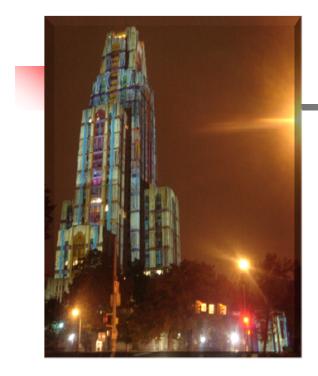
IS 2150 / TEL 2810 Introduction to Security



James Joshi Associate Professor, SIS

> Lecture 4 September 21, 2010

Access Control Model Foundational Results

Objective

- Understand the basic results of the HRU model
 - Saftey issue
 - Turing machine
 - Undecidability

Safety Problem: formally

Given

- Initial state $X_0 = (S_0, O_0, A_0)$
- Set of primitive commands c
- *r* is not in A₀[s, o]
- Can we reach a state X_n where
 - ∃s,o such that A_n[s,o] includes a right r not in A₀[s,o]?
 - If so, the system is not safe
 - But is "safe" secure?

Undecidable Problems

- Decidable Problem
 - A decision problem can be solved by an algorithm that halts on all inputs in a finite number of steps.
- Undecidable Problem
 - A problem that cannot be solved for all cases by any algorithm whatsoever

Decidability Results (Harrison, Ruzzo, Ullman)

Theorem:

Given a system where each command consists of a single *primitive* command (mono-operational), there exists an algorithm that will determine if a protection system with initial state X₀ is safe with respect to right *r*. Decidability Results (Harrison, Ruzzo, Ullman)

- Proof: determine minimum commands k to leak
 - Delete/destroy: Can't leak (or be detected)
 - Create/enter: new subjects/objects "equal", so treat all new subjects as one
 - No test for absence
 - Tests on A[s₁, o₁] and A[s₂, o₂] have same result as the same tests on A[s₁, o₁] and A[s₁, o₂] = A[s₁, o₂] ∪A[s₂, o₂]
 - If *n* rights leak possible, must be able to leak *k*= *n*(|*S*₀|+1)(|*O*₀|+1)+1 commands
 - Enumerate all possible states to decide

Decidability Results (Harrison, Ruzzo, Ullman)

- It is undecidable if a given state of a given protection system is safe for a given generic right
- For proof need to know Turing machines and halting problem

Turing Machine & halting problem

The halting problem:

 Given a description of an algorithm and a description of its initial arguments, determine whether the algorithm, when executed with these arguments, ever halts (the alternative is that it runs forever without halting).

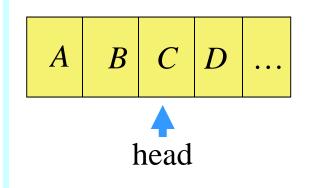
Turing Machine & Safety problem

Theorem:

- It is undecidable if a given state of a given protection system is safe for a given generic right
- Reduce TM to Safety problem
 - If Safety problem is decidable then it implies that TM halts (for all inputs) – showing that the halting problem is decidable (contradiction)
- TM is an abstract model of computer
 - Alan Turing in 1936

Turing Machine

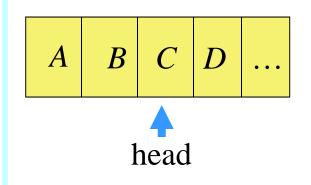
- TM consists of
 - A tape divided into cells; infinite in one direction
 - A set of tape symbols *M*
 - M contains a special blank symbol b
 - A set of states K
 - A head that can read and write symbols
 - An action table that tells the machine how to transition
 - What symbol to write
 - How to move the head ('L' for left and 'R' for right)
 - What is the next state



Current state is *k* Current symbol is *C*

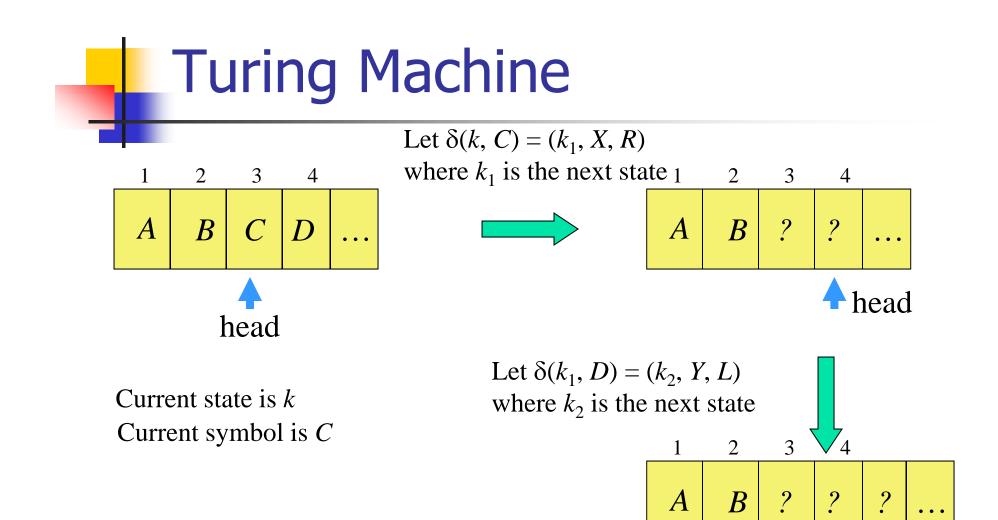
Turing Machine

- Transition function $\delta(k, m) = (k', m', L)$:
 - In state k, symbol m on tape location is replaced by symbol m',
 - Head moves one cell to the left, and TM enters state k'
- Halting state is q_f
 - TM halts when it enters this state



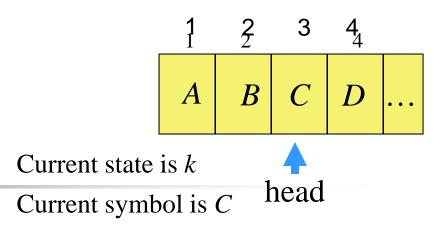
Current state is *k* Current symbol is *C*

Let $\delta(k, C) = (k_1, X, R)$ where k_1 is the next state



head 12

TM2Safety Reduction



Proof: Reduce TM to safety problem

- Symbols, States \Rightarrow rights
- Tape cell \Rightarrow subject
- Cell s_i has A ⇒ s_i has A rights on itself
- Cell $s_k \Rightarrow s_k$ has end rights on itself
- State *p*, head at *s_i* ⇒ *s_i* has *p* rights on itself
- Distinguished Right *own*:
 - $S_i \text{ owns } s_i + 1 \text{ for } 1 \le i < k$

<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	
А	own			
	В	own		
		C k	own	
			D end	
		A own	AownBown	A own B own C k own

Command Mapping (Left move)

$$\delta(k, C) = (k_1, X, L)$$

If head is not in leftmost command $c_{k,C}(S_i, S_{i-1})$ if own in $a[s_{i-1}, s_i]$ and k in $a[s_i, s_i]$ and C in $a[s_i, s_i]$ then delete k from $A[s_i, s_i]$; delete C from $A[s_i, s_i]$; enter X into $A[s_i, s_i]$; enter k_1 into $A[s_{i-1}, s_{i-1}]$; End

<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	
А	own			
	В	own		
		C k	own	
			D end	
		A own	AownBown	Aown \sim Bown \sim C k own

Command Mapping (Left move)

 $\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{L})$

$$\delta(k, C) = (k_1, X, L)$$

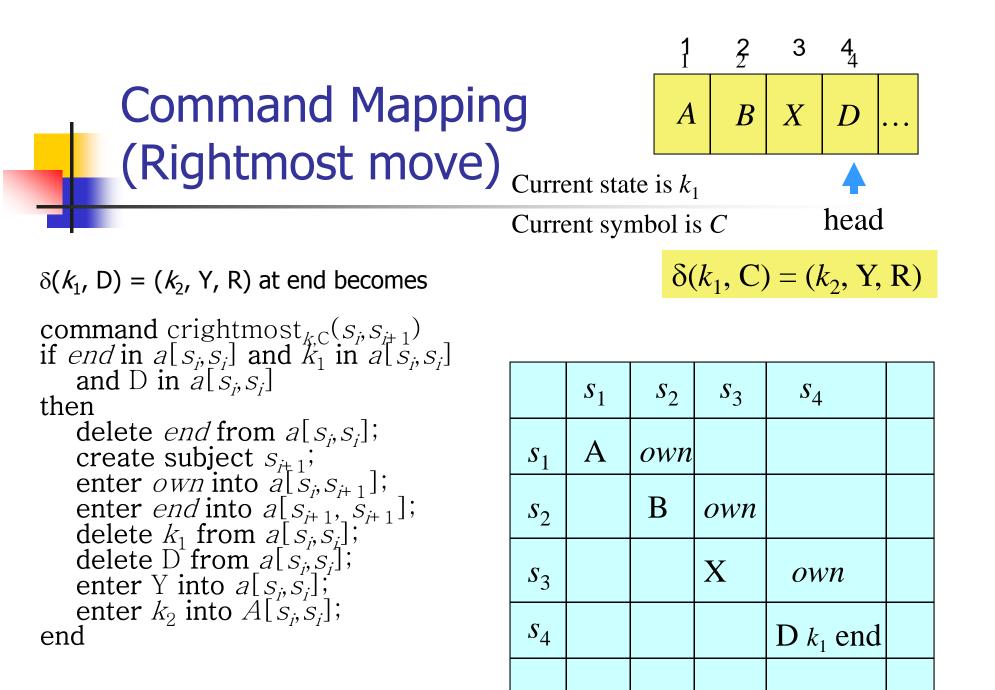
If head is not in leftmost command $c_{k,C}(s_i, s_{i-1})$ if *own* in $a[s_{i-1}, s_i]$ and *k* in $a[s_i, s_i]$ and C in $a[s_i, s_i]$ then delete *k* from $A[s_i, s_i]$; delete C from $A[s_i, s_i]$; enter X into $A[s_i, s_i]$; enter k_1 into $A[s_{i-1}, s_{i-1}]$; End

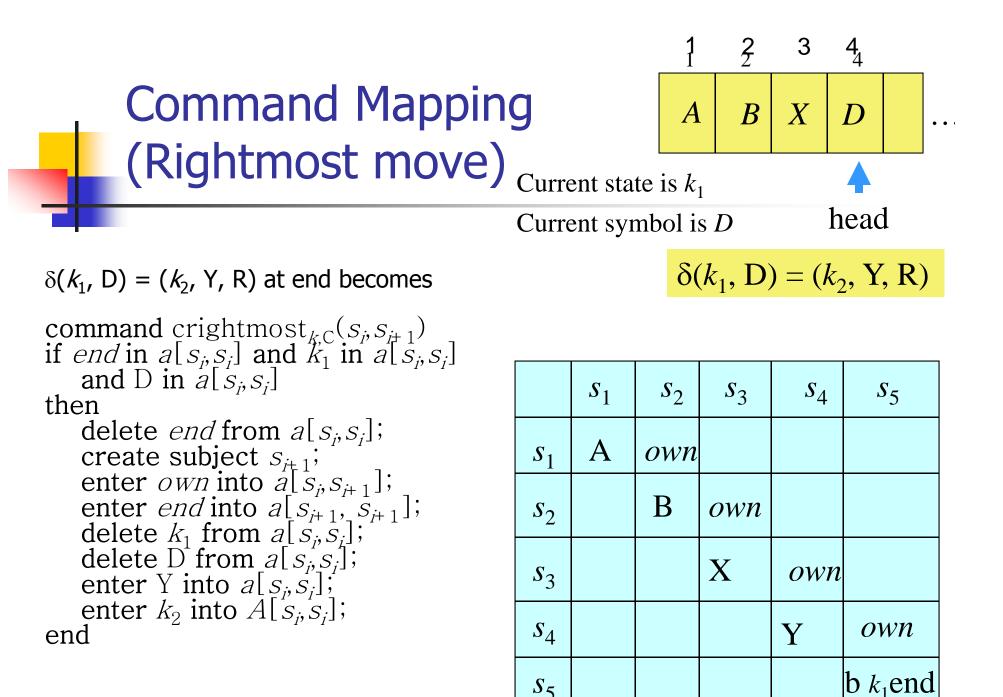
If head is in leftmost both s_i and s_{i-1} are s_1

	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	
<i>s</i> ₁	A	own			
<i>s</i> ₂		$\mathbf{B} \mathbf{k}_1$	own		
<i>s</i> ₃			X	own	
<i>s</i> ₄				D end	

2 3 **Command Mapping** B С D (Right move) Current state is *k* head Current symbol is C $\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{R})$ $\delta(k, C) = (k_1, X, R)$ command $c_{k,C}(s_i, s_{i+1})$ if *own* in $a[s_i, s_{i+1}]$ and kin $a[s_i, s_i]$ and C in S_2 S_3 *S*₁ S_4 A S_1 own $a[S_i, S_i]$ then B own S_{2} delete k from $A[s_i, s_i];$ delete C from $A[s_i, s_i];$ enter X into $A[s_i, s_i];$ **C** *k* S_3 *own* S_4 D end enter k_1 into $A[s_{i+1}]$, S_{i+1} ; enc

2 3 **Command Mapping** B С D (Right move) Current state is k_1 head Current symbol is C $\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{R})$ $\delta(k, C) = (k_1, X, R)$ command $c_{k,C}(s_i, s_{i+1})$ if *own* in $a[s_i, s_{i+1}]$ and kin $a[s_i, s_i]$ and C in S_2 S_3 *S*₁ S_4 A S_1 own $a[S_i, S_i]$ then B own S_2 delete k from $A[s_i, s_i];$ delete C from $A[s_i, s_i];$ enter X into $A[s_i, s_i];$ Х S_3 own S_4 $D k_1$ end enter k_1 into $A[s_{i+1}]$, S_{i+1} ; enc





Rest of Proof

Protection system exactly simulates a TM

- Exactly 1 *end* right in ACM
- Only 1 right corresponds to a state
- Thus, at most 1 applicable command in each configuration of the TM
- If TM enters state q_{fr} then right has leaked
- If safety question decidable, then represent TM as above and determine if q_f leaks
 - Leaks halting state ⇒ halting state in the matrix ⇒ Halting state reached
- Conclusion: safety question undecidable

Other results

- For protection system without the create primitives, (i.e., delete create primitive); the safety question is complete in P-SPACE
- It is undecidable whether a given configuration of a given monotonic protection system is safe for a given generic right
 - Delete destroy, delete primitives;
 - The system becomes monotonic as they only increase in size and complexity
- The safety question for biconditional monotonic protection systems is undecidable
- The safety question for monoconditional, monotonic protection systems is decidable
- The safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.