}''
 - Disallows owners of a rights to y from transferring those rights
 - Does not disallow them to transfer other rights
 - This models a Trojan horse

A witness to theft



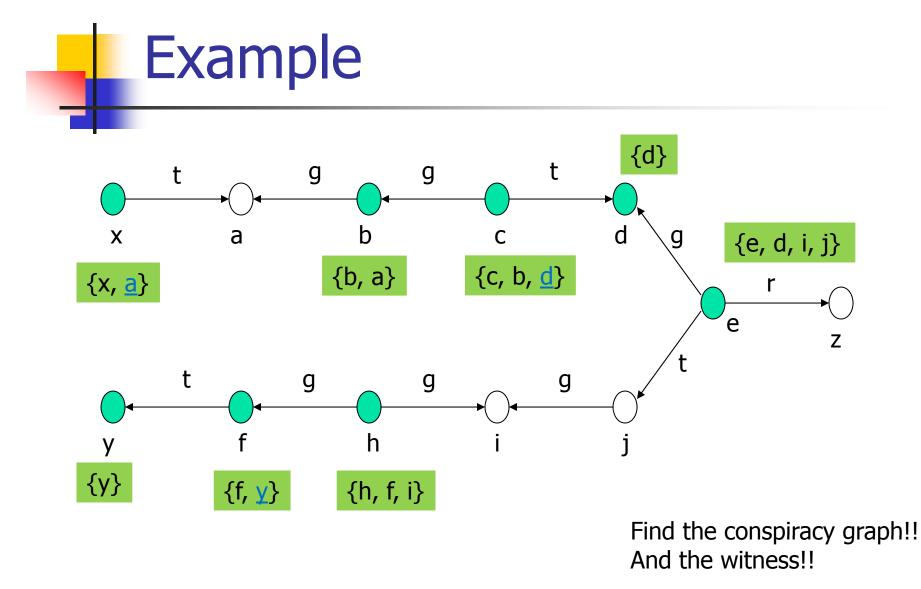
u grants (t to v) to s s takes (t to u) from v s takes (a to w) from u

Conspiracy

- Theft indicates cooperation: which subjects are actors in a transfer of rights, and which are not?
- Next question is
 - How many subjects are needed to enable Can_share(a, x, y, G₀)?
- Note that a vertex y
 - Can take rights from any vertex to which it terminally spans
 - Can grant rights to any vertex to which it initially spans
- Access set A(y) with focus y (y is subject) is union of
 - set of vertices **y**,
 - vertices to which y initially spans, and
 - vertices to which y terminally spans

Conspiracy

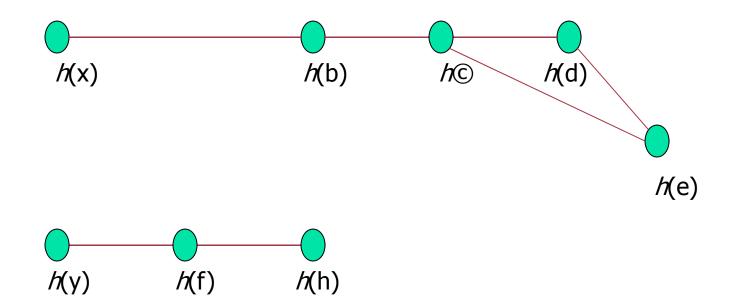
- Deletion set δ(y,y'): All z ∈ A(y) ∩ A(y') for which
 - y initially spans to z and y' terminally spans to z
 - y terminally spans to z and y' initially spans to z
 - z=y &
 - z=y′
- Conspiracy graph H of G₀:
 - Represents the paths along which subjects can transfer rights
 - For each subject in G₀, there is a corresponding vertex h(x) in H
 - if $\delta(\mathbf{y},\mathbf{y}')$ not empty, edge from $h(\mathbf{y})$ to $h(\mathbf{y}')$



Conspiracy graph H of G₀:

For each subject in $G_{\ensuremath{\textit{O}}\xspace}$, there is a corresponding vertex h(x) in H

if $\delta(\mathbf{y},\mathbf{y}')$ not empty, edge from $h(\mathbf{y})$ to $h(\mathbf{y}')$



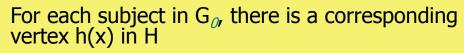
Example

Theorems

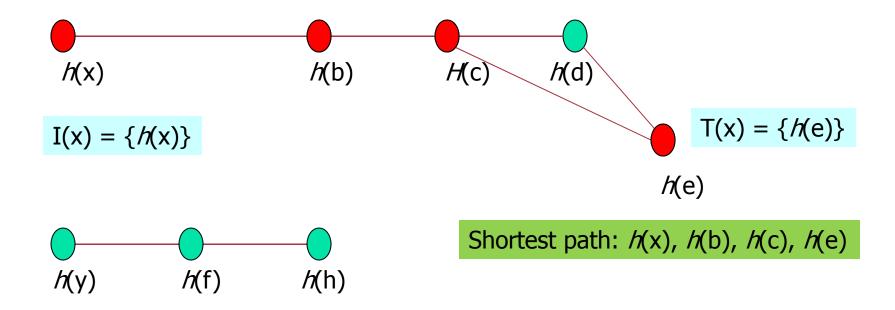
- I(p) =
 - contains the vertex h(p) and the set of all vertices h(p') such that p' initially spans to p
- T(q) =
 - contains the vertex h(q) and the set of all vertices h(q') such that q' terminally spans to q
- Theorem 3-13:
 - Can_share(a,x,y,G₀) iff there is a path from some h(p) in I(x) to some h(q) in T(y)
- Theorem 3-14:
 - Let L be the number of vertices on a shortest path between h(p) and h(q) (as in theorem 3-13), then L conspirators are necessary and sufficient to produce a witness to Can_share(a,x,y,G₀)

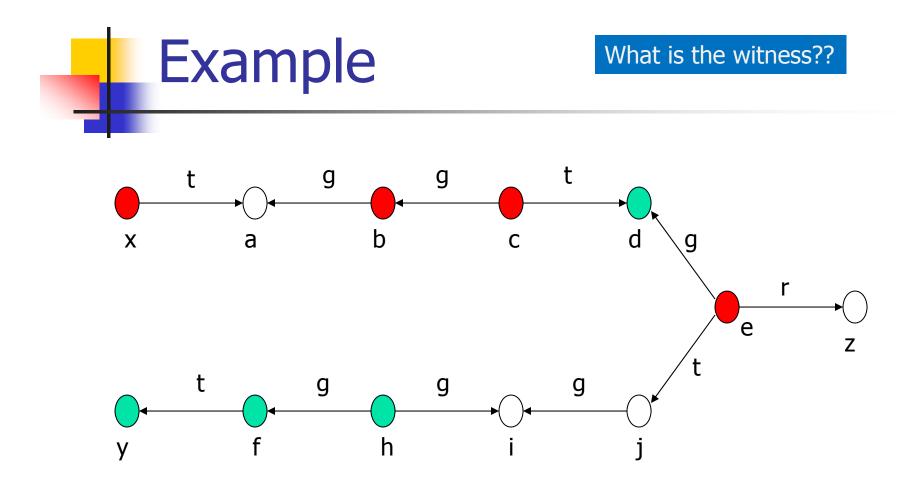
Conspiracy graph H of G₀:

Example



if $\delta(\mathbf{y}, \mathbf{y}')$ not empty, edge from $h(\mathbf{y})$ to $h(\mathbf{y}')$





Summary

- Take-Grant model
 - specific system
 - Restricted
- Safety question is not undecidable
 - Linear to the size of the graph
- Theft and conspiracy issues