

A Requirements-Driven Trust Framework for Secure
Interoperation in Open Environments

Suroop Mohan Chandran, Korporn Panyim, James B. D. Joshi

Department of Information Sciences and Telecommunications
University of Pittsburgh

smc44@pitt.edu, kop1@pitt.edu, jjoshi@mail.sis.pitt.edu

Abstract. A key challenge in emerging multi-domain open environments is the need
to establish trust-based, loosely coupled partnerships between previously unknown
domains. An efficient trust framework is essential to facilitate trust negotiation
based on the service requirements of the partner domains. While several trust
mechanisms have been proposed, none address the issue of integrating the trust
mechanisms with the process of integrating access control policies of partner
domains to facilitate secure interoperation. In this paper, we propose a
requirements-driven trust framework for secure interoperation in open
environments. Our framework tightly integrates game-theory based trust negotiation
with service negotiation, and policy mapping to ensure secure interoperation.

1. Introduction

In emerging application evnvironments, loosely coupled entities typically collaborate to
provide unified solutions. This has led to the development of service-based applications
like Web Services, P2P and Grid applications. Business organizations and commercial
entities are now moving towards service-based applications to provide integrated solutions
with reusable components [21]. The components themselves may be distributed and only
Internet-accessible [22]. Typically, services distribution is managed in a centralized
manner, either through some service-broker or some public directory [23]. Typically, in
such cases, even trust establishment and management is centralized. But with emerging
applications, service requirement specification and provision requires a distributed
framework. In such cases, recognizing service requirements and composing services that
can satisfy these requirements, becomes quite complex. Furthermore, establishing secure
interoperation is crucial because of the variety of requirements and the possibility of many
domains interoperating in a collaborative framework. Establishment of trust in such
environments is the first significant step to establishing secure interoperation. Trust must
be negotiated to satisfy the security requirements of all the domains involved. This is done
by the disclosure of sensitive information such as credentials, policies, context of service
use etc. A trust framework should address all of the above issues.

Several trust negotiation mechanisms have been proposed in the literature including
Trust-Serv [1], TrustBuilder [2], H-Trust [4], Trust-X [3] and others [5, 6, 7, 8, 9]. Earlier
work has addressed the issue of trust negotiation and trust establishment separately. But
none of these frameworks have used negotiation and trust computation together. The level
of trust to be established is inherently linked to service requirements. These methods fail
in the following aspects: (1) primarily based on the client-server interaction model, (2)
based on credential exchange and do not handle credential types, and (3) do not consider
service requirements as a factor in trust negotiation or establishment.

In this paper, we propose a requirements-based trust framework to support integrated
trust and service negotiation, policy mapping, and a ticketing mechanism for fast cross
domain accesses. The proposed framework includes the trust sustenance and evolution
components. Following are the key contributions of the paper:
• Trust negotiation is driven by service requirements. It supports bi-directional

negotiation of service and context requirements.
• Trust negotiation involves establishing agreeable trust levels and trust token types

to facilitate mapping of policy elements for secure interoperation. Once negotiation
is done, trust tokens are used for authentication and trust tickets are generated to
support fast authorized accesses for agreed-upon services under the given context.

The rest of this paper is organized as follows: In section 2, we present related work.
In section 3, we present the proposed trust framework. In section 4, the details of service
and trust negotiation are presented. In section 5, we discuss the issues behind trust
sustenance and evolution and some naïve solutions to the problem.

2. Related Work

The notion of trust among interoperating domains has been loosely divided into two
types– negotiation of trust based on credentials and establishing trust based on peer-
measured values such as reputation and ranking. Existing work on trust negotiation
focuses on the negotiation of credentials, with little focus on the generic requirements of
secure interoperation, such as in Trust-Serv [1], TrustBuilder [2], H-Trust [4], Trust-X [3],
and others [5, 6, 7, 8, 9]. Trust-Serv is a model-driven framework that uses state machines
to represent and determine credential exchanges for access to resources [1]. Both
TrustBuilder and Trust-X use credential disclosure trees and negotiation strategies to
facilitate protection of credential information during negotiation. TrustBuilder defines
families of disclosure trees to facilitate negotiation between entities that have different
disclosure trees for the same resource [2]. The Trust-X system introduces the notion of
trust ticket for efficient negotiation [3], which has been adopted in our framework.

Decentralized systems typically use trust negotiation based on peer reviews and
reputations. HTrust defines functions to establish, sustain and evolve trust based on entity
behavior history [4]. Work in [5] defines a trust establishment and sustenance framework
for peer to peer systems using reputation as a basis for trust establishment. Reputation is

distributed across peers through the formation of peer grids or p-grids. The notion of
sustenance is based on the concept of complaints, where peers can make complaints
regarding other peers to reduce their rank among other peers [7]. A certainty factor can be
calculated to quantify the belief (and/or disbelief) a peer has on another peer [6]. Another
reputation-based model calculates the reputation for every session based on the number of
authentic responses to a query, where authentic responses are defined as original
documents matching the query [12]. An approach similar to the reputation-based
approaches is taken by [13] for Grid systems, where a trust index is calculated using fuzzy
logic, based on the success rate of a job and the defense capability of the domain. A trust
index is also calculated as a function of the direct relationship between the domains and
the reputation of the target domain. The direct trust relationship is itself a function of the
trust level assigned by the domain through interactions and the temporal decay of that
trust level [14]. A privacy-enhanced reputation based method can be used to attach a trust
value to an entity based on certain events, but these events cannot be traced back from the
trust value [15]. A hybrid approach can also be taken, as in [16], where reputation and
negotiation is mixed by negotiation of trust tokens between the interoperating domains
and the domains confirming the trustworthiness of these tokens through security/trust
agents. Similar to the reputation approach is the recommender approach [17, 18].

These systems do not satisfy all the requirements for peer-to-peer trust negotiation
and also are not flexible in terms of their credential exchange technique. Our framework is
suited for a distributed environment where trust is negotiated based on the service
requirements of each domain involved. We introduce trust token types (discussed in
Section 4), for establishing a generic security requirement, but still allow negotiation of
trust based on the acceptability of different trust token types. Further, we also consider
negotiation of trust integrated with service negotiation, such that different trust levels are
established for different services exchanged. Trust levels are computed based on a variety
of direct and indirect factors, which we shall discuss in Section 4.

3. The Proposed Requirements-Driven Trust Framework

The proposed trust framework, as shown in Figure 1, is composed of two principle
modules – the requirements-based Trust Establishment (TE) module and the Trust
Sustenance and Evolution (TSE) module, which are briefly overviewed below.

3.1 Requirements-based Trust Establishment

Trust establishment involves establishing the services that will be exchanged between the
interoperating domains and establishing a negotiated trust level for service access.

Service/Context Negotiation. A service requesting domain will publish its
requirements, but it is not necessary that there exists a domain that can exactly satisfy

these requirements. Even if there is one, it may not be able to provide them all. Under
such circumstances, services and their contexts may need to be negotiated to converge on
a set of service requirements that can be satisfactorily provided by the other domain.

Fig. 1. The proposed Requirements-driven Trust Framework

Trust Negotiation. Trust negotiation involves negotiation of the set of trust tokens
that need to be disclosed based on the trust token type required for service access. Trust
token types are sets of attributes and their allowed range of values, while trust tokens
represents any set of digital certificates that collectively can show that all the TT attributes
have values from the specific range. For instance, a trust token type may indicate the
requirement for proof of age to be above 18. Digital credentials that form valid trust
tokens may include Passport, university ID or Driver’s License. The negotiation phase
establishes which of these credentials could be used as trust tokens. Note that credential
certificates used as tokens may have attributes with varying protection requirements.

A key result of the negotiation and trust establishment phase is the mapping of the
policies in domains if each provides a service to the other, or within the provider domain.
Our proposed trust framework assumes that the individual domains employ GTRBAC
policies. The fine-grained service requests are represented as a set of abstract permissions
that a particular role within the requesting domain needs to access in the provider domain.
Our preliminary work on integration of GTRBAC policies reported in [26] is currently
used in the proposed framework. The policy mapping facilitates mapping in presence of
timing constraints and hybrid hierarchies. We have also extended the GTRBAC model for
location-based access control, in LoT-RBAC [28], and the same policy mapping

Policies and Policy
Attributes

Service and Context
Specifications

Session
Histories

Trust Sustenance and EvolutionTrust Establishment

Service and Context Negotiation

Context
Acceptability

Service
Availability

Trust Negotiation

Credential Recognition

Policy
Evolution
Evaluation

Context
Monitoring

Evolution of
Service

Requirements

Session
Monitoring

Trust Sustenance
and

Evolution

Policy Mapping

Context
Negotiation

Service
Negotiation

Credential
Sensitivity

Credential
Classification

Trust Token Type
Negotiation

Credential Acceptability

Trust
Repository

techniques now be used for secure interoperation in mobile environments as well. A brief
overview of the policy mapping process is presented in Section 4.1.

3.2 Trust Sustenance and Evolution

Trust sustenance refers to maintaining trust levels when domain characteristics change
during the period of interoperation. Trust evolution refers to the change in trust levels
because of changes in domain characteristics.

Evolution of Service Requirements. During a session, a new service requirement
can arise or some services may no longer be required. Since trust is requirements-based,
evolution of service requirements may trigger a decision on whether to sustain the trust
value or re-evaluate, or even renegotiate. Changes in trust values could also be used to
renegotiate services; for instance, to reduce the set of accesses given originally.

Context Monitoring. In highly dynamic environments, context changes are
inevitable. Since trust levels are context-dependant, it is important to monitor the changes
in the context and consequently sustain or calculate the changes to the trust level.

Policy Evolution Evaluation. Changes in policies could cause service
usage/provision to be affected (like change in contextual constraints on services), leading
to either trust re-evaluation or re-negotiation. Policy mapping will be particularly affected.

Session Monitoring. Anomalous and malicious behavior should be tracked and
immediately recognized, so that trust levels can be changed based on the behavior of the
other domain. This is a run-time decision on trust sustenance or evolution.

Trust sustenance is usually associated with changes in domain characteristics that are
not very significant and can be handled to gracefully end interoperation. Some examples
of these changes are change of context, policy changes causing conflict in access
resolution, etc. Trust evolution is usually associated with more significant changes, like
complete change of context, or access to highly sensitive information. In such cases, trust
threshold levels are recomputed and if necessary, trust is renegotiated.

4. Requirements-based Trust Establishment

A distinct feature of our framework is the negotiation and establishment of trust based on
the service requirements of the interoperating domains. Next, we briefly discuss how
service requests are made and the need for policy mapping for service negotiation.

4.1 Service Requests and Policy Mapping

Typically, service requests are made by member entities of a domain (like users that have
assumed certain roles). The requests are usually access to resources and can have a

context associated with them. We assume abstract permissions. Following definition
captures the generalization of a service request [26]:

Definition 1 (Service Request): A requesting domain dx’s service request is defined as:
dx.SR = <{r1, (P11, C11), ..., (P1n, C1n)}, …, {rn, (Pn1, Cn1), ..., (Pnn, Cnn)}>

where ri is a role in domain dx, Pij is the jth permission set requested by ri in context Cij

The roles {r1, .., rn} may or
may not be regular roles in the
domain but could also be
special roles created by the
local policy for interoperation
management. The service
provider domain will then
determine if the service can be
provided by doing a
preliminary policy mapping,
where roles {r1, …, rn} are
mapped to some local roles for
access to the requested
permissions. The mapping is
done by looking up which roles
in the role hierarchy are

authorized for the requested permissions. Based on hierarchy structures and permission-
role assignments, roles may be exported for use by other domains as such or by creating
temporary roles in the hierarchy. Export roles are created specifically for the purpose of
interoperation. For details on policy mapping for secure interoperation please refer to [26].
with explanation of the use of Inheritance-only, Activation-only and Inheritance and
Figure 2 shows how policy mapping is done in GTRBAC-based systems.

4.2 Services and Trust

In general, the interoperating domains try to negotiate what services they require and can
provide, in order to match each other’s service requirements. If any domain provides
services worth less than it received, then it can pay some incentive to the domain that
provided more services. Such service requirements-driven service negotiation can be seen
in practical applications and should be facilitated to support ad hoc partnerships between a
pair of domains. Various cost factors may play a significant role as to how the negotiation
may proceed.

Definition 2 (Service Negotiation Parameters): Let dx and dy be service domains
such that services requested by each are satisfied by the other after negotiation. Then we
define the parameters for negotiation as shown in Table 1.

D om ain 1 Dom ain 2

Subset of roles in dom ain 1 through
w hich dom ain 2 w ill be accessed

Subset of ro les in dom ain 2 through
w hich dom ain 1 w ill be accessed

A -hierarchy
relations only

Set of ro les
exported to
dom ain 2

Set of ro les
exported to
dom ain 1

I-hierarchy
relations only

Fig. 2. Role Mapping and Secure Interoperation in
GTRBAC-based systems [26]

Definition 3 (Service Negotiation Convergence): We say that the negotiation between
dx and dy converges when the following condition holds for both dx and dy:

c ≤ b + i

Ideally, the cost incurred to a domain during interoperation should be less than the
benefits and incentives it gets. Note that the condition for convergence may never occur as
internal constraints on the services required or provided may restrict further negotiation.
In such a situation, secure and desirable interoperation may not be possible.

Trust negotiation is carried out simultaneously with service negotiation to enable
establishment of interoperation. Typically, if two domains (say dx and dy) are involved in
interoperation through exchange of services, each domain requests the other to disclose
some information of a certain type as proof of trustworthiness. We introduce the notion of
trust token type that indicates a set of attributes and the range of values they should be
constrained to. Formally we define them as follows:

Definition 4 (Trust Token Type, Trust Token): Let TT and T denote a trust token type

and a trust token, respectively. Further, let A={ 1a ,…, na } be a generic set of attributes,
Dom (ia) be the evaluation domain of attribute ia , and A1 ⊆ A. Then,

• TT = (A1, VS), where VS={V1,…., V|A|}such that Vi⊆ Dom (ia).

• T = (A1, V), where vi∈V is such that vi∈Vi ⊆ Dom (ia) (i = 1.. |A|);

Further, a trust token T is said to satisfy a trust token type TT (denoted as T ≡ TT) if the
following conditions hold:
• ∀ ia ∈ TT.A, Vi ∈ TT.VS, [vi∈T.Vi ∧ vi∈Vi]
The service-provider domains demand the disclosure of credentials that verify a set of

trust token types. Some typical examples of trust token types are ({age}, {greater
than 18}) and ({nationality, residence}, {US and US Minor Islands, Pennsylvania}).
Credentials are digitally signed endorsements of some attributes of an entity. They are
basically attribute certificates, as specified in [27]. A trust token is constructed by
selecting a set of candidate credentials that collectively satisfy the trust token type. It is
possible that only a subset of the attributes endorsed by each credential is needed to
satisfy the trust token type. Formally a trust token can be defined as follows:

Table 1. Cost parameters for trust negotiation
y

x

d
dm Cost incurred to dy for policy mapping, to satisfy requirements of dx (dx.SR)
y

x

d
dr Cost incurred to dy for resources used by dx when using services provided by dy (as per dx.SR)

y

x

d
di Incentives that dy may receive (or lose) in the interoperation

y

x

d
dc Cost incurred by dy for providing services to satisfy dx.SR: y

x

d
dc = y

x

d
dm + y

x

d
dr

y

x

d
db Benefits for dy when using service provided by dx (as per dy.SR)

Definition 5 (Certificates for Trust Token): Let TT be a trust token type, CAi be
certification authority, and C={

1CACert (A1), ….,
nCACert (An)} be such that

• each element of C at least has one unique a ∈TT.A
• the attribute set over all elements of C ⊆ TT.A.

Then ATT
CAC . represents a trust token generated by projecting over attribute set TT.A. of C

and then certified by CA. If ATT
CAC . ≡ TT, then ATT

CAC . is a valid trust token for TT. Note that
n = 1 is possible in which case the certificate either exactly represents a trust token or a
projection over its attributes is needed to generate a trust token

As per the definition, a trust token may need to be generated dynamically to satisfy
the required trust token type. The requesting domain may decide to generate such an on-
the-fly trust token using the credentials he has by creating a third party certified certificate
(CA is a third party). In such a case trust factor will relate to who certifies the trust toke.
For instance, a military personnel may have certificates given to him by the military
department and may contain many sensitive attributes and while interacting with a private
agency may decide to have the military agency certify his token to satisfy the trust token
type required by the public agency. It is possible that the CA is the provider himself. In
such a case, to satisfy the trust token type, the requester may simply submit a set of
credential certificates. An issue here is the protection requirements of the attributes in the
certificates that are not required. Exposure of such is a risk that the requester may take
based on the trust that it has on the provider and should be incorporated in the trust
computation. For the military personnel in our example earlier, exposure of such attributes
to the private agency may not be an option at all.

Trust Factors. Prior to negotiation, the interoperating domains also compute ,
y xd d

S Ctr → ,
which denotes the trust dx has with regards to dy for services defined by S in contexts C.
As we shall see later in this section, this is a value that is used to compute the payoff of a
negotiation strategy. The computation of the overall trust values is the weighted sum of
the recommended trust and direct trust values [14]. It is possible that a domain does not
have both these values for another domain. The direct trust variables are historical
satisfaction level (h) and risk (rk). Here, h indicates the cumulative level of satisfaction
that a domain has had for another domain on their previous interactions and is computed
based on session histories and older h values. Variable rk captures risks associated with
the desired interoperation. An example is the risk of too many claimed trust tokens being
invalid. Another risk is that of services promised but not provided. The historical
satisfaction level is also affected by the result of the verification of trust tokens in the
earlier sessions. That is, if a domain presents valid trust tokens, then in interoperation,
during actual cross domain accesses, the historical satisfaction level will not be negatively
affected. The sustenance of the direct trust is based on a family of functions, and can
typically be a time-decaying value [14]. Recommended trust is determined by the
recommendation value ,

R yd d
S Cr → and the trust level for the recommender [16, 17, 20],

denoted by ,
x yd d

S Ctr → , where dR is the recommending domain, and dR is the recommender.
Recommended trust can also be a result of a chain of recommendations, where each
recommender assigns a trust value for the previous recommender [16].

The parameters that affect the trust relationship are context and the service
specifications. Earlier works have found the dependence of trust on contextual parameters
like time and location [14, 19]. With respect to temporal context, it is different from time
decay of trust, because time decay only shows trust value changing over some time, while
temporal context for trust refers to the trust levels at different instances of time. Trust is
also specific to service specifications for a particular session – for different services being
provided (or requested) the trust levels may be different

Definition 6 (Trust Level): Let S and C be the services provided by dy and the
corresponding contexts of interoperation. The trust level ,

y xd d
S Ctr → that dy has on dx, for

services S in contexts C, is defined in Table 2 follows.

Table 2. Trust level computation

,
y xd d

S Ctr → =

(α × ,
y xd d

S Cdtr →) + (β × ,
y xd d

S Crtr →)

,
y xd d

S Cdtr → =

(γ × ,
y xd d

S Ch →
) - (δ × ,

y xd d
S Crk →)

,
y xd d

S Crtr → =

(ψ × ,
y Rd d

R Ctr →) + (λ × ,
R xd d

S Cr →)

• α,β, γ, δ, ψ, λ and ε are weights
• α is typically greater than β, as direct trust is usually more

influential than recommended trust.
• Very often α is a result of a time-decay function which represents

the degradation in the trust for a domain, due to the lack of
interaction.

• ,
y xd d

S Ch → is the historical satisfaction level that dy has for dx

• ,
y xd d

S Ch → is bound by the previous risk levels as follows:

 ,
y xd d

S Ch → = η ×
,
y xd d

S Crk → , where 0 ≤ η ≤ 1

•
,
y xd d

S Crk → is the risk

• ,
R xd d

S Cr → is the recommendation given by dR for domain dx.

Fig. 3. Protocol for Service, Context and Trust Negotiation

NP(SRx, SRx.TT, SPx, SPx.TT)

NP(SRy, SRy.TT, SPy, SPy.TT)

Determine
Service and
Trust Token

types required
and requested

Determine
Service and
Trust Token

types required
and requested

Calculate
payoff in

disclosure of
trust token

types

Domain dx Domain dy

Service,
Context and
Trust Estd.

Calculate
payoff in

disclosure of
trust token

types

Service,
Context and
Trust Estd.

IR-Request

IR-Response

IN

EN, Satisfied

EN, Satisfied

NP(SRx’, SRx’.TT, SPx’, SPx’.TT)

NP(SRy”, SRy”.TT, SPy”, SPy”.TT)

,
y xd d

S Crk → is a complex parameter with a simple quantification done by computing a value

from previous validations of trust tokens of the same type from the same domain. ,
y xd d

S Ctr →
is computed for two purposes – (i) primarily to compute the payoff that is determined for
each negotiation strategy, described later in this section; or (ii) to set a threshold
(minimum) level on the trust that a domain must establish with the other. This facilitates
trust token negotiation as well.

4.3 Negotiation Protocol

Negotiation between the domains is done to determine the services required/available and
to establish trust, based on the trust tokens. Negotiation of services and associated trust
tokens is done simultaneously as can be seen from Figure 3, which describes a protocol
for negotiation of services and trust tokens. Note that, simultaneously, even context of
service is also negotiated. The messages exchanged by the domains are given in Table 3.

• Negotiation Tree = {V, E} V={Root,
Non-Leafs, Leafs}

• The domains alternate every level of
the tree.

• Root: Requesting Domain
• Edges: Strategy execution by a

domain at the previous level
• Non-Leafs: State of Negotiation after

previous domain’s strategy
• Leaf Nodes: Payoff for a sequence of

strategies

Fig 4. The negotiation tree

Table 3. Message Description for Trust Negotiation

Message Syntax and Description
<IR, Required (or Provided), Name, Service, Context> Interoperation

Request/Response
(IR) Such messages are sent by the initiator domain and the responder domains

<IN, Accept>
Initiate Negotiation

(IN)
This is a message sent by the initiator to the domain(s) which it has selected from a set
of domains that responded to its request, to start negotiation of services, context of
service and trust token types required.

<NP, Name, SR, SR.C, SR.TT, Sp, SP.C, SP.TT> Negotiation Proposal
(NP) The negotiation messages exchanged between the domains

<EN, Satisfied (or Not Satisfied)> End Negotiation
(EN) This message is sent to end the negotiation either in satisfaction or disapproval

dx

dy dy

()1 1, yx ddp p

……….

….. ….. ….. (), yx dd
i ip p (), yx dd

j jp p (), yx dd
n np p

dx dxdx dx
……. …….

To determine the convergence point of the negotiation, we take the game-theoretic
approach of defining payoffs for different strategies. Here trust tokens are strategies, and
each trust token has a different overall protection requirement. Based on the choice of
trust tokens for disclosure, corresponding domains have gains (or losses). The payoff for
each domain is the linear sum of the payoffs from services and trust token negotiations
respectively.

The trust token negotiation payoff is the difference between the trust level established
and the protection level required of the trust tokens disclosed, as given below:

φ’ij (pi
dx , p j

d y) = ((,
x yd d

S Ctr → -ProtLevel(dx.Ti)), (,
y xd d

S Ctr → - ProtLevel(dy.Tj))),
The service negotiation payoff is the difference between the benefits from usage of
services and the losses incurred through service exchange and service provision.
 φ”ij(pi

dx , p j
d y)= (x x x

y y y

d d d
d d db c i− − , y y y

x x x

d d d
d d db c i− −)

Thus the overall negotiation payoff is given as:
φij(pi

dx , p j
d y) = φ’ij (pi

dx , p j
d y) + φ”ij(pi

dx , p j
d y)

The negotiation is essentially modeled as a negotiation tree. The different strategies
used by the domains are the disclosure of different trust tokens that satisfy the other
domain’s requirements but have different protection requirements. It is reasonable to
assume that protection requirement of a trust token is directly related to trust level desired.
For instance, a passport is a more trustworthy proof of age, but it also contains more
sensitive details. Traversal of the tree represents negotiation exchanges between the
domains. Each domain computes the payoffs at the leaf nodes and selects a set of
candidate payoffs. Using a goal-driven approach (goal being any of the candidate payoffs),
the domains negotiate the payoffs. Ideally, both domains select the same candidate
payoffs, because in game-theory-based negotiation, strategies are selected that optimize
payoff for both parties. The candidate payoff values are selected through empirical studies.
Consequently, backtracking is also facilitated in the negotiation – if say dy proposes a set
of services and trust tokens that would lead to poor payoff for say dx, then dx will reject
the proposal and dy will have to go back and try another proposal. The negotiation tree
structure is given in Figure 4.

Figure 5 shows the flowcharts for service and trust token negotiation, for both
atheservice requester and provider. For service provision, the domain checks the
availability of those services before determining the trust token type(s) required for each
service. The domain may reject the request message if required service is not available. If
the requested service is available, the domain determines the trust token types required.
The domain grants interoperation of requested services if the trust tokens, claimed to
match the trust token types, are satisfactory, otherwise it determines a new set of trust
tokens required for the next round of negotiation. For service requests, the domain checks
if the set of services from the provider is enough. If so, then the domain checks the
availability of trust tokens matching the trust token type requested from the other domain.
The domain may reject the service request, if it does not possess trust tokens of the
requested type. Otherwise, it determines the set of trust tokens to disclose, that has the

best payoff for both domains. We believe that although the open environment is assumed,
most trust-based relations may be established well before there is any access of resources.

Fig. 5 a. Service and Trust Token Disclosure for Service Provider; b. Service and Trust Token
Disclosure for Service Requester

The time between the trust establishment and resource access can be long enough to
make some trust-tokens become invalid. In earlier systems, this would lead to
renegotiation of credentials [1, 2, 3]. But in our model, we would only renegotiate the one
trust-token type in case the peer might actually have a trust token with different protection
requirements associated with credential attributes. Thus, when the StudentID is proved
invalid, E2 asks for another trust token type, and the customer discloses the possession of
StateID which is then accepted, with the same trust level and same set of privileges.

Trust Ticket. One enhancement to the system is the use of a trust ticket. The trust
ticket can be used to by pass the trust token validation process. By disclosing a trust ticket,
a domain can access a set of requested services indicated in a trust ticket. Service provider
issues a trust ticket for each successful interoperation. Trust tickets offer the flexibility in
future interoperations, since a set of services and context indicated in the ticket may be a
part of service requests in other interoperations. The trust ticket issued to service requester
is encrypted by an established session key ks to ensure integrity of the ticket.

Ticket ID Services Trust Token ID Ticket Issuer Ticket
Holder Lifetime Shared

Secret

Figure 6: Trust Ticket data fields

Service provided
(SP, SP.C)

Required
services
satisfied?

Determine
new set

of requested
services

Required TT type
available?

Determine set of
proposed TT

Strategy disclose

Reject service
access request

No

Yes

Yes

No

Service Request
(SR, SR.C)

New service
request?

T
disclosed?

TT
Satisfied?

Any required
Service ?

Determine
requested service

availability

Determine set of
Available services

Determine Set
of TT required

Strategy
disclose

Service
grant

Service deny

Yes

No

Yes

Yes

Yes

No

No

a b

The data structure of a trust ticket is shown in Figure 6. The detail of the trust ticket is
as follow: Trust ticket identifier is stored in Ticket ID. The Ticket Issuer indicates domain,
which issued the ticket and Ticket Holder indicates the domain or a specific users that
uses the ticket. A set of service identifiers associated to a ticket is specified in Services.
Lifetime is an expiration time of the trust ticket. A random number, Shared Secret
increases with each of multiple accesses. Validity of the ticket is specified in Lifetime. The
Lifetime indicates the time-interval that the ticket is valid, which is usually not greater
than duration of interoperation session. It is essential to ensure that valid duration of trust
ticket is no longer than all lifetime of all certificates associated with the ticket.

During subsequent accesses, trust tickets can now be used instead of the trust token
which requires credential validation. Once negotiation of services and trust token types
succeeds, service provider creates a trust ticket to service requester. Both domains
establish a session key ks for encryption of trust ticket used between both parties. Service
provider domain evaluates the trust ticket by checking validity of the trust ticket and all
associated certificates. If the ticket and all the certificates are valid, the credential
validation process grants access to the requested services without actual credential
validation. The trust ticket is encrypted by established shared secret key ks to guarantee
privacy and integrity of the ticket. Requester domain uses Shared Secret value as a
counter to keep track of number of service accessing by increasing Shared Secret value by
one each time he accesses the resource

4.4. Implementation

We have implemented a very basic proof of concept system to ensure that the framework
works. The implementation involves each domain running three Java threads – a Peer,
Recommender and Certifier. Peers request services amongst each other and credentials.
The proposed negotiation trees are created for the prototype. We are currently working on
a full-fledged implementation along with integration with an access-control framework
based on the location and time based RBAC model (LoT-RBAC [28]).

5. Conclusions and Future Work

We introduced the notion of requirements-based trust negotiation to induce more effective
trust negotiation and establishment. We have used the notion of trust token types to
abstract the requirements of a domain to establish trust. Some concepts that we have
touched upon in our work (like protection requirements of trust tokens and risk) are out of
scope of our discussion, because of which we have not elaborated on their computation.
But these are important to the trust negotiation and trust framework, and we are currently
exploring methods of good estimations of these values. We have also used the game-
theoretic approach for disclosure strategy selection and shown flowcharts for strategy

selection based on payoffs. Computation of the set of potential payoffs is still complex
and we are currently working on efficient search and computation algorithms for these.
We have also briefly addressed the issues of trust sustenance and evolution, but the
decision to perform either under the given conditions is empirically determined. We are
currently working on the implementation of this framework and will obtain empirical
results for trust evaluation and sustenance.

Acknowledgement: This research has been supported by the US National Science
Foundation award IIS-0545912. We thank the anonymous reviewers for their helpful
comments.

References

1. Skogsrud, H., Benatallah, B., Casati, F., “Model Driven Trust Negotiation for Web Services”,
IEEE Internet Computing, November-December 2003, Pages 45-52.

2. Yu, T., Winslett, M., Seamons, K. E., “Supporting Structured Credentials and Sensitive
Policies through Interoperable Strategies for Automated Trust Negotiation”, ACM
Transactions in Information Systems Security, Vol. 6, No.1, February 2003, Pages 1-42.

3. Bertino, E., Ferrari, E., Squicciarani, A.C., “Trust-X: A Peer to Peer Framework for Trust
Establishment”, IEEE Transactions on Knowledge and Data Engineering, Vol. 16, No. 7, July
2004, Pages 827-842

4. Capra, L., “Engineering Human Trust in Mobile System Collaborations”, in Proceedings of
ACM SIGSOFT/FSE-12, Pages 107-116, Oct 31-Nov 6, 2004, Newport Beach, CA

5. Aberer, K., Despotovic, Z., “Managing Trust in a Peer-2-Peer Information System”, in
Proceedings of ACM CIKM’01, Pages 310-317, November 5-10, 2001, Atlanta, GA

6. Xianliang, H. M. L., Chuan, Z.-x-Z., “A trust model of P2P system based on confirmation
theory”, ACM SIGOPS Operating Systems Review, Volume 39, Issue 1 (January 2005), Pages:
56 - 62

7. Gupta, M., Judge, P., Ammar, M., “A Reputation System for Peer-to-Peer Networks”, in
Proceedings of NOSSDAV’03, June 1–3, 2003, Monterey, California, USA.

8. Damiani, E., di Vimercati, S. de C., Paraboschi, S., Samarati, P., Violante, F., “A Reputation-
Based Approach for Choosing Reliable Resources in Peer-to-Peer Networks”, CCS’02,
November 18-22, 2002, Washington, DC, USA.

9. Ye, S., Makedon, F., Ford, J., “Collaborative Automated Trust Negotiation in Peer-to-Peer
Systems”, in Proceedings of the Fourth International Conference on Peer-to-Peer Computing,
2004. 25-27 Aug. 2004 Page(s):108 – 115

10. Khedr, M., Karmouch, A., “Negotiating context Information in Context-Aware Systems”,
IEEE Intelligent Systems, Volume 19, Issue 6, Nov-Dec 2004 Page(s):21 – 29

11. Ryutov, T., Zhou, L., Neuman, C., Leithead, T., Seamons, K. E., “Adaptive Trust Negotiation
and Access Control”, in Proceedings of SACMAT 2005, June 1-3, 2005, Stockholm, Sweden,
Page(s): 139-146

12. Marti, S., Garcia-Molina, H., “Identity-Crisis: Anonymity vs. Reputation in P2P Systems”, in
Proceedings of The Third International Conference on Peer-to-Peer Computing, 2003. (P2P
2003). 1-3 Sept. 2003 Page(s):134 - 141

13. Song, S., Hwang, K., Macwan, M., "Fuzzy Trust Integration for Security Enforcement in Grid
Computing," in Proceedings of IFIP International Symposium on Network and Parallel
Computing (NPC-2004), Wuhan, China. Oct. 18-20, 2004. pp. 9-21.

14. Azzedin, F., Maheswaran, M., “Towards Trust-Aware Resource Management in Grid
Computing Systems”, in Proceedings of the 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRID’02), 18-21 Aug. 2002, Page(s):47 – 54

15. Bussard, L., Roudier, Y., Molva, R., ”Untraceable Secret Credentials: Trust Establishment with
Privacy”, in Proceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications Workshops (PERCOMW ’04), 14-17 March 2004 Page(s):122 – 126

16. Au, R., Looi, M., Ashley, P., “Automated Cross-organisational Trust Establishment on
Extranets”, in Proceedings of Workshop on Information Technology for Virtual Enterprises,
2001. ITVE 2001, 29-30 Jan. 2001 Page(s):3 – 11

17. O’Donovan, J., Smyth, B., “Trust in Recommender Systems”, in Proceedings of IUI’05,
January 9-12, 2005, San Diego, California, Page(s): 167-174

18. Shand, B., Dimmock, N., Bacon, J., “Trust for Ubiquitous, Transparent Collaboration”,
Wireless Networks 10, 711-721, 2004, Kluwer Academic Publishers.

19. Manchala, D. W., “E-Commerce Trust Metrics and Models”, Internet Computing, IEEE
Volume 4, Issue 2, March-April 2000 Page(s):36 - 44

20. Daskapan, S., Vree, W. G., Eldin, A. A., “Trust Metrics for survivable security systems”, in
Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 2003.
Volume 4, 5-8 Oct. 2003 Page(s):3128 - 3135

21. Patrick, P., “Impact of SoA on Enterprie Information Archietctures”, Proceedings of SIGMOD
2005, June 14–16, 2005, Baltimore, Maryland, USA.

22. Benatallah, B., Dumas, M., Fauvet, M.-C., Rabhi, F. A., Sheng, Q.-Z., “Overview of some
Patterns for Architecting and Managing services”, ACM SIGecom Exchanges, Vol. 3, No. 3,
August 2002, Pages 9 -16.

23. Baresi, L., Heckel, R., Thone, S., Varro, D., “Modeling and Validation of Service-Oriented
Architectures: Application vs. Style”, Proceedings of ESEC/FSE’03, September 1–5, 2003,
Helsinki, Finland.

24. Joshi, J.B.D., Bhatti, R., Bertino, E., Ghafoor, A., “Access-control language for Multidomain
environments”, IEEE Internet Computing, Volume 8, Issue 6, Nov.-Dec. 2004 Page(s):40 –
50

25. Joshi, J.B.D.; Bertino, E.; Latif, U.; Ghafoor, A., “A generalized temporal role-based access
control model”, IEEE Transactions on Knowledge and Data Engineering, Volume 17, Issue
1, Jan 2005 Page(s):4 – 23

26. Piromruen, S., Joshi, J. B. D., “An RBAC Framework for Time Constrained Secure
Interoperation in Multi-domain Environment,” in Proceedings of IEEE Workshop on Object-
oriented Real-time Databases (WORDS-2005), 2005.

27. Farrell, S., Housley, R., “An Internet Attribute Certificate Profile for Authorization”, RFC
3281, April 2002.

28. Mohan Chandran, S., Joshi, J. B. D., “LoT-RBAC : A Location and Time-based RBAC
Model”, Proceedings of 6th International Conference on Web Information Systems Engineering,
November 20-22, 2005, New York City, NY.

