## HW7 Sample Solutions

## Answer to Problem 9.8.5

Two situations arise, the first in which Eve, the attacker, does not send an initial message to Bob (steps 1 and 2), and the second where she does. In both scenarios, assume that Eve knows the session key $k_{\text {session }}$, and has intercepted the message at step 5 .
Begin with the first case. Eve replays the message to Bob. As Bob has not yet received a new message from Alice (steps 1 and 2), he rejects the message. But if Eve's message comes during Alice's execution of the protocol and after step 2, Bob opens the message and determines the random number rand $_{3}$. Because he kept track of the random number that he sent to Alice, he recognizes that this was not an attempt to begin a new session, but instead a replay of an older message (else it could not have been enciphered using the key he shares with Cathy, $\left.k_{B o b}\right)$. He therefore knows the message is legitimate but, since he has already seen the message with that random number in it, that it is a replay.
In the second case, Eve sends message 1 to Bob, who replies with message 2. Eve immediately sends message 5 to Bob. Bob opens the message, compares rand ${ }_{3}$ with the nonce in the message he just sent Eve (masquerading as Alice), and notes it is different. So he rejects the message.

## Answer to Problem 9.8.6

Given, $m=m_{1} \times m_{2} \bmod n_{\text {Bob }}$
Bob's Digital Signature on $m_{1}$ and $m_{2}$
$c_{1}=m_{1}{ }^{\text {dBob }} \bmod n_{\text {Bob }}$
$c_{2}=m_{2}{ }^{\mathrm{dBob}} \bmod n_{\text {Bob }}$
Bob's Digital Signature on $m$
$c=m^{\mathrm{dBob}} \bmod n_{\text {Bob }}$
Since Alice has $c_{1}$ and $c_{2}$, she can construct $c$ from them as follows. (note $n_{\text {Bob }}$ is publicly known)

$$
\begin{aligned}
& =\left[c_{1} \times c_{2}\right] \bmod n_{\text {Bob }} \\
& =\left[\left(m_{1}^{\mathrm{dBob}} \bmod n_{\text {Bob }}\right) \times\left(m_{2}^{\mathrm{dBob}} \bmod n_{\text {Bob }}\right)\right] \bmod n_{\text {Bob }} \\
& =\left(m_{1}^{\mathrm{dBob}} \times m_{2}{ }^{\mathrm{dBob}}\right) \bmod n_{\text {Bob }} \\
& =\left(m_{1} \times m_{2}{ }^{\mathrm{dBob}} \bmod n_{\text {Bob }}\right. \\
& =m^{\mathrm{dBob}} \bmod n_{\text {Bob }}
\end{aligned}
$$

Thus, the forgery is possible.

