IS 2150 / TEL 2810 Introduction to Security

James Joshi Associate Professor, SIS

> Lecture 3 September 15, 2009

Mathematical Review Security Policies

Objective

- Review some mathematical concepts
 - Propositional logic
 - Predicate logic
 - Mathematical induction
 - Lattice

Propositional logic/calculus

- Atomic, declarative statements (propositions)
 - that can be shown to be either TRUE or FALSE but not both; E.g., "Sky is blue"; "3 is less than 4"
- Propositions can be composed into compound sentences using connectives
 - Negation p (NOT) highest precedence
 - Disjunction $p \lor q$ (OR) second precedence
 - Conjunction $p \land q$ (AND) second precedence
 - Implication $p \rightarrow q$ q logical consequence of p
- Exercise: Truth tables?

Propositional logic/calculus

- Contradiction:
 - Formula that is always false : $p \land \neg p$
 - What about: $\neg(p \land \neg p)$?
- Tautology:
 - Formula that is always True : $p \lor \neg p$
 - What about: $\neg(p \lor \neg p)$?
- Others
 - Exclusive OR: p ⊕ q; p or q but not both
 - Bi-condition: $p \leftrightarrow q$ [p *if and only if* q (p iff q)]
 - Logical equivalence: p ⇔ q [p is logically equivalent to q]
- Some exercises...

Some Laws of Logic

- Double negation
- DeMorgan's law
 - $\neg(p \land q) \Leftrightarrow (\neg p \lor \neg q)$
 - $\neg(p \lor q) \Leftrightarrow (\neg p \land \neg q)$
- Commutative
 - $(p \lor q) \Leftrightarrow (q \lor p)$
- Associative law
 - $p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$
- Distributive law
 - $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
 - $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

Predicate/first order logic

- Propositional logic
- Variable, quantifiers, constants and functions
- Consider sentence: *Every directory contains* some files
- Need to capture "every" "some"
 - F(x): x is a file
 - D(y): y is a directory
 - C(x, y): x is a file in directory y

Predicate/first order logic

- Existential quantifiers ∃ (There exists)
 - E.g., ∃ x is read as There exists x
- Universal quantifiers ∀ (For all)
- $\forall y \ D(y) \rightarrow (\exists x \ (F(x) \land C(x, y)))$
- read as
 - for every y, if y is a directory, then there exists a x such that x is a file and x is in directory y
- What about $\forall x F(x) \rightarrow (\exists y (D(y) \land C(x, y)))?$

Mathematical Induction

- Proof technique to prove some mathematical property
 - E.g. want to prove that M(n) holds for all natural numbers
 - Base case OR Basis:
 - Prove that M(1) holds
 - Induction Hypothesis:
 - Assert that M(n) holds for n = 1, ..., k
 - Induction Step:
 - Prove that if M(k) holds then M(k+1) holds

Mathematical Induction

Exercise: prove that sum of first n natural numbers is

• S(n): 1 + ... + n = n(n + 1)/2

Prove

• S(n): $1^2 + ... + n^2 = n(n+1)(2n+1)/6$

- Sets
 - Collection of unique elements
 - Let S, T be sets
 - Cartesian product: $S \times T = \{(a, b) \mid a \in A, b \in B\}$
 - A set of order pairs
- Binary relation R from S to T is a subset of S x T
- Binary relation R on S is a subset of S x S
- If $(a, b) \in R$ we write aRb
 - Example:
 - *R* is "less than equal to" (≤)
 - For S = {1, 2, 3}
 - Example of R on S is {(1, 1), (1, 2), (1, 3), ????)
 - $(1, 2) \in R$ is another way of writing $1 \le 2$

Properties of relations

- Reflexive:
 - if aRa for all $a \in S$
- Anti-symmetric:
 - if aRb and bRa implies a = b for all $a, b \in S$
- Transitive:
 - if aRb and bRc imply that aRc for all a, b, $c \in S$
- Which properties hold for "less than equal to" (≤)?
- Draw the Hasse diagram
 - Captures all the relations

- Total ordering:
 - when the relation orders all elements
 - E.g., "less than equal to" (≤) on natural numbers
- Partial ordering (poset):
 - the relation orders only some elements not all
 - E.g. "less than equal to" (≤) on complex numbers; Consider (2 + 4i) and (3 + 2i)

• Upper bound $(u, a, b \in S)$

- *u* is an upper bound of *a* and *b* means *aRu* and *bRu*
- Least upper bound : lub(a, b) closest upper bound
- Lower bound ($l, a, b \in S$)
 - *l* is a lower bound of a and b means *lRa* and *lRb*
 - Greatest lower bound : glb(a, b) closest lower bound

- A lattice is the combination of a set of elements *S* and a relation *R* meeting the following criteria
 - R is reflexive, antisymmetric, and transitive on the elements of S
 - For every $s, t \in S$, there exists a greatest lower bound
 - For every $s, t \in S$, there exists a lowest upper bound
- Some examples
 - $S = \{1, 2, 3\} \text{ and } R = \leq ?$
 - $S = \{2+4i; 1+2i; 3+2i, 3+4i\}$ and $R = \leq ?$

Overview of Lattice Based Models

- Confidentiality
 - Bell LaPadula Model
 - First rigorously developed model for high assurance for military
 - Objects are classified
 - Objects may belong to Compartments
 - Subjects are given clearance
 - Classification/clearance levels form a lattice
 - Two rules
 - No read-up
 - No write-down