IS 2150 / TEL 2810 Introduction to Security

James Joshi Associate Professor, SIS

> Lecture 4 September 22, 2009

Access Control Model Foundational Results

Objective

Understand the basic results of the HRU model

- Saftey issue
- Turing machine
- Undecidability

Protection System

- State of a system
 - Current values of
 - memory locations, registers, secondary storage, etc.
 - other system components
- Protection state (P)
 - A subset of the above values that deals with protection (determines if system state is secure)
- A protection system
 - Captures the conditions for state transition
 - Consists of two parts:
 - A set of generic rights
 - A set of commands

Protection System

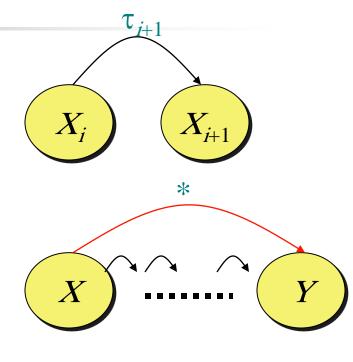
- Subject (S: set of all subjects)
 - e.g. users, processes, agents, etc.
- Object (O: set of all objects)
 - e.g. processes, files, devices
- Right (R: set of all rights)
 - An action/operation that a subject is allowed/disallowed on objects
 - Access Matrix A: $a[s, o] \subseteq R$
- Set of Protection States: (S, O, A)
 - Initial state $X_0 = (S_{0r} O_{0r} A_0)$

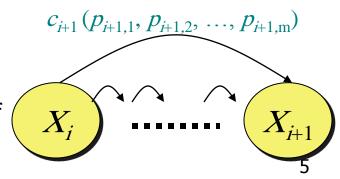
State Transitions

 $X_i \mid \tau_{i+1} X_{i+1}$: upon transition τ_{i+1} , the system moves from state X_i to X_{i+1}

 $X \vdash^{*} Y$: the system moves from state X to Y after a set of transitions

 $X_i \models c_{i+1} (p_{i+1,1}, p_{i+1,2}, ..., p_{i+1,m}) X_{i+1}$: state transition upon a command For every command there is a sequence of state transition operations





Primitive commands (HRU)

Create subject s	Creates new row, column in ACM; s does not exist prior to this	
Create object o	Creates new column in ACM o does not exist prior to this	
Enter r into a[s, o]	Adds <i>r</i> right for subject <i>s</i> over object <i>o</i> Ineffective if <i>r</i> is already there	
Delete <i>r</i> from <i>a</i> [<i>s</i> , <i>o</i>]	Removes <i>r</i> right from subject <i>s</i> over object <i>o</i>	
Destroy subject s	Deletes row, column from ACM;	
Destroy object o	Deletes column from ACM	

Primitive commands (HRU)

Create subject s

Creates new row, column in ACM; s does not exist prior to this

Precondition: $s \notin S$ Postconditions:

$$S' = S \cup \{ s \}, O' = O \cup \{ s \}$$

 $(\forall y \in O')[a'[s, y] = \emptyset]$ (row entries for s) $(\forall x \in S')[a'[x, s] = \emptyset]$ (column entries for s) $(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$

Primitive commands (HRU)

Enter *r* into *a*[*s*, *o*]

Adds *r* right for subject *s* over object *o* Ineffective if *r* is already there

Precondition: $s \in S, o \in O$ Postconditions:

S' = S, O' = O

 $a'[s, o] = a[s, o] \cup \{ r \}$ (\forall x \in S')(\forall y \in O') [(x, y)\neq (s, o) \rightarrow a'[x, y] = a[x, y]]

System commands

[Unix] process p creates file f with owner read and write (r, w) will be represented by the following:

Command *create_file(p, f)*

Create object f

Enter *own* into *a*[*p*,*f*]

- Enter *r* into *a*[*p*,*f*]
- Enter w into a[p,f]

End

System commands

Process p creates a new process q Command spawn process(p, q)Create subject q; Enter *own* into a[p,q]Enter r into a[p,q]Enter w into a[p,q]Enter *r* into a[q,p]Parent and child can signal each other Enter w into a[q,p]End

System commands

 Defined commands can be used to update ACM

> Command *make_owner(p, f)* Enter *own* into *a*[*p*,*f*] End

- Mono-operational:
 - Command invokes only one primitive

Conditional Commands

Mono-operational + monoconditional

Command *grant_read_file*(*p, f, q*) If *own* in *a*[*p,f*] Then Enter *r* into *a*[*q,f*] End

Conditional Commands

Mono-operational + biconditional

Command $grant_read_file(p, f, q)$ If r in a[p, f] and c in a[p, f]Then Enter r into a[q, f]End M/by pot "OP"22

Why not "OR"??

Fundamental questions

- How can we determine that a system is secure?
 - Need to define what we mean by a system being "secure"
- Is there a generic algorithm that allows us to determine whether a computer system is secure?

What is a secure system?

- A simple definition
 - A secure system doesn't allow violations of a security policy
- Alternative view: based on distribution of rights
 - Leakage of rights: (unsafe with respect to right r)
 - Assume that A representing a secure state does not contain a right r in an element of A.
 - A right r is said to be leaked, if a sequence of operations/commands adds r to an element of A, which did not contain r

What is a secure system?

- Safety of a system with initial protection state X_o
 - Safe with respect to r: System is safe with respect to r if r can never be leaked
 - Else it is called unsafe with respect to right *r*.

Safety Problem: *formally*

Given

- Initial state $X_0 = (S_0, O_0, A_0)$
- Set of primitive commands c
- *r* is not in *A₀*[*s*, *o*]
- Can we reach a state X_n where
 - $\exists s, o \text{ such that } A_n[s, o] \text{ includes a right } r \text{ not in } A_0[s, o]?$
 - If so, the system is not safe
 - But is "safe" secure?

Undecidable Problems

Decidable Problem

- A decision problem can be solved by an algorithm that halts on all inputs in a finite number of steps.
- Undecidable Problem
 - A problem that cannot be solved for all cases by any algorithm whatsoever

Decidability Results (Harrison, Ruzzo, Ullman)

Theorem:

Given a system where each command consists of a single *primitive* command (mono-operational), there exists an algorithm that will determine if a protection system with initial state X₀ is safe with respect to right *r*.

Decidability Results (Harrison, Ruzzo, Ullman)

- Proof: determine minimum commands k to leak
 - Delete/destroy: Can't leak (or be detected)
 - Create/enter: new subjects/objects "equal", so treat all new subjects as one
 - No test for absence
 - Tests on A[s₁, o₁] and A[s₂, o₂] have same result as the same tests on A[s₁, o₁] and A[s₁, o₂] = A[s₁, o₂] ∪A[s₂, o₂]
 - If *n* rights leak possible, must be able to leak $k = n(|S_0|+1)(|O_0|+1)+1$ commands
 - Enumerate all possible states to decide

Decidability Results (Harrison, Ruzzo, Ullman)

- It is undecidable if a given state of a given protection system is safe for a given generic right
- For proof need to know Turing machines and halting problem

Turing Machine & halting problem

The halting problem:

 Given a description of an algorithm and a description of its initial arguments, determine whether the algorithm, when executed with these arguments, ever halts (the alternative is that it runs forever without halting).

Turing Machine & Safety problem

Theorem:

 It is undecidable if a given state of a given protection system is safe for a given generic right

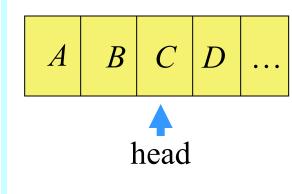
Reduce TM to Safety problem

- If Safety problem is decidable then it implies that TM halts (for all inputs) – showing that the halting problem is decidable (contradiction)
- TM is an abstract model of computer

Alan Turing in 1936

Turing Machine

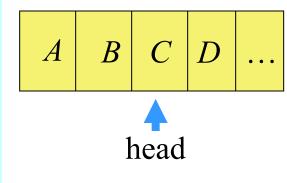
- TM consists of
 - A tape divided into cells; infinite in one direction
 - A set of tape symbols *M*
 - M contains a special blank symbol b
 - A set of states K
 - A head that can read and write symbols
 - An action table that tells the machine how to transition
 - What symbol to write
 - How to move the head ('L' for left and 'R' for right)
 - What is the next state



Current state is *k* Current symbol is *C*

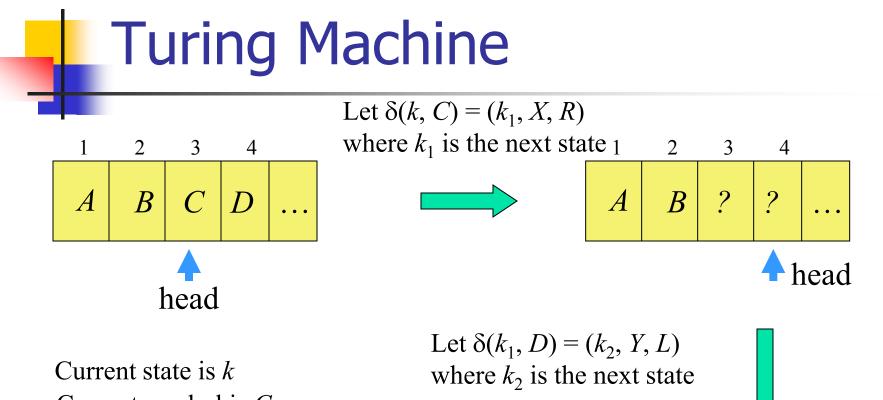
Turing Machine

- Transition function $\delta(k, m) = (k', m', L)$:
 - In state k, symbol m on tape location is replaced by symbol m',
 - Head moves one cell to the left, and TM enters state k'
- Halting state is q_f
 - TM halts when it enters this state

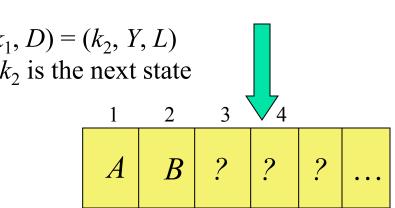


Current state is *k* Current symbol is *C*

Let $\delta(k, C) = (k_1, X, R)$ where k_1 is the next state



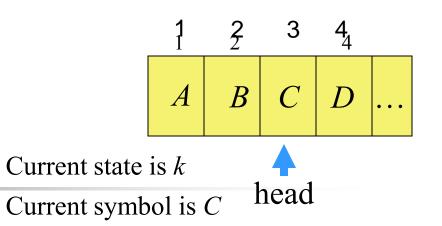
Current symbol is C



head 26

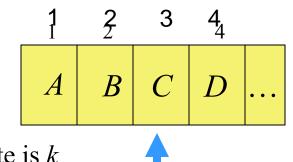
TM2Safety Reduction

- Proof: Reduce TM to safety problem
 - Symbols, States \Rightarrow rights
 - Tape cell \Rightarrow subject
 - Cell s_i has $A \Rightarrow s_i$ has A rights on itself
 - Cell $s_k \Rightarrow s_k$ has end rights on itself
 - State *p*, head at *s_i* ⇒ *s_i* has *p* rights on itself
 - Distinguished Right own:
 - $S_i \text{ owns } s_i + 1 \text{ for } 1 \le i < k$



	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	
<i>s</i> ₁	A	own			
<i>s</i> ₂		В	own		
<i>s</i> ₃			C k	own	
<i>s</i> ₄				D end	

Command Mapping (Left move) Current state is k



Current symbol is C

$$\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{L})$$

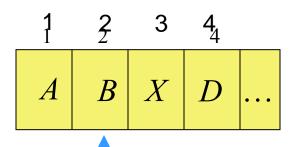
head

$\delta(k, \mathsf{C}) = (k_1, \mathsf{X}, \mathsf{L})$

If head is not in leftmost command $c_{k,C}(s_i, s_{i-1})$ if own in $a[s_{i-1}, s_i]$ and k in $a[s_i, s_i]$ and C in $a[s_i, s_i]$ then delete k from $A[s_i, s_i]$; delete C from $A[s_i, s_i]$; enter X into $A[s_i, s_i]$; enter k_1 into $A[s_{i-1}, s_{i-1}]$; End

	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄	
<i>s</i> ₁	A	own			
<i>s</i> ₂		В	own		
<i>s</i> ₃			C k	own	
<i>s</i> ₄				D end	

Command Mapping (Left move)



Current state is k_1

Current symbol is D head

$$\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{L})$$

$\delta(k, C) = (k_1, X, L)$

If head is not in leftmost command $c_{k,C}(s_i, s_{i-1})$ if own in $a[s_{i-1}, s_i]$ and k in $a[s_i, s_i]$ and C in $a[s_i, s_i]$ then delete k from $A[s_i, s_i]$; delete C from $A[s_i, s_i]$; enter X into $A[s_i, s_i]$; enter k_1 into $A[s_{i-1}, s_{i-1}]$; End

If head is in leftmost both s_i and s_{i-1} are s_1

	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄	
<i>s</i> ₁	А	own			
<i>s</i> ₂		B k_1	own		
<i>s</i> ₃			X	own	
<i>s</i> ₄				D end	

Command Mapping (Right move)

head

 $\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{R})$

Current symbol is C

$$\delta(k, C) = (k_1, X, R)$$

command $c_{k,C}(s_i, s_{i+1})$ if own in $a[s_i, s_{i+1}]$ and k in $a[s_i, s_i]$ and C in $a[s_i, s_i]$ then

delete k from A[s_i,s_i]; delete C from A[s_i,s_i]; enter X into A[s_i,s_i]; enter k₁ into A[s_{i+1}, s_{i+1}]; end

	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄	
<i>s</i> ₁	А	own			
<i>s</i> ₂		В	own		
<i>s</i> ₃			C k	own	
<i>s</i> ₄				D end	

Command Mapping (Right move)

2

 $\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{R})$

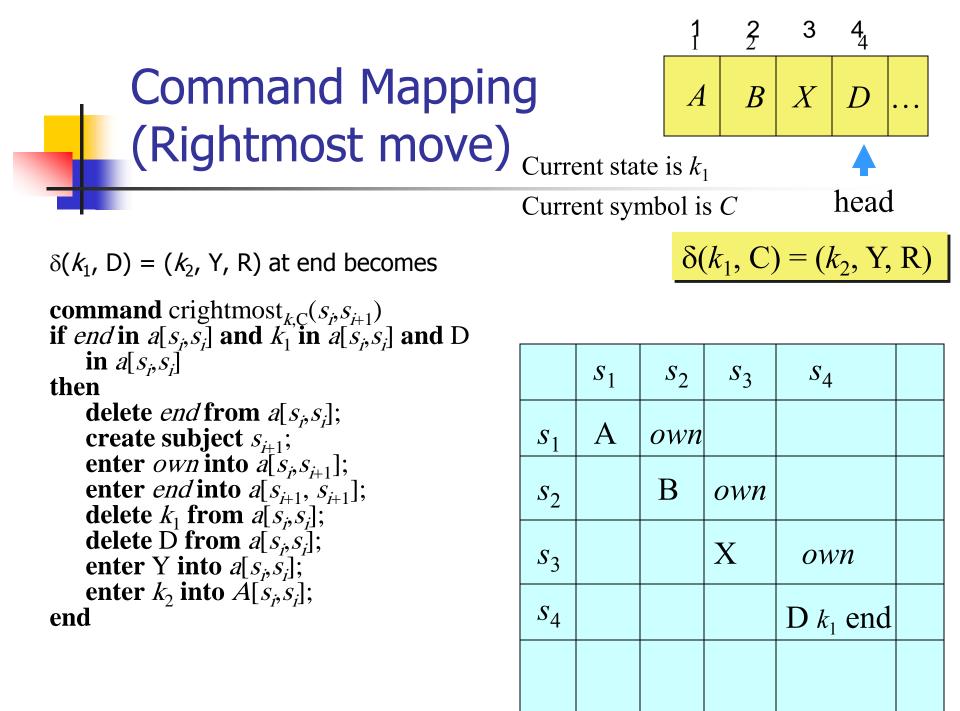
Current symbol is C

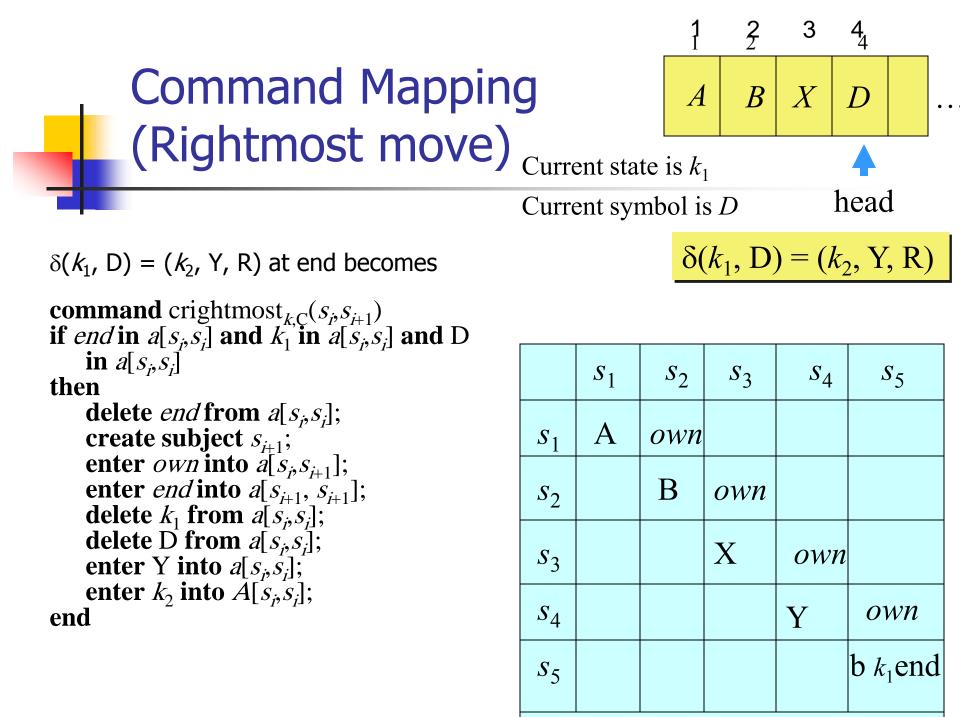
$$\delta(k, C) = (k_1, X, R)$$

command $c_{k,C}(s_i, s_{i+1})$ if own in $a[s_i, s_{i+1}]$ and k in $a[s_i, s_i]$ and C in $a[s_i, s_i]$ then

delete k from A[s_i,s_i]; delete C from A[s_i,s_i]; enter X into A[s_i,s_i]; enter k₁ into A[s_{i+1}, s_{i+1}]; end

	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	S ₄	
<i>s</i> ₁	А	own			
<i>s</i> ₂		В	own		
<i>s</i> ₃			X	own	
<i>s</i> ₄				$D k_1$ end	





Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 *end* right in ACM
 - Only 1 right corresponds to a state
 - Thus, at most 1 applicable command in each configuration of the TM
- If TM enters state q_{fr} then right has leaked
- If safety question decidable, then represent TM as above and determine if q_f leaks
 - Leaks halting state \Rightarrow halting state in the matrix \Rightarrow Halting state reached
- Conclusion: safety question undecidable

Other results

- For protection system without the create primitives, (i.e., delete create primitive); the safety question is complete in P-SPACE
- It is undecidable whether a given configuration of a given monotonic protection system is safe for a given generic right
 - Delete destroy, delete primitives;
 - The system becomes monotonic as they only increase in size and complexity
- The safety question for biconditional monotonic protection systems is undecidable
- The safety question for monoconditional, monotonic protection systems is decidable
- The safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.