
1

IS 2150 / TEL 2810
Introduction to Security

James Joshi

Associate Professor, SIS

Lecture 4

September 22, 2009

Access Control Model

Foundational Results



Objective

 Understand the basic results of the HRU 
model

 Saftey issue

 Turing machine

 Undecidability

2



3

Protection System

 State of a system

 Current values of 
 memory locations, registers, secondary storage, etc.

 other system components

 Protection state (P)

 A subset of the above values that deals with protection 
(determines if system state is secure)

 A protection system 

 Captures the conditions for state transition

 Consists of two parts:
 A set of generic rights

 A set of commands



4

Protection System

 Subject (S: set of all subjects)
 e.g. users, processes, agents, etc.

 Object (O: set of all objects)
 e.g. processes, files, devices

 Right (R: set of all rights)
 An action/operation that a subject is 

allowed/disallowed on objects

 Access Matrix A: a[s, o] ⊆R

 Set of Protection States: (S, O, A)
 Initial state X0 = (S0, O0, A0)



5

State Transitions

Xi Xi+1

i+1

Xi ├i+1 Xi+1 : upon transition i+1, the 
system moves from state Xi to Xi+1

X ├* Y : the system moves from 
state X to Y after a set of transitions X Y

*

Xi Xi+1

ci+1 (pi+1,1, pi+1,2, …, pi+1,m)

Xi ├ ci+1 (pi+1,1, pi+1,2, …, pi+1,m) Xi+1 : 

state transition upon a command
For every command there is a sequence of 
state transition operations



6

Primitive commands (HRU)

Create subject s
Creates new row, column in ACM; 

s does not exist prior to this

Create object o
Creates new column in ACM

o does not exist prior to this

Enter r into a[s, o]
Adds r right for subject s over object  o

Ineffective if r is already there

Delete r from a[s, o] Removes r right from subject s over object  o

Destroy subject s Deletes row, column from ACM;

Destroy object o Deletes column from ACM



7

Primitive commands (HRU)

Create subject s
Creates new row, column in ACM; 

s does not exist prior to this

Precondition: s  S
Postconditions:

S´ = S { s }, O´ = O { s }

(y  O´)[a´[s, y] = ] (row entries for s)
(x  S´)[a´[x, s] = ] (column entries for s)
(x  S)(y  O)[a´[x, y] = a[x, y]]



8

Primitive commands (HRU)

Enter r into a[s, o]
Adds r right for subject s over object  o

Ineffective if r is already there

Precondition: s  S, o  O
Postconditions:

S´ = S, O´ = O

a´[s, o] = a[s, o]  { r }
(x  S´)(y  O´) 
[(x, y)(s, o)  a´[x, y] = a[x, y]]



9

System commands

 [Unix] process p creates file f with 
owner read and write (r, w) will be 
represented by the following:

Command create_file(p, f)

Create object f

Enter own into a[p,f]

Enter r into a[p,f]

Enter w into a[p,f]

End



10

System commands

 Process p creates a new process q
Command spawn_process(p, q)

Create subject q;

Enter own into a[p,q]

Enter r into a[p,q]

Enter w into a[p,q]

Enter r into a[q,p]

Enter w into a[q,p]

End

Parent and child can
signal each other



11

System commands

 Defined commands can be used to update 
ACM

Command make_owner(p, f)

Enter own into a[p,f]

End

 Mono-operational: 

 Command invokes only one primitive



12

Conditional Commands

 Mono-operational + mono-
conditional

Command grant_read_file(p, f, q)

If own in a[p,f]

Then 

Enter r into a[q,f]

End



13

Conditional Commands

 Mono-operational + biconditional

Command grant_read_file(p, f, q)

If r in a[p,f] and c in a[p,f]

Then 

Enter r into a[q,f]

End

 Why not “OR”??



14

Fundamental questions

 How can we determine that a system is 
secure?

 Need to define what we mean by a system 
being “secure”

 Is there a generic algorithm that allows 
us to determine whether a computer 
system is secure?



15

What is a secure system?

 A simple definition
 A secure system doesn‟t allow violations of a security 

policy

 Alternative view: based on distribution of rights 

 Leakage of rights: (unsafe with respect to right r)
 Assume that A representing a secure state does not 

contain a right r in an element of A.

 A right r is said to be leaked, if a sequence of 
operations/commands adds r to an element of A, 
which did not contain r



16

What is a secure system?

 Safety of a system with initial protection 
state Xo

 Safe with respect to r:  System is safe with 
respect to r if r can never be leaked

 Else it is called unsafe with respect to right r.



17

Safety Problem: 
formally

 Given
 Initial state X0 = (S0, O0, A0)

 Set of primitive commands c

 r is not in A0[s, o]

 Can we reach a state Xn where 
 s,o such that An[s,o] includes a right r not 

in A0[s,o]?

- If so, the system is not safe

- But is “safe” secure?



18

Undecidable Problems

 Decidable Problem

 A decision problem can be solved by an 
algorithm that halts on all inputs in a finite 
number of steps. 

 Undecidable Problem

 A problem that cannot be solved for all 
cases by any algorithm whatsoever



19

Decidability Results
(Harrison, Ruzzo, Ullman)

 Theorem:

 Given a system where each command consists of 
a single primitive command (mono-operational), 
there exists an algorithm that will determine if a 
protection system with initial state X0 is safe with 
respect to right r.



20

Decidability Results
(Harrison, Ruzzo, Ullman)

 Proof:  determine minimum commands k to leak

 Delete/destroy:  Can‟t leak (or be detected)

 Create/enter:  new subjects/objects “equal”, so treat 
all new subjects as one
 No test for absence

 Tests on A[s1, o1] and A[s2, o2] have same result as the same tests 
on A[s1, o1] and A[s1, o2] = A[s1, o2] A[s2, o2]

 If n rights leak possible, must be able to leak k= 
n(|S0|+1)(|O0|+1)+1 commands

 Enumerate all possible states to decide



21

Decidability Results
(Harrison, Ruzzo, Ullman)

 It is undecidable if a given state of a 
given protection system is safe for a 
given generic right

 For proof – need to know Turing 
machines and halting problem



22

Turing Machine & halting 
problem

 The halting problem: 
 Given a description of an algorithm and a 

description of its initial arguments, 
determine whether the algorithm, when 
executed with these arguments, ever halts 
(the alternative is that it runs forever 
without halting). 



23

Turing Machine & Safety 
problem

 Theorem: 

 It is undecidable if a given state of a given 
protection system is safe for a given generic right

 Reduce TM to Safety problem

 If Safety problem is decidable then it implies that 
TM halts (for all inputs) – showing that the halting 
problem is decidable (contradiction)

 TM is an abstract model of computer

 Alan Turing in 1936



24

Turing Machine

 TM consists of
 A tape divided into cells; infinite in one 

direction

 A set of tape symbols M
 M contains a special blank symbol b

 A set of states K

 A head that can read and write symbols 

 An action table that tells the machine 
how to transition

 What symbol to write

 How to move the head („L‟ for left and 
„R‟ for right)

 What is the next state

A B C …

head

Current state is k

Current symbol is C

D



25

Turing Machine

 Transition function d(k, m) = 
(k , m , L):

 In state k, symbol m on tape 
location is replaced by symbol 
m , 

 Head moves one cell to the 
left, and TM enters state k 

 Halting state is qf

 TM halts when it enters this 
state

A B C …

head

Current state is k

Current symbol is C

D

Let d(k, C) = (k1, X, R)

where k1 is the next state



26

Turing Machine

1 2 3 4

Let d(k, C) = (k1, X, R)

where k1 is the next state

A B C …

head

Current state is k

Current symbol is C

D A B ? …

1 2 3 4

head

?

A B ? …

1 2 3 4

head

?

Let d(k1, D) = (k2, Y, L)

where k2 is the next state

?

?



27

TM2Safety
Reduction 

Proof:  Reduce TM to safety 
problem 
 Symbols, States  rights

 Tape cell  subject

 Cell si has A  si has A rights on 
itself

 Cell sk  sk has end rights on itself

 State p, head at si  si has p rights 
on itself

 Distinguished Right own:  

 si owns si+1 for 1 ≤ i < k

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

own

A B C …

1 2 4

head
Current state is k

Current symbol is C

D

1 2 3 4



28

Command Mapping
(Left move)

d(k, C) = (k1, X, L)

If head is not in leftmost
command ck,C(si, si-1)
if own in a[si-1, si] and k in a[si, si] 

and C in a[si, si]
then

delete k from A[si,si];
delete C from A[si,si];
enter X into A[si,si];
enter k1 into A[si-1, si-1];

End

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

own

A B C …

1 2 4

head
Current state is k

Current symbol is C

D

1 2 3 4

d(k, C) = (k1, X, L)



29

Command Mapping
(Left move)

d(k, C) = (k1, X, L)

If head is not in leftmost
command ck,C(si, si-1)
if own in a[si-1, si] and k in a[si, si] 

and C in a[si, si]
then

delete k from A[si,si];
delete C from A[si,si];
enter X into A[si,si];
enter k1 into A[si-1, si-1];

End

s1 s2 s3 s4

s4

s3

s2

s1 A

B k1

X

D end

own

own

own

A B X …

1 2 4

head
Current state is k1

Current symbol is D

D

1 2 3 4

d(k, C) = (k1, X, L)

If head is in leftmost both si and si-1 are s1



30

Command Mapping
(Right move)

d(k, C) = (k1, X, R)

command ck,C(si, si+1)
if own in a[si, si+1] and k in

a[si, si] and C in a[si, si]
then

delete k from A[si,si];
delete C from A[si,si];
enter X into A[si,si];
enter k1 into A[si+1, si+1];

end

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

own

A B C …

1 2 4

head
Current state is k

Current symbol is C

D

1 2 3 4

d(k, C) = (k1, X, R)



31

Command Mapping
(Right move)

d(k, C) = (k1, X, R)

command ck,C(si, si+1)
if own in a[si, si+1] and k in

a[si, si] and C in a[si, si]
then

delete k from A[si,si];
delete C from A[si,si];
enter X into A[si,si];
enter k1 into A[si+1, si+1];

end

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own

A B C …

1 2 4

head

Current state is k1

Current symbol is C

D

1 2 3 4

d(k, C) = (k1, X, R)



32

Command Mapping
(Rightmost move)

d(k1, D) = (k2, Y, R) at end becomes

command crightmostk,C(si,si+1)
if end in a[si,si] and k1 in a[si,si] and D 

in a[si,si]
then

delete end from a[si,si];
create subject si+1;
enter own into a[si,si+1];
enter end into a[si+1, si+1];
delete k1 from a[si,si];
delete D from a[si,si];
enter Y into a[si,si];
enter k2 into A[si,si];

end

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own

A B X …

1 2 4

head

Current state is k1

Current symbol is C

D

1 2 3 4

d(k1, C) = (k2, Y, R)



33

Command Mapping
(Rightmost move)

d(k1, D) = (k2, Y, R) at end becomes

command crightmostk,C(si,si+1)
if end in a[si,si] and k1 in a[si,si] and D 

in a[si,si]
then

delete end from a[si,si];
create subject si+1;
enter own into a[si,si+1];
enter end into a[si+1, si+1];
delete k1 from a[si,si];
delete D from a[si,si];
enter Y into a[si,si];
enter k2 into A[si,si];

end

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own

A B X …

1 2 4

head

Current state is k1

Current symbol is D

D

1 2 3 4

d(k1, D) = (k2, Y, R)

b k1end

own

s5

s5



34

Rest of Proof

 Protection system exactly simulates a TM
 Exactly 1 end right in ACM
 Only 1 right corresponds to a state
 Thus, at most 1 applicable command in each 

configuration of the TM

 If TM enters state qf, then right has leaked

 If safety question decidable, then represent 
TM as above and determine if qf leaks

 Leaks halting state  halting state in the matrix 
Halting state reached

 Conclusion: safety question undecidable



35

Other results

 For protection system without the create primitives, (i.e., delete 
create primitive); the safety question is complete in P-SPACE

 It is undecidable whether a given configuration of a given 
monotonic protection system is safe for a given generic right
 Delete destroy, delete primitives; 
 The system becomes monotonic as they only increase in size 

and complexity

 The safety question for biconditional monotonic protection 
systems is undecidable

 The safety question for monoconditional, monotonic protection 
systems is decidable

 The safety question for monoconditional protection systems 
with create, enter, delete (and no destroy) is decidable.


