
Configuring Role-Based Access Control to
Enforce Mandatory and Discretionary
Access Control Policies

SYLVIA OSBORN
The University of Western Ontario
and
RAVI SANDHU and QAMAR MUNAWER
George Mason University

Access control models have traditionally included mandatory access control (or lattice-based
access control) and discretionary access control. Subsequently, role-based access control has
been introduced, along with claims that its mechanisms are general enough to simulate the
traditional methods. In this paper we provide systematic constructions for various common
forms of both of the traditional access control paradigms using the role-based access control
(RBAC) models of Sandhu et al., commonly called RBAC96. We see that all of the features of
the RBAC96 model are required, and that although for the mandatory access control
simulation, only one administrative role needs to be assumed, for the discretionary access
control simulations, a complex set of administrative roles is required.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—
Access controls; K.6.5 [Management of Computing and Information Systems]: Security
and Protection

General Terms: Management, Security

Additional Key Words and Phrases: Role-based access control, mandatory access control,
lattice-based access control, discretionary access control

Osborn’s research was supported by the Natural Sciences and Engineering Research Council
of Canada. The research of Sandhu and Munawer was partially supported by the National
Science Foundation, USA.
Authors’ addresses: S. Osborn, Dept. of Computer Science, The University of Western Ontario,
London, ON N6A 5B7, Canada; email: sylvia@csd.uwo.ca; R. Sandhu and Q. Munawer,
Laboratory for Information Security Technology, MS4A4, Information and Software Engineer-
ing Department, George Mason University, Fairfax, VA 22030; email: sandhu@gmu.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 1094-9224/00/0500–0085 $5.00

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000, Pages 85–106.

1. INTRODUCTION

Role-based access control (RBAC) has recently received considerable atten-
tion as a promising alternative to traditional discretionary and mandatory
access controls (see, for example, Proceedings of the ACM Workshop on
Role-Based Access Control, 1995-2000). In RBAC, permissions are associ-
ated with roles, and users are made members of appropriate roles thereby
acquiring the roles’ permissions. This greatly simplifies management of
permissions. Roles can be created for the various job functions in an
organization and users then assigned roles based on their responsibilities
and qualifications. Users can be easily reassigned from one role to another.
Roles can be granted new permissions as new applications and systems are
incorporated, and permissions can be revoked from roles as needed.

An important characteristic of RBAC is that by itself it is policy neutral.
RBAC is a means for articulating policy rather than embodying a particu-
lar security policy (such as one-directional information flow in a lattice).
The policy enforced in a particular system is the net result of the precise
configuration and interactions of various RBAC components as directed by
the system owner. Moreover, the access control policy can evolve incremen-
tally over the system life cycle, and in large systems it is almost certain to
do so. The ability to modify policy to meet the changing needs of an
organization is an important benefit of RBAC.

Traditional access control models include mandatory access control
(MAC), which we shall call lattice-based access control (LBAC) here [Den-
ning 1976; Sandhu 1993], and discretionary access control (DAC) [Lampson
1971; Sandhu and Samarati 1994; 1997]. Since the introduction of RBAC,
several authors have discussed the relationship between RBAC and these
traditional models [Sandhu 1996; Sandhu and Munawer 1998; Munawer
2000; Nyanchama and Osborn 1994; 1996]. The claim that RBAC is more
general than all of these traditional models has often been made. The
purpose of this paper is to show how RBAC can be configured to enforce
these traditional models.

Classic LBAC models are specifically constructed to incorporate the
policy of one-directional information flow in a lattice. This one-directional
information flow can be applied for confidentiality, integrity, confidential-
ity and integrity together, or for aggregation policies such as Chinese Walls
[Sandhu 1993]. There is nonetheless strong similarity between the concept
of a security label and a role. In particular, the same user cleared to, for
example, Secret, can on different occasions login to a system at Secret and
Unclassified levels. In a sense the user determines what role (Secret or
Unclassified) should be activated in a particular session.

This leads us naturally to ask whether or not LBAC can be simulated
using RBAC. If RBAC is policy neutral and has adequate generality it
should indeed be able to do so, particularly since the notion of a role and
the level of a login session are so similar. This question is theoretically
significant because a positive answer would establish that LBAC is just one
instance of RBAC, thereby relating two distinct access control models that

86 • S. Osborn et al.

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

have been developed with different motivations. A positive answer is also
practically significant, because it implies that the same Trusted Computing
Base can be configured to enforce RBAC in general and LBAC in particular.
This addresses the long held desire of multilevel security advocates that
technology which meets needs of the larger commercial marketplace be
applicable to LBAC. The classical approach to fulfilling this desire has been
to argue that LBAC has applications in the commercial sector. So far this
argument has not been terribly productive. RBAC, on the other hand, is
specifically motivated by needs of the commercial sector. Its customization
to LBAC might be a more productive approach to dual-use technology.

In this paper, we answer this question positively by demonstrating that
several variations of LBAC can be easily accommodated in RBAC by
configuring a few RBAC components.1 We use the family of RBAC models
recently developed by Sandhu et al. [1996; 1999] for this purpose. This
family is commonly called the RBAC96 model. Our constructions show that
the concepts of role hierarchies and constraints are critical to achieving
this result.

Changes in the role hierarchy and constraints lead to different variations
of LBAC. A simulation of LBAC in RBAC was first given by Nyanchama
and Osborn [1996]; however, they do not exploit role hierarchies and
constraints and cannot handle variations so easily as the constructions of
this paper.

Discretionary access control (DAC) has been used extensively in commer-
cial applications, particularly in operating systems and relational database
systems. The central idea of DAC is that the owner of an object, who is
usually its creator, has discretionary authority over who else can access
that object. DAC, in other words, involves owner-based administration of
access rights. Whereas for LBAC, we do not need to discuss a complex
administration of access rights, we will see that for DAC, the administra-
tive roles developed in Sandhu et al. [1999] are crucial. Because each object
could potentially be owned by a unique owner, the number of administra-
tive roles can be quite large. However, we will show that the role adminis-
tration facilities in the RBAC96 model are adequate to build a simulation of
these sometimes administratively complex systems.

The rest of this paper is organized as follows. We review the family of
RBAC96 models due to Sandhu et al. [1996] in Section 2. This is followed
by a quick review of LBAC in Section 3. The simulation of several LBAC
variations in RBAC96 is described in Section 4. This is followed by a brief
discussion in Section 5 of other RBAC96 configurations which also satisfy
LBAC properties. Section 6 introduces several major variations of DAC. In
Section 7 we show how each of these variations can be simulated in

1It should be noted that RBAC will only prevent overt flows of information. This is true of any
access control model, including LBAC. Information flow contrary to the one-directional
requirement in a lattice by means of so-called covert channels is outside the purview of access
control per se. Neither LBAC nor RBAC addresses the covert channel issue directly. Tech-
niques used to deal with covert channels in LBAC can be used for the same purpose in RBAC.

Configuring Role-Based Access Control • 87

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

RBAC96. Section 8 summarizes the results. Preliminary versions of some of
these results have appeared in Sandhu [1996], Sandhu and Munawer
[1998], Nyanchama and Osborn [1996], and Osborn [1997].

2. RBAC MODELS

A general RBAC model including administrative roles was defined by
Sandhu et al. [1996]. It is summarized in Figure 1. The model is based on
three sets of entities called users (U), roles (R), and permissions (P).
Intuitively, a user is a human being or an autonomous agent, a role is a job
function or job title within the organization with some associated semantics
regarding the authority and responsibility conferred on a member of the
role, and a permission is an approval of a particular mode of access to one
or more objects in the system.

The user assignment (UA) and permission assignment (PA) relations of
Figure 1 are both many-to-many relationships (indicated by the double-
headed arrows). A user can be a member of many roles, and a role can have
many users. Similarly, a role can have many permissions, and the same
permission can be assigned to many roles. There is a partially ordered role

SESSIONS

S

ADMINIS-

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

RH

ROLE

HIERARCHY

ADMINISTRATIVE

ARH

PERMISS-

IONS

P
PERMISSION

ASSIGNMENT

PA

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

ASSIGNMENT

ADMIN.

PERMISS-

IONS

AP

CONSTRAINTS
U

USERS

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

ADMINISTRATIVE

AUA

Fig. 1. The RBAC96 model.

88 • S. Osborn et al.

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

hierarchy RH, also written as $, where x $ y signifies that role x inherits
the permissions assigned to role y. In the work of Nyanchama and Osborn
[1994; 1996; 1999], the role hierarchy is presented as an acyclic directed
graph, and direct relationships in the role hierarchy are referred to as
edges. Inheritance along the role hierarchy is transitive; multiple inherit-
ance is allowed in partial orders.

Figure 1 shows a set of sessions S. Each session relates one user to
possibly many roles. Intuitively, a user establishes a session during which
the user activates some subset of roles that he or she is a member of
(directly or indirectly by means of the role hierarchy). The double-headed
arrow from a session to R indicates that multiple roles can be simulta-
neously activated. The permissions available to the user are the union of
permissions from all roles activated in that session. Each session is
associated with a single user, as indicated by the single-headed arrow from
the session to U. This association remains constant for the life of a session.
A user may have multiple sessions open at the same time, each in a
different window on the workstation screen for instance. Each session may
have a different combination of active roles. The concept of a session
equates to the traditional notion of a subject in access control. A subject (or
session) is a unit of access control, and a user may have multiple subjects
(or sessions) with different permissions active at the same time.

The bottom half of Figure 1 shows administrative roles and permissions.
RBAC96 distinguishes roles and permissions from administrative roles and
permissions respectively, where the latter are used to manage the former.
Administration of administrative roles and permissions is under control of
the chief security officer or delegated in part to administrative roles. The
administrative aspects RBAC96 elaborated in Sandhu et al. [1999] are
relevant for the DAC discussion in Section 6. For the purposes of the LBAC
discussion, we assume a single security officer is the only one who can
configure various components of RBAC96.

Finally, Figure 1 shows a collection of constraints. Constraints can apply
to any of the preceding components. An example of constraints is mutually
disjoint roles, such as purchasing manager and accounts payable manager,
where the same user is not permitted to be a member of both roles.

The following definition formalizes the above discussion.

Definition 1. The RBAC96 model has the following components:

● U, a set of users
R and AR, disjoint sets of (regular) roles and administrative roles
P and AP, disjoint sets of (regular) permissions and administrative
permissions
S, a set of sessions

● PA # P 3 R , a many-to-many permission to role assignment relation
APA # AP 3 AR, a many-to-many permission to administrative role
assignment relation

Configuring Role-Based Access Control • 89

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

● UA # U 3 R , a many-to-many user to role assignment relation
AUA # U 3 AR, a many-to-many user to administrative role assign-
ment relation

● RH # R 3 R , a partially ordered role hierarchy
ARH # AR 3 AR, partially ordered administrative role hierarchy
(both hierarchies are written as $ in infix notation)

● user : S 3 U, a function mapping each session si to the single user
user~si! (constant for the session’s lifetime),
roles : S 3 2RøAR maps each session si to a set of roles and administrative
roles roles~si! # $r ? ~?r9 $ r!@~user~si!, r9! [UA ø AUA#% (which
can change with time)
session si has the permissions ør[roles~si!$p ? ~?r99 # r!@~ p, r99! [PA ø

APA#%

● there is a collection of constraints stipulating which values of the various
components enumerated above are allowed or forbidden.

3. LBAC (OR MAC) MODELS

Lattice based access control is concerned with enforcing one directional
information flow in a lattice of security labels. It is typically applied in
addition to classical discretionary access controls, but in this section we
will focus only on the MAC component. A simulation of DAC in RBAC96 is
found in Section 7. Depending upon the nature of the lattice, the one-
directional information flow enforced by LBAC can be applied for confiden-
tiality, integrity, confidentiality and integrity together, or for aggregation
policies such as Chinese Walls [Sandhu 1993]. There are also variations of
LBAC where the one-directional information flow is partly relaxed to
achieve selective downgrading of information or for integrity applications
[Bell 1987; Lee 1988; Schockley 1988].

The mandatory access control policy is expressed in terms of security
labels attached to subjects and objects. A label on an object is called a
security classification, while a label on a user is called a security clearance.
It is important to understand that a Secret user may run the same
program, such as a text editor, as a Secret subject or as an Unclassified
subject. Even though both subjects run the same program on behalf of the
same user, they obtain different privileges due to their security labels. It is
usually assumed that the security labels on subjects and objects, once
assigned, cannot be changed (except by the security officer). This last
assumption, that security labels do not change, is known as tranquillity.
(Non-tranquil LBAC can also be simulated in RBAC96 but is outside the scope
of this paper.) The security labels form a lattice structure as defined below.

Definition 2. (Security Lattice) There is a finite lattice of security
labels SC with a partially ordered dominance relation $ and a least upper
bound operator.

90 • S. Osborn et al.

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

An example of a security lattice is shown in Figure 2. Information is only
permitted to flow upward in the lattice. In this example, H and L respec-
tively denote high and low, and M1 and M2 are two incomparable labels
intermediate to H and L. This is a typical confidentiality lattice where
information can flow from low to high but not vice versa.

The specific mandatory access rules usually specified for a lattice are as
follows, where l signifies the security label of the indicated subject or
object.

Definition 3. (Simple Security Property) Subject s can read object o
only if l~s! $ l~o!.

Definition 4. (Liberal *-property) Subject s can write object o only if
l~s! # l~o!.

The *-property is pronounced as the star-property. For integrity reasons
sometimes a stricter form of the *-property is stipulated. The liberal
*-property allows a low subject to write a high object. This means that high
data may be maliciously or accidently destroyed or damaged by low
subjects. To avoid this possibility we can employ the strict *-property given
below.

Definition 5. (Strict *-property) Subject s can write object o only if
l~s! 5 l~o!.

The liberal *-property is also referred to as write-up and the strict
*-property as non-write-up or write-equal.

In variations of LBAC, the simple-security property is usually left
unchanged as we will do in all our examples. Variations of the *-property in
LBAC whereby the one-directional information flow is partly relaxed to
achieve selective downgrading of information or for integrity applications
[Bell 1987; Lee 1988; Schockley 1988] will be considered later.

M1 M2

H

L
Fig. 2. A partially ordered lattice.

Configuring Role-Based Access Control • 91

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

4. CONFIGURING RBAC FOR LBAC

We now show how different variations of LBAC can be simulated in
RBAC96. It turns out that we can achieve this by systematically changing
the role hierarchy and defining appropriate constraints. This suggests that
role hierarchies and constraints are central to defining policy in RBAC96.

4.1 A Basic Lattice

We begin by considering the example lattice of Figure 2 with the liberal
*-property. Subjects with labels higher up in the lattice have more power
with respect to read operations but have less power with respect to write
operations. Thus, this lattice has a dual character. In role hierarchies
subjects (sessions) with roles higher in the hierarchy always have more
power than those with roles lower in the hierarchy. To accommodate the
dual character of a lattice for LBAC we will use two dual hierarchies in
RBAC96, one for read and one for write. These two role hierarchies for the
lattice of Figure 2 are shown in Figure 3(a). Each lattice label x is modeled
as two roles xR and xW for read and write at label x respectively. The
relationship among the four read roles and the four write roles is shown on
the left and right hand sides of Figure 3(a), respectively. The duality
between the left and right lattices is obvious from the diagrams.

To complete the construction we need to enforce appropriate constraints
to reflect the labels on subjects in LBAC. Each user in LBAC has a unique
security clearance. This is enforced by requiring that each user in RBAC96
is assigned to exactly two roles xR and LW. An LBAC user can login at any
label dominated by the user’s clearance. This requirement is captured in
RBAC96 by requiring that each session has exactly two matching roles yR

HR

LR

M1R M2R M1W M2W

HW

LW

HR

LR

M1R M2R HW LW M2WM1W

(a) Liberal H-Property

(b) Strict H-Property

Fig. 3. Role hierarchies for the lattice of Figure 2.

92 • S. Osborn et al.

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

and yW. The condition that x $ y, that is the user’s clearance dominates
the label of any login session established by the user, is not explicitly
required because it is directly imposed by the RBAC96 construction. Note
that, by virtue of membership in LW, each user can activate any write role.
However, the write role activated in a particular session must match the
session’s read role. Thus, both the role hierarchy and constraints of
RBAC96 are exploited in this construction.

LBAC is enforced in terms of read and write operations. In RBAC96 this
means our permissions are read and writes on individual objects written as
(o,r) and (o,w) respectively. An LBAC object has a single sensitivity label
associated with it. This is expressed in RBAC96 by requiring that each pair
of permissions (o,r) and (o,w) be assigned to exactly one matching pair of xR
and xW roles respectively. By assigning permissions (o,r) and (o,w) to roles
xR and xW, respectively, we are implicitly setting the sensitivity label of
object o to x.

4.2 The General Construction

Based on the above discussion we have the following construction for
arbitrary lattices (actually the construction works for partial orders with a
lower-most security class). Given SC with security labels {L1 . . . Ln}, and
partial order $LBAC , an equivalent RBAC96 system is given by:

Construction 1. (Liberal *-Property)

● R 5 $L1R. . . LnR, L1W. . . LnW %

● RH which consists of two disjoint role hierarchies. The first role hierar-
chy consists of the “read“ roles $L1R. . . LnR% and has the same partial
order as $LBAC ; the second partial consists of the “write” roles
$L1W. . . LnW % and has a partial order which is the inverse of $LBAC .

● P 5 $~o, r!, ~o, w!o is an object in the system%

● Constraint on UA: Each user is assigned to exactly two roles xR and LW
where x is the label assigned to the user and LW is the write role
corresponding to the lowermost security level according to $LBAC

● Constraint on sessions: Each session has exactly two roles yR and yW

● Constraints on PA:
(o,r) is assigned to xR iff (o,w) is assigned to xW
(o,r) is assigned to exactly one role xR such that x is the label of o

THEOREM 1. An RBAC96 system defined by Construction 1 satisfies the
Simple Security Property and the Liberal *-Property.

PROOF. (a) Simple Security Property: Subjects in the LBAC terminology
correspond to RBAC96 sessions. For subject s to read o, (o,r) must be in the
permissions assigned to a role, either directly or indirectly, which is among

Configuring Role-Based Access Control • 93

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

the roles available to session s, which corresponds to exactly one user u.
For u to be involved in this session, this role must be in the UA for u
(either directly or indirectly). Let l(u) 5 z and l(s) 5 y. By the constraints
on PA given in Construction 1, (o,r) is assigned directly to exactly one role
xR, where x 5 l(o), and by the construction of RH, is inherited by roles yR
such that y $LBAC x. For s to be able to read o, it must have one of these yR
in its session. By the definition of roles in a session from Definition 1, any
role junior to zR can be in a session for u, i.e., z $LBAC y. In other words, a
session for u can involve one reading role yR such that z $LBAC y. There-
fore, the RBAC96 system defined above allows subject s to read object o if
l~u! $LBAC l~s! and l~s! $LBAC l~o!, which is precisely the Simple Secu-
rity Property.

(b) Liberal *-Property: Each user, u, is assigned by UA to xR, where x is
the clearance of the user. According to LBAC, the user can read data
classified at level x or at levels dominated by x. It also means that the user
can start a session at a level dominated by x. So, if a user cleared to say
level x, wishes to run a session at level y, such that x $LBAC y, the
constraints in Construction 1 allow the session to have the two active roles
yR and yW. Because every user is assigned to LW, it is possible for every
user to have a session with yW as one of its roles. The structure of the two
role hierarchies means that if the yW role is available to a user in a session,
the user can write objects for which the permission (o,w) is in yW. By
construction of the role hierarchy, the session can write to level y or levels
dominated by y. In LBAC terms, the subject, s, corresponds to the session,
and within a session a write can be performed if (o,w) is in the permissions
of a role, which by the construction is only if l~o! $LBAC l~s!. This is
precisely the Liberal *-Property. e

4.3 LBAC Variations

Variations in LBAC can be accommodated by modifying this basic construc-
tion in different ways. In particular, the strict *-property retains the
hierarchy on read roles but treats write roles as incomparable to each other
as shown in Figure 3(b) for the example of our basic lattice.

Construction 2. (Strict *-Property) Identical to Construction 1 except
RH has a partial order among the read roles identical to the LBAC partial
order, and no relationships among the write roles.

THEOREM 2. An RBAC96 system defined by Construction 2 satisfies the
Simple Security Property and the Strict *-Property.

The proof of this and subsequent similar results is omitted.
Next we consider a version of LBAC in which subjects are given more

power than allowed by the simple security and *-properties [Bell 1987].
The basic idea is to allow subjects to violate the *-property in a controlled
manner. This is achieved by associating a pair of security labels lr and lw

94 • S. Osborn et al.

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

with each subject (objects still have a single security label). The simple
security property is applied with respect to lr and the liberal *-property
with respect to lw. In the LBAC model of Bell [1987], it is required that lr

should dominate lw. With this constraint, the subject can read and write in
the range of labels between lr and lw, which is called the trusted range. If
lr and lw are equal, the model reduces to the usual LBAC model with the
trusted range being a single label.

The preceding discussion is remarkably close to our RBAC constructions.
The two labels lr and lw correspond directly to the two roles xR and yW we
have introduced earlier. The dominance required between lr and lw is
trivially recast as a dominance constraint between x and y. This leads to
the following construction:

Construction 3. (Liberal *-Property with Trusted Range) Identical to
Construction 1 except

—Constraint on UA: Each user is assigned to exactly two roles xR and yW
such that x $ y in the original lattice

—Constraint on sessions: Each session has exactly two roles xR and yW
such that x $ y in the original lattice

Lee [1988] and Schockley [1988] have argued that the Clark-Wilson
integrity model [Clark and Wilson 1987] can be supported using LBAC.
Their models are similar to the above except that no dominance relation is
required between x and y. Thus, the write range may be completely disjoint
with the read range of a subject. This is easily expressed in RBAC96 as
follows.

Construction 4. (Liberal *-Property with Independent Write Range)
Identical to Construction 3 except x $ y is not required in the constraint on
UA and the constraint on sessions.

A variation of the above is to use the strict *-property as follows.

Construction 5. (Strict *-Property with Designated Write) Identical to
Construction 2 except

—Constraint on UA: Each user is assigned to exactly two roles xR and yW

—Constraint on sessions: Each session has exactly two roles xR and yW

Construction 5 can also be directly obtained from Construction 4 by
requiring the strict *-property instead of the liberal *-property. Construc-
tion 5 can accommodate Clark-Wilson transformation procedures as out-
lined by Lee [1988] and Schockley [1988]. (Lee and Schockley actually use
the liberal *-property in their constructions, but their lattices are such that
the constructions are more directly expressed in terms of the strict
*-property.)

Configuring Role-Based Access Control • 95

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

5. EXTENDING THE POSSIBLE RBAC CONFIGURATIONS

In the previous section, we looked at specific mappings of different kinds of
LBAC to an RBAC system with the same properties. In this section we
examine whether or not more arbitrary RBAC systems which do not
necessarily follow the constructions in Section 4 still satisfy LBAC proper-
ties. In order to do this, we assume that all users and objects have security
labels, and that permissions involve only reads and writes.

In the previous discussion, all constructions created role hierarchies with
disjoint read and write roles. This is not strictly necessary; the role
hierarchy in Figure 4 could be the construction for the strict *-property
with the following modifications:

● Constraint on UA: Each user is assigned to all roles, xRW such that the
clearance of the user dominates the security label x

● Constraint on sessions: Each session has exactly one role: yRW

● Constraints on PA:
(o,r) is assigned to xR iff (o,w) is assigned to xRW
(o,r) is assigned to exactly one role xR

Nevertheless, the structure of role hierarchies which do map to valid
LBAC configurations is greatly restricted, as the examples in Osborn
[1997] show. For example, a role with permissions to both read and write a
high data object and a low data object cannot be assigned to a high user as
this would allow write down, and cannot be assigned to a low user, as this
would allow read up. If a role had only read permissions for some objects
classified at M1, and other objects classified at M2 (cf. Figure 2), a subject
cleared at H could be assigned to this role.

HR

LR

M1R M2RLRW

M1RW

HRW

M2RW

Fig. 4. Alternate role hierarchy for Strict *-property.

96 • S. Osborn et al.

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

As far as the read operation is concerned, a subject can have a role r in
its session if the label of the subject dominates the level of all o such that
(o,r) is in the role. Since the least upper bound is defined for the security
lattice, this can always be determined. Similarly, for write operations, if a
greatest lower bound is defined for the security levels, then the Liberal
*-property is satisfied in a session if the security level of the subject
dominates the greatest lower bound of all o such that (o,w) is in the role. If
such a greatest lower bound does not exist, such a role should not be in any
user’s UA. (If it could be determined that l~s! # l~o! for all o such that
(o,w) is in the role, then this l~s! would be a lower bound, and then a
greatest lower bound would exist.)

We introduce the following two definitions to capture the maximum read
level of objects in a role, and the minimum write level if one exists.

Definition 6. The r-level of a role r (denoted r-level(r)) is the least
upper bound (lub) of the security levels of the objects for which (o,r) is in
the permissions of r.

Definition 7. The w-level of a role r (denoted w-level(r)) is the greatest
lower bound (glb) of the security levels of the objects o for which (o,w) is
in the permissions of r, if such a glb exists. If the glb does not exist, the
w-level is undefined.

The following theorem follows from these definitions.

THEOREM 3. An RBAC96 configuration satisfies the simple security prop-
erty and the Liberal *-Property if all of the following hold:

● Constraint on Users: ~~@u [U !@l~u! is given#!

● Constraints on Permissions:
P 5 $~o, r!, ~o, w!o is an object in the system%
~~@o [P!@l~o! is given#!

● Constraint on UA:
~~@r [UA!@w-level~r! is defined#!
~~@~u, r! [UA!@l~u! $ r-level~r!#!
~~@~u, r! [UA!@l~u! # w-level~r!#!

● Constraint on Sessions: ~~@s [sessions!@l~s! # l~u!#!

An example showing a possible role hierarchy is given in Figure 5, where
the underlying security lattice contains labels {unclassified, secret, top
secret}and roles are indicated by, for example, (ru,rs) meaning the permis-
sions in the role include read of some unclassified and some secret object(s)
(each role may have permissions inherited because of the role hierarchy).
The roles labeled ru1 and ru3 at the bottom have read access to distinct
objects labeled unclassified; ru2 inherits the permissions of ru1 and has
additional read access to objects at the unclassified level. The role labeled
(ru,ws) contains permission to read some unclassified objects and write

Configuring Role-Based Access Control • 97

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

some secret objects. This role could be assigned in UA to either unclassified
users or to secret users. Notice the role at the top of the role hierarchy,
labeled (ru,rs,rts,ws,wts). This role cannot be assigned to any user without
violating either the Simple Security Property or the Liberal *-Property.
Note that if this role is deleted from the role hierarchy, we have an example
of a role hierarchy which satisfies the Simple Security Property and the
Liberal *-Property, and which does not conform to any of the constructions
of Section 4.

An RBAC96 configuration satisfies the strict *-property if all of the above
conditions hold, changing the Constraint on Sessions to:

● Constraint on Sessions: ~~@s [sessions!@l~s! 5 l~u!#!.

6. DAC MODELS

In this section, we discuss the DAC policies that will be considered in this
paper. The central idea of DAC is that the owner of an object, who is
usually its creator, has discretionary authority over who else can access
that object. In other words the core DAC policy is owner-based administra-
tion of access rights. There are many variations of DAC policy, particularly

Not valid in any
User Assignment

ru,rs

ru2

ru1 ru3

In UA for
unclassified
users

ru,ws

ws,wts

ws

ru,rs
ws

ru,rs
ws,wts

In UA for Top-
Secret Users

ru,rs,rts
ws,wts

ru,rs,rts

Secret users
In UA for

Fig. 5. A role hierarchy and its user assignments.

98 • S. Osborn et al.

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

concerning how the owner’s discretionary power can be delegated to other
users and how access is revoked. This has been recognized since the
earliest formulations of DAC [Lampson 1971; Graham and Denning 1972].

Our approach here is to identify major variations of DAC and demon-
strate their construction in RBAC96. The constructions are such that it will
be obvious how they can be extended to handle other related DAC varia-
tions. This is an intuitive, but well-founded, justification for the claim that
DAC can be simulated in RBAC.2

The DAC policies we consider all share the following characteristics.

● The creator of an object becomes its owner.

● There is only one owner of an object. In some cases ownership remains
fixed with the original creator, whereas in other cases it can be trans-
ferred to another user. (This assumption is not critical to our construc-
tions. It will be obvious how multiple owners could be handled.)

● Destruction of an object can only be done by its owner.

With this in mind, we now define the following variations of DAC with
respect to granting of access.

(1) Strict DAC requires that the owner is the only one who has discretion-
ary authority to grant access to an object and that ownership cannot be
transferred. For example, suppose Alice has created an object (Alice is
owner of the object) and grants read access to Bob. Strict DAC requires
that Bob cannot propagate access to the object to another user. (Of
course, Bob can copy the contents of Alice’s object into an object that he
owns, and then propagate access to the copy. This is why DAC is unable
to enforce information flow controls, particularly with respect to Trojan
Horses.)

(2) Liberal DAC allows the owner to delegate discretionary authority for
granting access to an object to other users. We define the following
variations of liberal DAC.
(a) One Level Grant: The owner can delegate grant authority to other

users but they cannot further delegate this power. So Alice being
the owner of object O can grant access to Bob who can grant access
to Charles. But Bob cannot grant Charles the power to further
grant access to Dorothy.

(b) Two Level Grant: In addition to a one-level grant the owner can
allow some users to further delegate grant authority to other users.
Thus, Alice can now authorize Bob for two-level grants, so Bob can
grant access to Charles, with the power to further grant access to
Dorothy. However, Bob cannot grant the two-level grant authority
to Charles. (We could consider n-level grant but it will be obvious
how to do this from the two level construction.)

2A formal proof would require a formal definition of DAC encompassing all its variations, and
a construction to handle all of these in RBAC96. This approach is pursued in Munawer [2000].

Configuring Role-Based Access Control • 99

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

(c) Multilevel Grant: In this case the power to delegate the power to
grant implies that this authority can itself be delegated. Thus Alice
can authorize Bob, who can further authorize Charles, who can
further authorize Dorothy, and so on indefinitely.

(3) DAC with Change of Ownership: This variation allows a user to
transfer ownership of an object to another user. It can be combined with
strict or liberal DAC in all the above variations.

For revocation, we consider two cases as follows.

(1) Grant-Independent Revocation: Revocation is independent of the
granter. Thus Bob may be granted access by Alice but have it revoked
by Charles.

(2) Grant-Dependent Revocation: Revocation is strongly tied to the
granter. Thus if Bob receives access from Alice, access can only be
revoked by Alice.

In our constructions, we will initially assume grant-independent revocation
and then consider how to simulate grant-dependent revocation. In general,
we will also assume that anyone with authority to grant also has authority
to revoke. This coupling often occurs in practice. Where appropriate, we can
decouple these in our simulations because, as we will see, they are
represented by different permissions.

These DAC policies certainly do not exhaust all possibilities. Rather
these are representative policies whose simulation will indicate how other
variations can also be handled.

7. CONFIGURING RBAC FOR DAC

To specify the above variations in RBAC96 it suffices to consider DAC with
one operation, which we choose to be the read operation. Similar construc-
tions for other operations such as write, execute and append, are easily
possible.3 Before considering specific DAC variations, we first describe
common aspects of our constructions.

7.1 Common Aspects

The basic idea in our constructions is to simulate the owner-centric policies
of DAC using roles that are associated with each object.

7.1.1 Create an Object. For every object O that is created in the system
we require the simultaneous creation of three administrative roles and one
regular role as follows.

3More complex operations such as copy can be viewed as a read of the original object and a
write (and possibly creation) of the copy. It can be useful to associate some default permissions
with the copy. For example, the copy may start with access related to that of the original
object or it may start with some other default. Specific policies here could be simulated by
extending our constructions.

100 • S. Osborn et al.

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

—Three administrative roles in AR: OWN_O, PARENT_O and PARENT-
withGRANT_O

—One regular role in R: READ_O

Role OWN_O has privileges to add and remove users from the role
PARENTwithGRANT_O which in turn has privileges to add and remove
users from the role PARENT_O The relationship between these roles is
shown in Figure 6. In Figure 6, administrative roles are shown with darker
circles than regular roles. In Figure 6(a), the dashed right arrows indicate
that the role on the left contains the administrative permissions governing
the role on the right. Figure 6(b) shows the administrative role hierarchy,
with the senior role above its immediate junior, connected by an edge. For
instance role OWN_O has administrative authority over roles PARENT-
withGRANT_O as indicated in Figure 6(a). In addition due to the inherit-
ance via the role hierarchy of Figure 6(b) OWN_O also has administrative
authority over PARENT_O and READ_O.

In addition, we require simultaneous creation of the following eight
permissions along with creation of each object O.

OWN_O READ_O

(a)

OWN_O

PARENTwithGRANT_O

PARENT_O

(b)

PARENT_OPARENTwithGRANT_O

Fig. 6. (a) Administration of roles associated with an object; (b) Administrative role hierar-
chy.

Configuring Role-Based Access Control • 101

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

—canRead_O: authorizes the read operation on object O. It is assigned to
the role READ_O.

—destroyObject_O: authorizes deletion of the object. It is assigned to the
role OWN_O.

—addReadUser_O, deleteReadUser_O: respectively authorize the opera-
tions to add users to the role READ_O and remove them from this role.
They are assigned to the role PARENT_O.

—addParent_O, deleteParent_O: respectively authorize the operations to
add users to the role PARENT_O and remove them from this role. They
are assigned to the role PARENTwithGRANT_O.

—addParentWithGrant_O, deleteParentWithGrant_O: respectively autho-
rize the operations to add users to the role PARENT_O and remove them
from this role. They are assigned to the role OWN_O.

These permissions are assigned to the indicated roles when the object is
created and thereafter they cannot be removed from these roles or assigned
to other roles.

7.1.2 Destroy an Object. Destroying an object O requires deletion of the
four roles namely OWN_O, PARENT_O, PARENTwithGRANT_O and
READ_O and the eight permissions (in addition to destroying the object
itself). This can be done only by the owner, by virtue of exercising the
destroyObject_O permission.

7.2 Strict DAC

In strict DAC, only the owner can grant/revoke read access to/from other
users. The creator is the owner of the object. By virtue of membership (via
seniority) in PARENT_O and PARENTwithGRANT_O, the owner can
change assignments of the role READ_O. Membership of the three admin-
istrative roles cannot change, so only the owner will have this power. This
policy can be enforced by imposing a cardinality constraint of 1 on OWN_O
and of 0 on PARENT_O and PARENTwithGRANT_O.

This policy could be simulated using just two roles OWN_O and
READ_O, and giving the addReadUser_O and deleteReadUser_O permis-
sions directly to OWN_O at creation of O. For consistency with subsequent
variations we have introduced all required roles from the start.

7.3 Liberal DAC

The three variations of liberal DAC described in Section 6 are now
considered in turn.

7.3.1 One-Level Grant. The one-level grant DAC policy can be simu-
lated by removing the cardinality constraint of strict DAC on membership
in PARENT_O. The owner can assign users to the PARENT_O role who in
turn can assign users to the READ_O role. But the cardinality constraint of
0 on PARENTwithGRANT_O remains.

102 • S. Osborn et al.

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

7.3.2 Two-Level Grant. In the two level grant DAC policy the cardinal-
ity constraint on PARENTwithGRANT_O is also removed. Now the owner
can assign users to PARENTwithGRANT_O who can further assign users
to PARENT_O. Note that members of PARENTwithGRANT_O can also
assign users directly to READ_O, so they have discretion in this regard.
Similarly the owner can assign users to PARENTwithGRANT_O,
PARENT_O or READ_O as deemed appropriate. (N-level grants can be
similarly simulated by having N roles, PARENTwithGRANT_ON 2 1,
PARENTwithGRANT_ON 2 2, . . . , PARENTwithGRANT_O, PARENT O.)

7.3.3 Multilevel Grant. To grant access beyond two levels we authorize
the role PARENTwithGRANT_O to assign users to PARENTwith-
GRANT_O. We achieve this by assigning the addParentWithGrant_O per-
mission to the role PARENTwithGRANT_O when object O is created. As
per our general policy of coupling grant and revoke authority, we also
assign the deleteParentWithGrant_O permission to the role PARENTwith-
GRANT_O when O is created. This coupling policy is arguably unreason-
able in the context of grant-independent revoke, so the deleteParentWith-
Grant_O permission could be retained only with the OWN_O role if so
desired. For grant-dependent revoke the coupling is more reasonable.

7.4 DAC with Change of Ownership

Change of ownership can be easily accomplished by suitable redefinition of
the administrative authority of a member of OWN_O. Recall that change of
ownership in this context means transfer of ownership from one user to
another. Thus the OWN_O role needs a permission that enables this
transfer to occur and this permission can only be assigned to this role. A
member of OWN_O can assign another user to OWN_O but at the cost of
losing their own membership.

7.5 Multiple Ownership

Multiple ownership can also be accommodated by removing the cardinality
constraint on membership in the OWN_O role. Since all members of
OWN_O have identical power, including the ability to revoke other owners, it
would be appropriate with grant-independent revoke to distinguish the origi-
nal owner. Alternately, we can have grant-dependent revoke of ownership.

7.6 Grant-Dependent Revoke

So far, we have considered grant-independent revocation where revocation
is independent of granter. Now finally we consider how to simulate grant-
dependent revoke in RBAC96. In this case, only the user who has granted
access to another user can revoke the access (with possible exception of the
owner who is allowed to revoke everything).

Specifically, let us consider the one level grant DAC policy simulated
earlier by allowing members of PARENT_O role to assign users to the
READ_O role. To simulate grant-dependent revocation with this one level

Configuring Role-Based Access Control • 103

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

grant policy, we need a different administrative role U_PARENT_O and a
different regular role U_READ_O for each user U authorized to do a
one-level grant by the owner. These roles are automatically created when
the owner authorizes user U. We also need two new administrative permis-
sions created at the same time as follows.

● addU_ReadUser_O, deleteU_ReadUser_O: respectively authorize the op-
erations to add users to the role U_READ_O and remove them from this
role. They are assigned to the role U_PARENT_O.

Ui_PARENT_O manages the membership assignments of Ui_READ_O role
as indicated in Figure 7 for user Ui. U_PARENT_O has a membership
cardinality constraint of one. Moreover, its membership cannot be changed.
Thus, user U will be the only one granting and revoking users from
U_READ_O. The U_READ_O role itself is assigned the permission can-
Read_O at the moment of creation. As before all of this enforced by
RBAC96 constraints. We can allow the owner to revoke users from the
U_READ_O role by making U_PARENT_O junior to OWN_O in the admin-
istrative role hierarchy. Simulation of grant-dependent revocation can be
similarly simulated with respect to the PARENT_O and PARENTwith-
GRANT_O roles. Extension to multiple ownership is also possible.

8. CONCLUSIONS

We have shown that the common forms of LBAC and DAC models can be
simulated and enforced in RBAC96 with systematic constructions. All of
the components of the RBAC96 model shown in Figure 1 were required to
carry out these simulations. Users and permissions are essential to express
any access control model. The Role Hierarchy is important in the LBAC
simulation. The Administrative Role Hierarchy is essential in the enforce-
ment of DAC policies, as is the administrative user to role assignment

U1_PARENT_O

U2_PARENT_O

Un_PARENT_O

U1_READ_O

U2_READ_O

Un_READ_O

.

.

.

.

.

.

.

.

.

..

Fig. 7. Read_O roles associated with members of PARENT_O.

104 • S. Osborn et al.

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

relation. We observe however that the permissions that have been granted
to users in a DAC system can give an arbitrarily rich role hierarchy, as was
noted in a conversion of relational database permissions to role graphs by
Osborn et al. [1997]. Constraints play a role in all of the constructions. It is
important to note that the LBAC simulation assumes a single administra-
tive role, whereas the DAC simulation requires a large number of adminis-
trative roles, which are dynamically created and destroyed.

We can represent some of our findings using the Venn diagram in Figure
8. The area on the left of the figure indicates that in this subset of RBAC96
configurations, there is no need for administrative roles except for an
assumed single administrative role. On the right, the administrative part
of the RBAC96 model is fully utilized. Part (a) represents the subset of
possible RBAC96 configurations which are built by Constructions 1 and 2.
Area (b) shows that there are other configurations not built by these two
constructions which still satisfy LBAC properties. Part (c) of the diagram
represents in general the RBAC96 configurations built by the various
constructions in Section 7. Note that these latter constructions all fall in
the region where the administrative roles of the RBAC96 model are being
fully utilized.

Future work should now focus on what happens in the rest of the
RBAC96 Models not included in the areas constructed in this paper. Models
for decentralized role administration which fall in between these extremes
have been proposed by Sandhu et al. [1999]. These models allow for large
numbers of administrative roles but this number is expected to be much
smaller than the number of objects in the system.

In conclusion, then, we have shown with various systematic construc-
tions how to simulate and enforce traditional LBAC and DAC access control
models in RBAC96.

RBAC Models

One Administrative Role Complex Administrative Roles

of Section 7of Section 4

of Section 5

a. LBAC construction

b. other LBAC configurations

c. DAC configurations

Fig. 8. Containment of models.

Configuring Role-Based Access Control • 105

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

REFERENCES

BELL, D. 1987. Secure computer systems: A network interpretation. In Proceedings on 3rd
Annual Computer Security Application Conference. 32–39.

CLARK, D. AND WILSON, D. 1987. A comparison of commercial and military computer security
policies. In Proceedings of IEEE Symposium on Security and Privacy (Oakland, CA,
May). 184–194.

DENNING, D. E. 1976. A lattice model of secure information flow. Commun. ACM 19, 2,
236–243.

GRAHAM, G. AND DENNING, P. 1972. Protection-principles and practice. In Proceedings on
AFIPS Spring Joint Computer Conference. AFIPS Press, Arlington, VA, 417–429.

LAMPSON, B. 1974. Protection. In Proceedings of the 5th Symposium on Information Sciences
and Systems (Princeton, NJ, Mar.). 437–443.

LEE, T. 1988. Using mandatory integrity to enforce “commercial” security. In Proceedings of
IEEE Symposium on Security and Privacy (Oakland, CA). 140–146.

MUNAWER, Q. 2000. Administrative models for role-based access control. Ph.D. Dissertation.
NYANCHAMA, M. AND OSBORN, S.. 1994. Access rights administration in role-based security

systems. In Proceedings of the IFIP Working Group 11.3 Working Conference on Database
Security. Elsevier North-Holland, Inc., Amsterdam, The Netherlands, 37–56.

NYANCHAMA, M. AND OSBORN, S. 1996. Modeling mandatory access control in role-based
security systems. In Database Security VIII: Status and Prospects. Chapman and Hall,
Ltd., London, UK, 129–144.

NYANCHAMA, M. AND OSBORN, S. 1999. The role graph model and conflict of interest. ACM
Trans. Inf. Syst. Secur. 1, 2 (Feb.), 3–33.

OSBORN, S. 1997. Mandatory access control and role-based access control revisited. In
Proceedings of the Second ACM Workshop on Role-based Access Control (RBAC ’97, Fairfax,
VA, Nov. 6–7), C. Youman, E. Coyne, and T. Jaeger, Chairs. ACM Press, New York, NY,
31–40.

OSBORN, S., REID, L. K., AND WESSON, G. J. 1997. On the interaction between role-based
access control and relational databases. In Proceedings of the Tenth Annual IFIP TC11/
WG11.3 International Conference on Database Security: Volume X: Status and Prospects
(Como, Italy, July 22–24, 1996), P. Samarati and R. S. Sandhu, Eds. Chapman and Hall,
Ltd., London, UK, 275–287.

SANDHU, R. S. 1993. Lattice-based access control models. IEEE Computer 26, 11, 9–19.
SANDHU, R. 1996. Role hierarchies and constraints for lattice-based access controls. In

Proceedings of the Conference on Computer Security (ESORICS 96, Rome, Italy), E. Bertino,
H. Kurth, G. Martella, and E. Montolivo, Eds. Springer-Verlag, New York, NY, 65–79.

SANDHU, R. S., BHAMIDIPATI, V., AND MUNAWER, Q. 1999. The ARBAC97 model for role-based
administration of roles. ACM Trans. Inf. Syst. Secur. 1, 2 (Feb.), 105–135.

SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access
control models. IEEE Computer 29, 2 (Feb.), 38–47.

SANDHU, R. AND MUNAWER, Q. 1998. How to do discretionary access control using roles. In
Proceedings of the Third ACM Workshop on Role-Based Access Control (RBAC ’98, Fairfax,
VA, Oct. 22–23), C. Youman and T. Jaeger, Chairs. ACM Press, New York, NY, 47–54.

SANDHU, R. AND SAMARATI, P. 1994. Access control: Principles and practice. IEEE Commun.
Mag. 32, 9, 40–48.

SANDHU, R. S. AND SAMARATI, P. 1997. Authentication, access control and intrusion detection.
In The Computer Science and Engineering Handbook, A. B. Tucker, Ed. CRC Press, Inc.,
Boca Raton, FL, 1929–1948.

SCHOCKLEY, W. 1988. Implementing the Clark/Wilson integrity policy using current
technology. In Proceedings of the 11th National Computer Security Conference (NIST-
NCSC, Baltimore, Maryland, Oct.17-20). National Institute of Standards and Technology,
Gaithersburg, MD, 29–37.

Received: November 1999; revised: April 2000; accepted: May 2000

106 • S. Osborn et al.

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.

