Solutions for HW 5
From 8.7

Exercise 3

One-time pads are rarely used in practise because of the problem of key distribution. As the key must be completely random, it must be generated and distributed using some secure medium (usually by courier). Further, the sender and receiver must ensure they stay synchronized, so the recipient knows where in the key sequence the sender’s key begins.
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Prove the following:
a) If p is a prime, 
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(p) = p–1.

The residue set Zp = {0, 1, …, p-1}

Note that except for 0, p is relatively prime to each element in Zp.

Hence 
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(p) = p–1

b) If p and q are primes, 
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(pq) = (p-1)(q-1).

The residue set is Zpq = {0, 1, …, pq-1}

A number that is a multiple of p or q is not relatively prime to pq. Hence, elements of sets {p, 2p, 3p, .., (q -1)p} and {q, 2q, 3q, …, (p -1)q} are not relatively prime to pq. Also note that 0 is not relatively prime to pq).

Hence
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(pq)
= pq – [(q-1) + (p-1) + 1]



= pq – q + 1 – p + 1 – 1



= pq – q – p + 1



= p(q-1) – (p-1)



= (p-1)(q-1)
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Let m be the message, (e, n) the public key, and d the private key. Recall that ed mod 
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(n) = 1,

and the ciphertext c = me mod n. We need to show that cd mod n = m. To see this, compute:

cd mod n = (me mod n)d mod n 


definition of c

= med mod n 




fundamental laws of modular arithmetic

= m(k 
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(n) + 1) mod n 
as ed mod 
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(n) = 1 means ed = k
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(n) + 1 for some integer k

= (mk
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(n) mod n)(m mod n) 


fundamental laws of modular arithmetic

= ((m 
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(n) )k mod n)(m mod n) 


rearranging exponents

= ((m
[image: image11.wmf]f

(n) mod n)k mod n)(m mod n) 

fundamental laws of modular arithmetic

= (1k mod n)(m mod n) 


Fermat’s Little Theorem

= m mod n as (1k mod n) = 1 mod n = 1

= m as m < n, m mod n = m

proving the claim. 

The second part asks whether (md mod n)e mod n = m. To see this is true, note that exponentiation is commutative, so mde mod n = med mod n. So the proof is the same as above, with the first two steps replaced by:

(md mod n)e mod n 

= mde mod n 




fundamental laws of modular arithmetic

= med mod n 




mde = med as exponentiation is commutative
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a)

m = 0

c = 0e mod n = 0
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m = c

b)

m = 1

c = 1e mod n = 1
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m = c
c)

m = n – 1

Use induction to show that for all odd k the result holds. 

Basis:
for k = 1
c = (n-1)1 mod n 

c = (n-1)

You can try for k = 3


c = (n-1)3 mod n


c = (n3-3n2 +3n-1) mod n


c = 0 – 0 + 0 +  (-1 mod n)  [because:  (any power of n) mod n = 0]


c = (-1) mod n

c = n -1

Hypothesis: true for k, where k is odd

i.e.
m = (n-1)


c = (n-1)k mod n = (n-1)

Show, it is true for k + 2 (next odd value !)


m = (n-1)


c = (n-1)k * (n-1)2 mod n

c = [((n-1)k mod n) * ((n-1)2 mod n)] mod n

c = [((n-1) mod n) * ((n-1)2 mod n)] mod n

c = (n-1)3 mod n

c = (n-1)

Another approach is to use expansion of (n-1)k = n k + c1n k -1 + …. + cmn + (-1) k 

for some constants c1, c2, …, cm.

Note that in the RSA system e is odd. Here is how:

Note: n = pq is odd, as p and q are prime numbers (hence odd numbers; only 2 is even prime but p and q are large numbers)

Hence, 
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(n) = (p-1) (q-1) is an even number, as both (p-1) and (q-1) are even numbers.

e < n is chosen to be relatively prime to 
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(n), and hence, e is odd!!
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Alternative Old solution)

[image: image16.emf][image: image17.emf]
_1318491698.unknown

_1318491702.unknown

_1318491704.unknown

_1318491706.unknown

_1318491708.unknown

_1318491709.unknown

_1318491707.unknown

_1318491705.unknown

_1318491703.unknown

_1318491700.unknown

_1318491701.unknown

_1318491699.unknown

_1318491696.unknown

_1318491697.unknown

_1318491695.unknown

