IS 2150 / TEL 2810 Introduction to Security

James Joshi Associate Professor, SIS

> Lecture 4 September 20, 2011

Access Control Model Foundational Results

Objective

- Understand the basic results of the HRU model
 - Saftey issue
 - Turing machine
 - Undecidability

- Given
 - Initial state $X_0 = (S_0, O_0, A_0)$
 - Set of primitive commands c
 - r is not in $A_{o}[s, o]$
- Can we reach a state X_n where
 - $\exists s,o$ such that $A_n[s,o]$ includes a right r not in $A_0[s,o]$?
 - If so, the system is not safe
 - But is "safe" secure?

Undecidable Problems

Decidable Problem

 A decision problem can be solved by an algorithm that halts on all inputs in a finite number of steps.

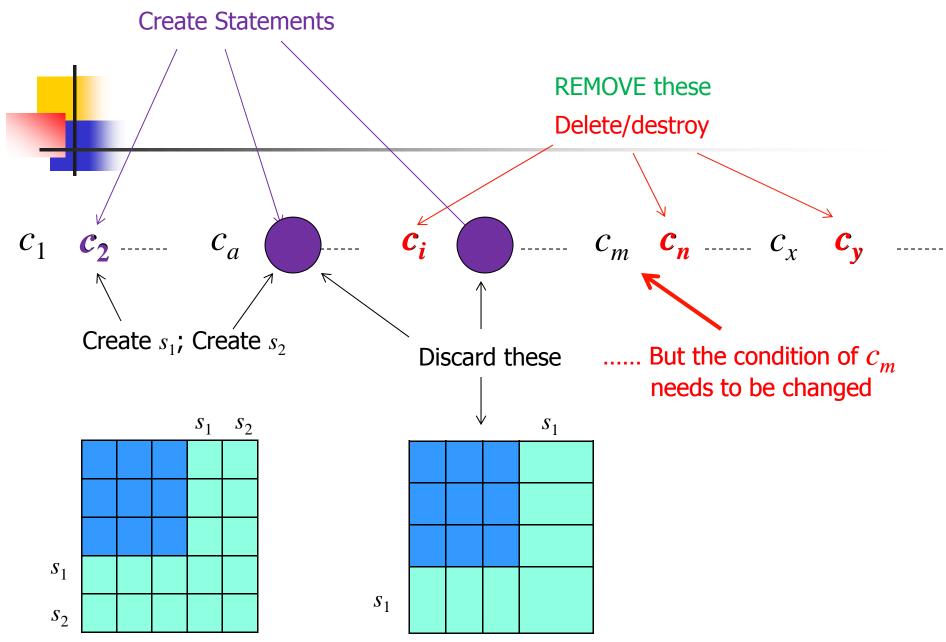
Undecidable Problem

 A problem that cannot be solved for all cases by any algorithm whatsoever

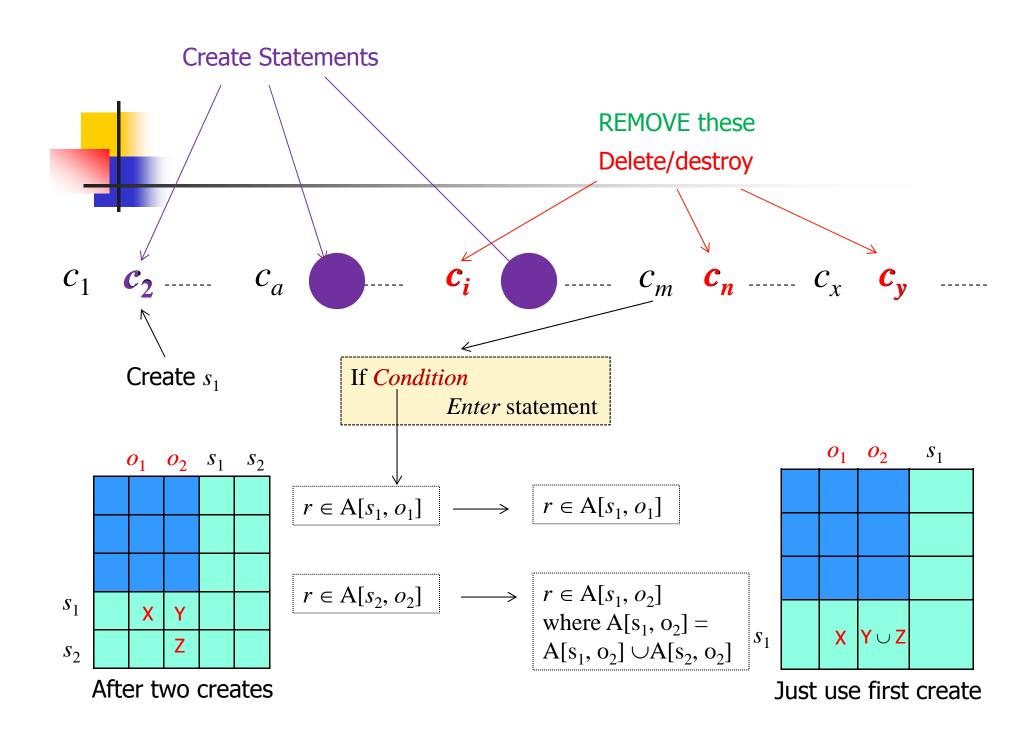
Theorem:

• Given a system where each command consists of a single *primitive* command (mono-operational), there exists an algorithm that will determine if a protection system with initial state X_0 is safe with respect to right r.

- Proof: determine minimum commands k to leak
 - Delete/destroy: Can't leak
 - Create/enter: new subjects/objects "equal", so treat all new subjects as one
 - No test for absence of right
 - Tests on A[s₁, o₁] and A[s₂, o₂] have same result as the same tests on A[s₁, o₁] and A[s₁, o₂] = A[s₁, o₂] \cup A[s₂, o₂]
 - If *n* rights leak possible, must be able to leak k= $n(|S_0|+1)(|O_0|+1)+1$ commands
 - Enumerate all possible states to decide



After execution of c_b



- Proof: determine minimum commands k to leak
 - Delete/destroy: Can't leak
 - Create/enter: new subjects/objects "equal", so treat all new subjects as one
 - No test for absence of right
 - Tests on A[s₁, o₁] and A[s₂, o₂] have same result as the same tests on A[s₁, o₁] and A[s₁, o₂] = A[s₁, o₂] \cup A[s₂, o₂]
 - If *n* rights leak possible, must be able to leak k= $n(|S_0|+1)(|O_0|+1)+1$ commands
 - Enumerate all possible states to decide

Decidability Results (Harrison, Ruzzo, Ullman)

- It is undecidable if a given state of a given protection system is safe for a given generic right
- For proof need to know Turing machines and halting problem

The halting problem:

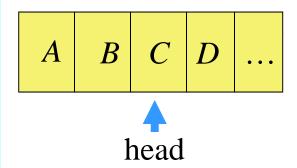
 Given a description of an algorithm and a description of its initial arguments, determine whether the algorithm, when executed with these arguments, ever halts (the alternative is that it runs forever without halting).

Theorem:

- It is undecidable if a given state of a given protection system is safe for a given generic right
- Reduce TM to Safety problem
 - If Safety problem is decidable then it implies that TM halts (for all inputs) – showing that the halting problem is decidable (contradiction)
- TM is an abstract model of computer
 - Alan Turing in 1936

Turing Machine

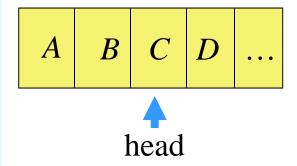
- TM consists of
 - A tape divided into cells; infinite in one direction
 - A set of tape symbols M
 - M contains a special blank symbol b
 - A set of states K
 - A head that can read and write symbols
 - An action table that tells the machine how to transition
 - What symbol to write
 - How to move the head ('L' for left and 'R' for right)
 - What is the next state



Current state is *k*Current symbol is *C*

Turing Machine

- Transition function $\delta(k, m) = (k', m', L)$:
 - In state k, symbol m on tape location is replaced by symbol m',
 - Head moves one cell to the left, and TM enters state k'
- Halting state is q_f
 - TM halts when it enters this state

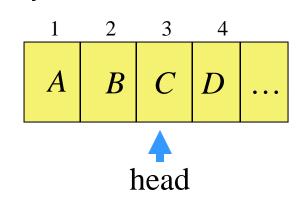


Current state is *k*Current symbol is *C*

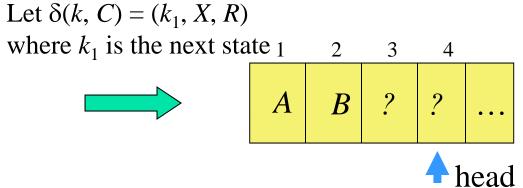
Let $\delta(k, C) = (k_1, X, R)$ where k_1 is the next state

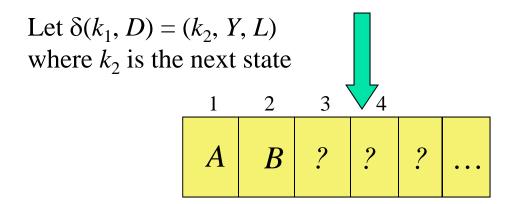
4

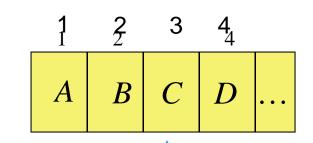
Turing Machine



Current state is *k*Current symbol is *C*







Current state is *k*

head

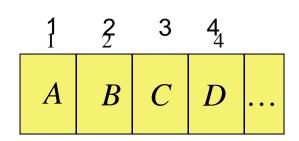
Current symbol is *C*

Proof: Reduce TM to safety problem

- Symbols, States ⇒ rights
- Tape cell ⇒ subject
- Cell s_i has $A \Rightarrow s_i$ has A rights on itself
- Cell $s_k \Rightarrow s_k$ has end rights on itself
- State p, head at $s_i \Rightarrow s_i$ has p rights on itself
- Distinguished Right own:
 - s_i owns $s_i + 1$ for $1 \le i < k$

	s_1	s_2	s_3	s_4	
s_1	A	own			
S_2		В	own		
s_3			C k	own	
S_4				D end	

(Left move)



Current state is *k*

Current symbol is *C*

$$\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{L})$$

$$\delta(k, C) = (k_1, X, L)$$

If head is not in leftmost

command $c_{k,C}(s_i, s_{i-1})$ if own in $a[s_{i-1}, s_i]$ and k in $a[s_i, s_i]$ and C in $a[s_i, s_i]$ then delete k from $A[s_i, s_i]$; delete C from $A[s_i, s_i]$; enter X into $A[s_i, s_i]$; enter k_1 into $A[s_{i-1}, s_{i-1}]$; End

	s_1	s_2	s_3	S_4	
s_1	A	own			
S_2		В	own		
S_3			C k	own	
S_4				D end	

Command Mapping (Left move)

Current state is k_1

Current symbol is *D* head

$$\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{L})$$

$$\delta(k, C) = (k_1, X, L)$$

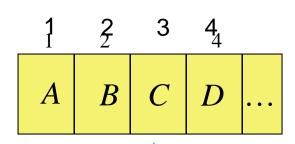
If head is not in leftmost

command
$$c_{k,C}(s_i, s_{i-1})$$
 if own in $a[s_{i-1}, s_i]$ and k in $a[s_i, s_i]$ and C in $a[s_i, s_i]$ then delete k from $A[s_i, s_i]$; delete C from $A[s_i, s_i]$; enter X into $A[s_i, s_i]$; enter k_1 into $A[s_{i-1}, s_{i-1}]$; End

If head is in leftmost both s_i and s_{i-1} are s_1

	s_1	s_2	<i>s</i> ₃	S_4	
s_1	A	own			
s_2		$\mathbf{B} k_1$	own		
s_3			X	own	
S_4				D end	

Command Mapping (Right move)



Current state is *k*

Current symbol is *C*

$$\delta(k, C) = (k_1, X, R)$$

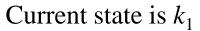
$$\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{R})$$

command $c_{k,C}(s_i, s_{i+1})$ if own in $a[s_i, s_{i+1}]$ and k in $a[s_i, s_i]$ and C in
$a_i s_i, s_i$ and c_i
$a[S_i, S_i]$
then
delete k from $A[s_i, s_i];$
delete k from $A[s_i, s_i];$ delete C from $A[s_i, s_i];$
enter X into $A[s_i, s_i]$;
enter k_1 into $A[s_{i+1}]$,
S_{i+1}];
end

s_1	s_2	s_3	S_4	
A	own			
	В	own		
		C k	own	
			D end	
		A own	A own B own	A own B own Ck own

Command Mapping (Right move)





Current symbol is *C*

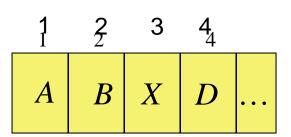
head

$$\delta(k, C) = (k_1, X, R)$$

$$\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{R})$$

command $c_{k,\mathbb{C}}(s_i, s_{i+1})$ if own in $a[s_i, s_{i+1}]$ and k in $a[s_i, s_i]$ and \mathbb{C} in
in $a[s_i, s_i]$ and C in
$a[s_i, s_i]$
then
delete k from $A[s_i, s_i];$
delete C from $A[s_i, s_i]$;
enter X into $A[s_i, s_i]$;
enter k_1 into $A[S_{i+1}]$,
S_{j+1}];
end

	s_1	s_2	s_3	S_4	
s_1	A	own			
s_2		В	own		
s_3			X	own	
s_4				$D k_1$ end	



Current state is k_1

Current symbol is *C*

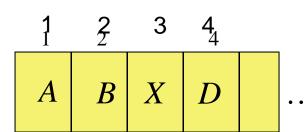
head

$$\delta(k_1, D) = (k_2, Y, R)$$
 at end becomes

$$\delta(k_1, \mathbf{C}) = (k_2, \mathbf{Y}, \mathbf{R})$$

command crightmost _{k,C} (s_i, s_{i+1}) if end in $a[s_i, s_i]$ and k_1 in $a[s_i, s_i]$ and D in $a[s_i, s_i]$
and D in $a[S_i, S_i]$
then
delete end from $a[s_i, s_i];$
create subject S_{i+1} ;
create subject S_{i+1} ; enter OWn into $a[S_i, S_{i+1}]$;
enter end into $a[s_{i+1}, s_{i+1}];$
delete k_1 from $a[s_i, s_i];$ delete D from $a[s_i, s_i];$
delete D from $a[s_i, s_i]$;
enter Y into $a[s_i, s_i]$;
enter k_2 into $\bar{A}[\bar{S}_i, \bar{S}_i]$;
end

	s_1	s_2	s_3	S_4	
s_1	A	own			
s_2		В	own		
s_3			X	own	
S_4				$D k_1$ end	



Current state is k_1

Current symbol is *D*

head

$$\delta(k_1, D) = (k_2, Y, R)$$
 at end becomes

$$\delta(k_1, D) = (k_2, Y, R)$$

	s_1	s_2	s_3	s_4	S_5
s_1	A	own			
s_2		В	own		
s_3			X	own	
S_4				Y	own
S ₅					b k_2 end

Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 end right in ACM
 - Only 1 right corresponds to a state
 - Thus, at most 1 applicable command in each configuration of the TM
- If TM enters state q_f then right has leaked
- If safety question decidable, then represent TM as above and determine if q_f leaks
 - Leaks halting state ⇒ halting state in the matrix ⇒ Halting state reached
- Conclusion: safety question undecidable

Other results

- For protection system without the create primitives, (i.e., delete create primitive); the safety question is complete in P-SPACE
- It is undecidable whether a given configuration of a given monotonic protection system is safe for a given generic right
 - Delete destroy, delete primitives;
 - The system becomes monotonic as they only increase in size and complexity
- The safety question for biconditional monotonic protection systems is undecidable
- The safety question for monoconditional, monotonic protection systems is decidable
- The safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.