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Abstract

With the rapidly increasing complexity of computer 
systems and the sophistication of hacking tools and 
techniques, there is a crucial need for computer forensic 
analysis techniques. Very few techniques exist to support 
forensic analysis of unknown executable files. The 
existing techniques primarily inspect executable files to 
detect known signatures or are based on metadata 
information. A key goal of such forensic investigation is 
to identify malicious executable files that hackers might 
have installed in a targeted system. Finding such 
malware in a compromised system is difficult because it is 
hard to identify the purpose of the fragments of 
executable files. In this paper, we present a similarity-
based technique that analyzes targeted executable files to 
identify a malware present in a compromised system. The 
technique involves assigning a similarity value to the 
fragments of executable files present in a compromised 
hard disk against a set of source files. We present some 
results based on the comparison of assembly instruction 
sequences of well-known hacking tools with those of 
various executable files, and suggest various ways to 
reduce the false positives. 
Keywords – assembly instruction code, malicious 
program, computer forensics, similarity 

1. Introduction 
With the rapidly increasing complexity and 

interconnectedness of emerging information systems, the 
number of cyber crimes is increasing sharply. While there 
are significant advancements in security technologies, 
there is also a similar proliferation of sophisticated 
hacking tools and techniques. Therefore, the protection of 
systems as well as the establishment of evidence-based 
accountability for malicious actions poses significant 
challenges [1]. In addition to protective mechanisms, we 
also need tools and techniques to analyze and identify the 
cyber crimes and the culprits committing them so that the 
proper evidence-based actions can be taken against the 

malefactors. To facilitate such evidence-based actions, 
computer forensics is emerging as a significant tool. 
While computer forensics emphasizes techniques to 
identify and trace malicious activities in a system, the 
knowledge of the existence of such tools itself can act as 
a deterrent to potential hackers.  

In general, forensic investigators use logs and 
metadata for reconstruction of cyber crimes [2], for 
instance, by attempting to recreate the malicious activities 
by analyzing and constructing a time line of activities. 
However, as it is still in its infancy, the computer 
forensics area lacks the adequate tools and techniques to 
support sophisticated investigations. In general, we are 
only able to detect the use of well-known malicious 
hacking tools through a signature-based technique, which 
also allow us to check whether normal system programs 
have been modified [3]. In particular, using existing 
forensic techniques, we cannot determine which tools the 
malicious users have used without analyzing the file 
system metadata. Typically, we can not identify a 
malicious program without executing it even though we 
may find that suspicious executable files have been 
installed, particularly, if it is not a known tool with a 
recognizable signature. Skilled hackers typically take 
extra measures to hide the evidence of their crimes so that 
forensics analysts cannot detect them. For instance, there 
are tools which can read and write parts of malicious 
executable file to the slack space of a file.

Existing techniques for computer forensic 
investigation primarily focus on using metadata and text 
information [4, 5, 6, 7]. For example, forensic 
investigators would draw a time line showing file usage 
with an i-node table after making a back-up image of the 
hard drive. The investigator would then typically search 
for particular words, hidden files, and suspicious file 
names throughout the entire file system. In general, the 
investigators also attempt to verify the checksums of a 
system’s instruction files with a CRC algorithm to see if 
they are exactly same as the original to ensure that a 
potential hacker has not changed the executable files. 
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In this paper, we present a technique for forensic 
analysis of compromised systems by analyzing the hard 
drives. Our technique extracts executable content from 
the hard drive to identify whether or not it is part of a 
malicious program. We compare assembly instruction 
sequences of well-known hacking programs with those of 
fragments of executable files scattered in the disk, and 
calculate their similarity values. Using executable content 
to identify malware, to the best of our knowledge, has not 
yet been attempted. In particular, the contributions of this 
paper are as follows: 

We suggest a profiling technique using the assembly 
instruction sequence in the executable files 
We introduce the notion of similarity between two 
executable files by aggregating the similarities 
between sequential blocks of instructions separated by 
instructions for conditional transfer of execution flow.  
We propose various techniques to compute similarity 
measures to reduce false positives in the malware 
identification process. 

The paper is organized as follows. In Section 2, we 
present background on computer forensics. In Section 3, 
we propose a technique for profiling executable files and 
calculating the similarity between two files. In Section 4, 
we present techniques to reduce false positives and 
present experimental results. Section 5 concludes and 
discusses future work.

2. Background 

The techniques for hacking have been changing in 
response to development of security systems. The CERT 
gives an overview of recent trends in attack tools after 
observing intrusion activities since 1988 [2]. We believe 
that the most dangerous aspect of the field is the ease of 
propagation of malicious programs. It is critical to 
address this, as systems are continually facing types of 
attacks which have not been seen before, especially with 
the increasing level of automation of attack tools. Further, 
with the increasing modularization of attack tools, newer, 
more powerful attack tools can be easily created. Unlike 
early attack tools that implement one type of attack, such 
tools now can be changed quickly by upgrading or 
replacing their components. This causes rapidly evolving 
attacks and, at the extreme, results in polymorphic tools 
that self-evolve, changing with each active instance of the 
attack. There exists another serious problem of anti-
forensic techniques. Anti-forensic techniques can hide the 
nature of the attack tools, making it more difficult and 
time consuming for security experts to analyze the tools 
and to understand responses to rapidly developing threats. 

When we conduct forensic analysis, we follow general 
process of computer forensics investigation [8]. Even 
though the process for forensic analysis consists of many 
steps and techniques (from recovering deleted files to 

searching for pattern strings and file fragments), it is clear 
that investigators will use common techniques to search 
for some signatures of known malicious programs or 
strings of suspicious fragments in the hard drives [9]. 
Such techniques, however, can only be used when we 
know what we want to find. In general, we cannot find 
malicious programs when they are new with no known 
signatures and only some fragments exist [5]. 

If forensics investigators can not trace the activities of 
malicious users with common skills, they will have to 
analyze data more closely and precisely [10]. There are 
static and dynamic approaches to detect malicious 
programs. Static analysis involves various forms of 
examination without executing or running the executable 
files. By executing an executable file during dynamic 
analysis, using specialized monitoring utilities such as 
debuggers, we can trace or alter the program. Static 
analysis can eventually allow us to “know all” about the 
tool, whereas dynamic analysis may be limited simply by 
the virtue of how the programmer allows the user to 
interact with the application. However, in some cases, a 
full static analysis can’t be accomplished without 
performing dynamic analysis also. 

If the forensic investigators are sophisticated enough 
and there is not an overwhelming amount of data on the 
hard drives to investigate using reverse engineering 
techniques, they might be able to find malicious programs 
as evidence. However, there is a limit on the human and 
time resources for forensics investigations. 

3. Similarity Based Detection 

In this section, we present the propose similarity based 
technique for comparing executable files to detect a 
malware present in a compromised hard disk. In 
particular, the technique focuses on analyzing the 
instruction sequences that can be found in the hard disk to 
identify the malware. We compare assembly instruction 
sequences of well-known hacking programs with those of 
the targeted executable files, and calculate the similarity 
between them. We note that the experiments presented in 
this paper have been carried out for the MIPS assembly 
language for Intel-based system in a Linux platform. 

3. 1 Executable File Profile 

A key aspect of a program execution is the sequential 
execution of assembly instructions and the flow control. 
The machine executes one assembly instruction at a time 
sequentially until a transfer of execution flow to another 
portion of the executable file occurs. The assembly 
instruction cmp is one comparison condition that is 
associated with such a transfer of execution points. The 
cmp instruction involves checking for jump conditions. 
Furthermore, a conditional statement also has the 
important characteristic similar to the block rule of a 
programming language, i.e., a block has a start and the 
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end as indicated by the opening and the closing curly 
brackets in a C program block. Thus, in general, the set of 
assembly instructions between two cmp statements are 
sequentially executed. Table 1 shows an example of a 
cmp block associated with some high level program 
statements. 

Table 1. An example of cmp  instructions 

High-level language Assembly language 

IF(AX = 0 and BX = 0) 

THEN CX:= 10

ELSE CX := 20 

     CMP   AX, 0 
     JNZ   L1 
     CMP   BX, 0 
   JNZ   L1 

     MOV   CX, 10 
    JMP   L2 
L1 : 
     MOV   CX, 20 
L2 : 

We use this feature associated with the cmp commands 
to identify good instruction patterns. In particular, we use 
the cmp assembly instruction as a basis for dividing the 
instruction sequence into cmp blocks. Each cmp block 
(CB) is a sequence of assembly instructions between a 
pair of consecutive cmp commands. Within each CB we 
compute the frequencies of each instruction. Each CB can 
thus be expressed as a frequency vector (fv) that contains 
frequencies of each instruction. We represent by fvi the 
frequency vector of cmpi. Figure 1 shows n CBs and their 
associated fvs. For instance, the frequency of the second 
instruction in block cmp0 is 3 and that of cmp2 is 1. The 
total number of bytes for the instructions in each CB is 
shown in the last column. A frequency matrix (fm) can 
thus be constructed to capture the instruction frequency 
for a given set of assembly instructions.  

Table 2. Sample cmp blocks and frequency vectors 
cmp

blocks
Frequencies of each assembly instructions (fvi) Length 

(bytes) 
cmp0 0 3 0 1 … 0 0 0 0 9 
cmp1 3 2 1 5 … 1 1 0 6 47 
cmp2 1 1 0 0 … 3 5 2 6 90 

 … …
cmpn-2 2 6 2 1 … 4 0 7 6 192 
cmpn-1 0 2 0 3 … 0 2 1 0 27 
cmpn 2 5 0 0 … 5 6 4 0 98 

3. 2 Calculating Similarity Between cmp Blocks

After profile a sequence of assembly instructions of an 
executable file, we have to find out whether there exist 
CBs in the target program which is similar to any CBs of 
the source program (Figure 1). We use the following 
cosine distance similarity measure to calculate the 
similarity of two CBs as follows:  

ts

ts
tsSimilarity ),(

where s  and t  are vectors of CBs of source and target 
program. 

Figure 1. Similarity between profiles of CBs of source 
and the target executable files 

It is important to note, however, that there exist short 
CBs which consists very few instructions – this may be 
because the conditional statements are located in the 
program continually. In such a case, the length of the CB 
is very short and the frequency of assembly instructions is 
very low.  

3. 3 Detection of Similar Sections 

After we have found all similar blocks we create a 
similarity matrix indicating the similarity values for the 
CBs in the source and the target programs. Next, we have 
to judge what parts of the target file are similar with that 
of the source program. Typically, just some blocks can be 
expected to appear similar. If blocks from the source are 
detected to be similar to those in the target, but are not 
actually part of the target program, they should be flagged 
as false positives and removed. 

Let n is the number of CBs of source program 
Let m is the number of CBs of target program 
SET a mn  matrix 
FOR row = 1 to n-2
   FOR column = 1 to m-2

IF
2

0

],[
i

icolumnirowSM > Critical value

Then
STORE SM[row, column], SM[row+1,column+1],
      SM[row + 2,column + 2] 

ENDIF
ENDFOR

ENDFOR

Figure 2. Algorithm for detecting similar blocks 

Note that we detect similar blocks by calculating 
frequencies of assembly instructions. In addition, more 
similar blocks should have similar instruction sequences 
as well. To address this issue, we later investigate 
combining a number of contiguous blocks during 
similarity computation to reduce false positives. In 
particular, we combine three similarity values associated 
with the continuous CBs in the matrix to check against a 
critical value to compute the similarity measure, in the 

Source
program

Target 
program

cmp0 cmp0

cmp1 cmp1

cmp2 cmp2

… …

cmpm-2 cmpn-2

cmpm-1 cmpn-1

cmpm . cmpn
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experiments. Figure 2 shows the algorithm for detecting 
series of similar CBs from the similarity matrix. 

Figure  3. A sample of contraction for detected 
sections from target program

Figure 3 shows possible distribution of series of 
similar CBs from the target file - here X-axis represents a 
target program and Y-axis represents a source program. 
We want to detect some sections in the target program 
that are similar to some parts of source program. Hence, 
we assume one CB on the X-axis could take just one CB 
on the Y-axis. For example, the fourth block of series a) 
and the first block of series b) are overlapped on the X-
axis in Figure 3. This means one block of target program 
is similar with two different blocks of the source 
program. For this case we used real length of CBs in the 
profile without considering the number of blocks. If series 
b) is detected, then the length of series b) is longer than 
that of series a). By iteration of this kind of contractions,
we can detect several series of similar blocks that can 
now be regarded as similar fragments. 

3. 4 Distribution of Similar Fragments 

There are four types of possible distributions of similar 
fragments we can inspect in the target executable file with 
respect to the source program, which are as follows. 
a) Fully Contained: Source program is contained in the 

target file. Here, the similar blocks are distributed 
contiguously diagonally in the similarity matrix. 

b) Partial Existence: Some parts of the source program 
exist in the target file. Here, the line of distribution 
covers X-axis fully but not the Y-axis.

c) Disconnected, But Contained – The source program is 
contained in the target file but it is modified. If the line 
of similar fragments in the similarity matrix is not 
distributed contiguously, we can expect that the source 
program has been modified for some purpose. Even 
though similar fragments are not distributed 
contiguously, the target may contain source program 
with high possibility.

d) Irregularly Ordered, but Contained: The fragments in 
the target program that are similar to those in the 
malicious program but the sections in the target 
program are not ordered as are the corresponding 

sections in the malicious program that are similar to 
them. In this case, we cannot be sure if the target 
program contains some parts of the source.

3. 5 Similarity Algorithm 

We make unique profile of each assembly instruction 
sequence so that they are distinguishable from each other. 
For this work, the key issue is the exact description of 
these sequences into the frequency vector. Before 
calculating the similarity with detected fragments, we 
assume two conditions for two sequences that are exactly 
matching: (i) frequencies of elements in two sequences 
must be same, and (ii) all the elements consisting 
sequences must be allocated sequentially. Note that these 
conditions are independent to each other. We can 
calculate the similarity by considering both these factors 
to make the similarity measure more effective. 

3. 5.1 Similarity from Detected Fragments 

In this section, we will explain how to calculate the 
similarity with detected similar fragments between two 
executable files. If we detect n similar fragments from 
target program then there exist n fragments in source 
program even though they can be duplicated. We can 
describe this as below.  

S = {c1 , c2 , c3 , … , cn}, T = {c1’, c2’, c3’, … , cn’}
Also, Sci

 there must be a ci’ T which is similar 

to ci, and each pair of ci and ci’ has its own similarity. It is 
to be noted that there is another problem we have to 
consider for calculating similarity of detected similar 
fragments. All similarity values for every pair of ci and ci’
generally do not have same weights because the lengths 
of detected fragments are totally different. Sometimes the 
length of one fragment is shorter than 10 bytes but in a 
long section it could be longer than 100 bytes. These two 
cases of similarities should not have the same weight for 
calculating similarity for the total detected fragments. 
Hence, it is natural to calculate weighs for each fragment 
depending on its length. Accordingly, we use the 
following formula for calculating the similarity values: 

n

i
iii ccsimwtsCBsofsimilarity

1

',),(__

n

j
jjjj

iiii
i

ccsimcsizecsize

ccsimcsizecsize
w

1

''

''

,))(),(min(

,))(),(min(

Where '' ,maxarg kii ccsimc , ),...,1( nkfor

3. 5.2 Order of Similar Sections 

Once similarity has been detected by taking the length 
of the blocks into consideration, we have to calculate 
similarity based on the instruction order of the detected 
similar fragments. We estimate this value based on how 
similarly the detected sections are ordered. Fortunately, it 
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is not a new problem. We can use the same mechanism 
that has been used for comparing two strings [15]. For 
this we use the Damerau-Levenshtein edit distance [15]. 
Damerau-Levenshtein edit distance counts a transposition 
as a single edit operation. We calculate similarity of their 
order using the edit distance as follows. 

tLengthsLength

tsdist
tsmatchingsequence

,max

,
1),(_

We next calculate two probabilities for the similarities 
between frequencies of two sets of assembly instructions 
and their order in the sequence. If there are some sections 
that satisfy the above two conditions, we can now 
consider them similar with more certainty. As the two 
conditions are independent, we can get the final similarity 
value by multiplying the two results. Thus, the formula 
for calculating the similarity of between two sequences is 
as follows. 

),(_,__, tsmatchingsequencetsCBsofSimilaritytsSimilarity

4. Experimental Results 

In this section, we present some experimental results 
based on the proposed similarity based detection of 
malicious code. In particular, we experimented to see 
whether any CB can be distinguished from the others by 
using the proposed profiling technique. We tested about 
100 executable files to observe the result of applying this 
technique for distinguishing the CBs. 

4.1 Test to Distinguish Conditional Statement 

The graph in Figure 4 depicts the distribution of results 
of calculating similarity with proposed method for 10 
sample cases. We can regard blocks with high similarity 
as noise, which could be caused by the inclusion of short 
CBs. Such small CBs lack discriminatory power as they 
can easily result in a similarity measure close o 100% 
with other short blocks. 

Figure 4. Cumulative distribution of false positives 

To discard such false positives resulting from presence 
of short CBs, we excluded short CBs containing less than 
five instructions. We could reduce more than 70% of 
false positives on an average this way. In addition to this, 
by taking two blocks as similar only if their similarity is 

higher than 90%, we obtained fewer false positives than 
0.5% with the 100% of accuracy.

4.2 Number of Blocks and False Positives

Despite of 0.5% of false positives of the proposed 
profiling technique, it is still not enough to decide 
whether two CBs are similar because the length of the 
executable file could be really long (more than 1 or 2 
Giga bytes) and it might consist of millions of CBs. Note 
that if detected blocks are contiguous, then there is a 
higher probability that the series of detected blocks are 
really similar than shorter ones. We conducted an 
experiment to measure the relation between the reduction 
in false positives and the number of CBs.  

Figure 5. Relation between false positives and the 
number of contiguous blocks 

Figure 5 shows an example of a similarity matrix for 
comparing two assembly instructions sequences of source 
program with target program. With a threshold fixed at 
80%, we could detect similar CBs as in the figure. Some 
detected blocks were not similar and they should be 
indicated as false positives. The graph also depicts the 
results of our experiment to decide the minimum number 
of contiguous blocks that would be meaningful. After a 
large number of comparisons (thousands) between CBs, 
we could find that the false positives decreased by more 
than 97%. 

Table 3. Test results for detecting a malware 

Malicious
program 

Sniffer Backdoor DDOS LKM 

The mean of 
Similarities 

91% 94% 100% 91% 

4.3 Test Results with Malicious Program

Next, we conducted an experiment to detect malicious 
programs installed in the real environment with our 
detection method. The experiment involved detecting 4 
kinds of 15 malicious programs out of 100 normal 
executable files. We detected almost all malicious 
executable files except one program among the Linux 
Kernel Module, and we tried to find the reason why it 
could not be detected by the proposed method. After 

192



observing the file that could not be detected, we found the 
file was short and consisted of many conditional 
statements. This allowed us to investigate increasing 
contiguous similar blocks to make the matching process 
more effective. Table 3 shows the results. 

4.4 Detection Rate and the Critical value

The graph in Figure 6 shows the Receiver Operating 
Characteristic (ROC) curve of the final results. To 
measure the detection rate using the proposed methods, 
we tried to find 100 similar files out of 312 executable 
files. Similar files consisted of all possible cases of 
transform like insertions, deletions, substitutions, and 
transpositions. 

Figure 6. A test result for determining threshold 

The graph shows the relation between detection rate 
and the false positives. A good critical point is the 
similarity level after which the inclination of the curve is 
decreased suddenly. This is because such sharp turns 
indicate that false positives are increasing significantly at 
those points. In Figure 6, there are three points we can 
choose as a critical values.

Table 4. Thresholds and detection rates 

Threshold 0.8 0.5 0.1 

True Positive 76% 80% 91% 

False Positive 0% 3% 47% 

With this experiment we found that 80% of detection 
rate and 3% of false positives are possible with 0.5 of 
similarity. This means we can decide two files are similar 
when their similarity measure is over 0.5. By controlling 
the critical values for their environments, the forensics 
analysts may learn deeper insights into the characteristics 
of the malware being analyzed. 

5. Conclusion 

In this paper, we presented a method to find out 
whether a detected executable file is similar to a 
malicious executable file by comparing assembly 
instruction sequences. Using the existing techniques, we 
would not be able to detect any modified malicious 

programs without executing the program or reverse 
engineering. In addition, there exists no appropriate 
method, to the best of our knowledge, to detect fragments 
of a malicious executable file which is hidden or deleted. 
In order to calculate similarity between two executable 
files, we described the assembly instruction sequences as 
a unique profile. By using the assembly instruction 
sequence based technique, we could find fragments 
similar to malicious program even when they are slightly 
modified. The method could be used to also identify the 
nature of executable fragments stored in slack space and 
free data blocks. We summarized our experiments to 
support the technique we have proposed and tested.  
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