
A Similarity based Technique for Detecting Malicious Executable files
for Computer Forensics

Jun-Hyung Park1, Minsoo Kim2, Bong-Nam Noh3, James B D Joshi1

1School of Information Science, University of Pittsburgh, USA
{jpark, jjoshi}@mail.sis.pitt.edu

2Division of Information Engineering, Mokpo National University, Korea
phoenix@mokpo.ac.kr

3Division of Electronics Computer & Information Engineering
Chonnam National University, Korea

bbong@jnu.ac.kr

Abstract

With the rapidly increasing complexity of computer
systems and the sophistication of hacking tools and
techniques, there is a crucial need for computer forensic
analysis techniques. Very few techniques exist to support
forensic analysis of unknown executable files. The
existing techniques primarily inspect executable files to
detect known signatures or are based on metadata
information. A key goal of such forensic investigation is
to identify malicious executable files that hackers might
have installed in a targeted system. Finding such
malware in a compromised system is difficult because it is
hard to identify the purpose of the fragments of
executable files. In this paper, we present a similarity-
based technique that analyzes targeted executable files to
identify a malware present in a compromised system. The
technique involves assigning a similarity value to the
fragments of executable files present in a compromised
hard disk against a set of source files. We present some
results based on the comparison of assembly instruction
sequences of well-known hacking tools with those of
various executable files, and suggest various ways to
reduce the false positives.
Keywords – assembly instruction code, malicious
program, computer forensics, similarity

1. Introduction
With the rapidly increasing complexity and

interconnectedness of emerging information systems, the
number of cyber crimes is increasing sharply. While there
are significant advancements in security technologies,
there is also a similar proliferation of sophisticated
hacking tools and techniques. Therefore, the protection of
systems as well as the establishment of evidence-based
accountability for malicious actions poses significant
challenges [1]. In addition to protective mechanisms, we
also need tools and techniques to analyze and identify the
cyber crimes and the culprits committing them so that the
proper evidence-based actions can be taken against the

malefactors. To facilitate such evidence-based actions,
computer forensics is emerging as a significant tool.
While computer forensics emphasizes techniques to
identify and trace malicious activities in a system, the
knowledge of the existence of such tools itself can act as
a deterrent to potential hackers.

In general, forensic investigators use logs and
metadata for reconstruction of cyber crimes [2], for
instance, by attempting to recreate the malicious activities
by analyzing and constructing a time line of activities.
However, as it is still in its infancy, the computer
forensics area lacks the adequate tools and techniques to
support sophisticated investigations. In general, we are
only able to detect the use of well-known malicious
hacking tools through a signature-based technique, which
also allow us to check whether normal system programs
have been modified [3]. In particular, using existing
forensic techniques, we cannot determine which tools the
malicious users have used without analyzing the file
system metadata. Typically, we can not identify a
malicious program without executing it even though we
may find that suspicious executable files have been
installed, particularly, if it is not a known tool with a
recognizable signature. Skilled hackers typically take
extra measures to hide the evidence of their crimes so that
forensics analysts cannot detect them. For instance, there
are tools which can read and write parts of malicious
executable file to the slack space of a file.

Existing techniques for computer forensic
investigation primarily focus on using metadata and text
information [4, 5, 6, 7]. For example, forensic
investigators would draw a time line showing file usage
with an i-node table after making a back-up image of the
hard drive. The investigator would then typically search
for particular words, hidden files, and suspicious file
names throughout the entire file system. In general, the
investigators also attempt to verify the checksums of a
system’s instruction files with a CRC algorithm to see if
they are exactly same as the original to ensure that a
potential hacker has not changed the executable files.

1880-7803-9788-6/06/$20.00 ©2006 IEEE.

In this paper, we present a technique for forensic
analysis of compromised systems by analyzing the hard
drives. Our technique extracts executable content from
the hard drive to identify whether or not it is part of a
malicious program. We compare assembly instruction
sequences of well-known hacking programs with those of
fragments of executable files scattered in the disk, and
calculate their similarity values. Using executable content
to identify malware, to the best of our knowledge, has not
yet been attempted. In particular, the contributions of this
paper are as follows:

We suggest a profiling technique using the assembly
instruction sequence in the executable files
We introduce the notion of similarity between two
executable files by aggregating the similarities
between sequential blocks of instructions separated by
instructions for conditional transfer of execution flow.
We propose various techniques to compute similarity
measures to reduce false positives in the malware
identification process.

The paper is organized as follows. In Section 2, we
present background on computer forensics. In Section 3,
we propose a technique for profiling executable files and
calculating the similarity between two files. In Section 4,
we present techniques to reduce false positives and
present experimental results. Section 5 concludes and
discusses future work.

2. Background

The techniques for hacking have been changing in
response to development of security systems. The CERT
gives an overview of recent trends in attack tools after
observing intrusion activities since 1988 [2]. We believe
that the most dangerous aspect of the field is the ease of
propagation of malicious programs. It is critical to
address this, as systems are continually facing types of
attacks which have not been seen before, especially with
the increasing level of automation of attack tools. Further,
with the increasing modularization of attack tools, newer,
more powerful attack tools can be easily created. Unlike
early attack tools that implement one type of attack, such
tools now can be changed quickly by upgrading or
replacing their components. This causes rapidly evolving
attacks and, at the extreme, results in polymorphic tools
that self-evolve, changing with each active instance of the
attack. There exists another serious problem of anti-
forensic techniques. Anti-forensic techniques can hide the
nature of the attack tools, making it more difficult and
time consuming for security experts to analyze the tools
and to understand responses to rapidly developing threats.

When we conduct forensic analysis, we follow general
process of computer forensics investigation [8]. Even
though the process for forensic analysis consists of many
steps and techniques (from recovering deleted files to

searching for pattern strings and file fragments), it is clear
that investigators will use common techniques to search
for some signatures of known malicious programs or
strings of suspicious fragments in the hard drives [9].
Such techniques, however, can only be used when we
know what we want to find. In general, we cannot find
malicious programs when they are new with no known
signatures and only some fragments exist [5].

If forensics investigators can not trace the activities of
malicious users with common skills, they will have to
analyze data more closely and precisely [10]. There are
static and dynamic approaches to detect malicious
programs. Static analysis involves various forms of
examination without executing or running the executable
files. By executing an executable file during dynamic
analysis, using specialized monitoring utilities such as
debuggers, we can trace or alter the program. Static
analysis can eventually allow us to “know all” about the
tool, whereas dynamic analysis may be limited simply by
the virtue of how the programmer allows the user to
interact with the application. However, in some cases, a
full static analysis can’t be accomplished without
performing dynamic analysis also.

If the forensic investigators are sophisticated enough
and there is not an overwhelming amount of data on the
hard drives to investigate using reverse engineering
techniques, they might be able to find malicious programs
as evidence. However, there is a limit on the human and
time resources for forensics investigations.

3. Similarity Based Detection

In this section, we present the propose similarity based
technique for comparing executable files to detect a
malware present in a compromised hard disk. In
particular, the technique focuses on analyzing the
instruction sequences that can be found in the hard disk to
identify the malware. We compare assembly instruction
sequences of well-known hacking programs with those of
the targeted executable files, and calculate the similarity
between them. We note that the experiments presented in
this paper have been carried out for the MIPS assembly
language for Intel-based system in a Linux platform.

3. 1 Executable File Profile

A key aspect of a program execution is the sequential
execution of assembly instructions and the flow control.
The machine executes one assembly instruction at a time
sequentially until a transfer of execution flow to another
portion of the executable file occurs. The assembly
instruction cmp is one comparison condition that is
associated with such a transfer of execution points. The
cmp instruction involves checking for jump conditions.
Furthermore, a conditional statement also has the
important characteristic similar to the block rule of a
programming language, i.e., a block has a start and the

189

end as indicated by the opening and the closing curly
brackets in a C program block. Thus, in general, the set of
assembly instructions between two cmp statements are
sequentially executed. Table 1 shows an example of a
cmp block associated with some high level program
statements.

Table 1. An example of cmp instructions

High-level language Assembly language

IF(AX = 0 and BX = 0)

THEN CX:= 10

ELSE CX := 20

 CMP AX, 0
 JNZ L1
 CMP BX, 0
 JNZ L1

 MOV CX, 10
 JMP L2
L1 :
 MOV CX, 20
L2 :

We use this feature associated with the cmp commands
to identify good instruction patterns. In particular, we use
the cmp assembly instruction as a basis for dividing the
instruction sequence into cmp blocks. Each cmp block
(CB) is a sequence of assembly instructions between a
pair of consecutive cmp commands. Within each CB we
compute the frequencies of each instruction. Each CB can
thus be expressed as a frequency vector (fv) that contains
frequencies of each instruction. We represent by fvi the
frequency vector of cmpi. Figure 1 shows n CBs and their
associated fvs. For instance, the frequency of the second
instruction in block cmp0 is 3 and that of cmp2 is 1. The
total number of bytes for the instructions in each CB is
shown in the last column. A frequency matrix (fm) can
thus be constructed to capture the instruction frequency
for a given set of assembly instructions.

Table 2. Sample cmp blocks and frequency vectors
cmp

blocks
Frequencies of each assembly instructions (fvi) Length

(bytes)
cmp0 0 3 0 1 … 0 0 0 0 9
cmp1 3 2 1 5 … 1 1 0 6 47
cmp2 1 1 0 0 … 3 5 2 6 90

 … …
cmpn-2 2 6 2 1 … 4 0 7 6 192
cmpn-1 0 2 0 3 … 0 2 1 0 27
cmpn 2 5 0 0 … 5 6 4 0 98

3. 2 Calculating Similarity Between cmp Blocks

After profile a sequence of assembly instructions of an
executable file, we have to find out whether there exist
CBs in the target program which is similar to any CBs of
the source program (Figure 1). We use the following
cosine distance similarity measure to calculate the
similarity of two CBs as follows:

ts

ts
tsSimilarity),(

where s and t are vectors of CBs of source and target
program.

Figure 1. Similarity between profiles of CBs of source
and the target executable files

It is important to note, however, that there exist short
CBs which consists very few instructions – this may be
because the conditional statements are located in the
program continually. In such a case, the length of the CB
is very short and the frequency of assembly instructions is
very low.

3. 3 Detection of Similar Sections

After we have found all similar blocks we create a
similarity matrix indicating the similarity values for the
CBs in the source and the target programs. Next, we have
to judge what parts of the target file are similar with that
of the source program. Typically, just some blocks can be
expected to appear similar. If blocks from the source are
detected to be similar to those in the target, but are not
actually part of the target program, they should be flagged
as false positives and removed.

Let n is the number of CBs of source program
Let m is the number of CBs of target program
SET a mn matrix
FOR row = 1 to n-2
 FOR column = 1 to m-2

IF
2

0

],[
i

icolumnirowSM > Critical value

Then
STORE SM[row, column], SM[row+1,column+1],
 SM[row + 2,column + 2]

ENDIF
ENDFOR

ENDFOR

Figure 2. Algorithm for detecting similar blocks

Note that we detect similar blocks by calculating
frequencies of assembly instructions. In addition, more
similar blocks should have similar instruction sequences
as well. To address this issue, we later investigate
combining a number of contiguous blocks during
similarity computation to reduce false positives. In
particular, we combine three similarity values associated
with the continuous CBs in the matrix to check against a
critical value to compute the similarity measure, in the

Source
program

Target
program

cmp0 cmp0

cmp1 cmp1

cmp2 cmp2

… …

cmpm-2 cmpn-2

cmpm-1 cmpn-1

cmpm . cmpn

190

experiments. Figure 2 shows the algorithm for detecting
series of similar CBs from the similarity matrix.

Figure 3. A sample of contraction for detected
sections from target program

Figure 3 shows possible distribution of series of
similar CBs from the target file - here X-axis represents a
target program and Y-axis represents a source program.
We want to detect some sections in the target program
that are similar to some parts of source program. Hence,
we assume one CB on the X-axis could take just one CB
on the Y-axis. For example, the fourth block of series a)
and the first block of series b) are overlapped on the X-
axis in Figure 3. This means one block of target program
is similar with two different blocks of the source
program. For this case we used real length of CBs in the
profile without considering the number of blocks. If series
b) is detected, then the length of series b) is longer than
that of series a). By iteration of this kind of contractions,
we can detect several series of similar blocks that can
now be regarded as similar fragments.

3. 4 Distribution of Similar Fragments

There are four types of possible distributions of similar
fragments we can inspect in the target executable file with
respect to the source program, which are as follows.
a) Fully Contained: Source program is contained in the

target file. Here, the similar blocks are distributed
contiguously diagonally in the similarity matrix.

b) Partial Existence: Some parts of the source program
exist in the target file. Here, the line of distribution
covers X-axis fully but not the Y-axis.

c) Disconnected, But Contained – The source program is
contained in the target file but it is modified. If the line
of similar fragments in the similarity matrix is not
distributed contiguously, we can expect that the source
program has been modified for some purpose. Even
though similar fragments are not distributed
contiguously, the target may contain source program
with high possibility.

d) Irregularly Ordered, but Contained: The fragments in
the target program that are similar to those in the
malicious program but the sections in the target
program are not ordered as are the corresponding

sections in the malicious program that are similar to
them. In this case, we cannot be sure if the target
program contains some parts of the source.

3. 5 Similarity Algorithm

We make unique profile of each assembly instruction
sequence so that they are distinguishable from each other.
For this work, the key issue is the exact description of
these sequences into the frequency vector. Before
calculating the similarity with detected fragments, we
assume two conditions for two sequences that are exactly
matching: (i) frequencies of elements in two sequences
must be same, and (ii) all the elements consisting
sequences must be allocated sequentially. Note that these
conditions are independent to each other. We can
calculate the similarity by considering both these factors
to make the similarity measure more effective.

3. 5.1 Similarity from Detected Fragments

In this section, we will explain how to calculate the
similarity with detected similar fragments between two
executable files. If we detect n similar fragments from
target program then there exist n fragments in source
program even though they can be duplicated. We can
describe this as below.

S = {c1 , c2 , c3 , … , cn}, T = {c1’, c2’, c3’, … , cn’}
Also, Sci

 there must be a ci’ T which is similar

to ci, and each pair of ci and ci’ has its own similarity. It is
to be noted that there is another problem we have to
consider for calculating similarity of detected similar
fragments. All similarity values for every pair of ci and ci’
generally do not have same weights because the lengths
of detected fragments are totally different. Sometimes the
length of one fragment is shorter than 10 bytes but in a
long section it could be longer than 100 bytes. These two
cases of similarities should not have the same weight for
calculating similarity for the total detected fragments.
Hence, it is natural to calculate weighs for each fragment
depending on its length. Accordingly, we use the
following formula for calculating the similarity values:

n

i
iii ccsimwtsCBsofsimilarity

1

',),(__

n

j
jjjj

iiii
i

ccsimcsizecsize

ccsimcsizecsize
w

1

''

''

,))(),(min(

,))(),(min(

Where '' ,maxarg kii ccsimc ,),...,1(nkfor

3. 5.2 Order of Similar Sections

Once similarity has been detected by taking the length
of the blocks into consideration, we have to calculate
similarity based on the instruction order of the detected
similar fragments. We estimate this value based on how
similarly the detected sections are ordered. Fortunately, it

191

is not a new problem. We can use the same mechanism
that has been used for comparing two strings [15]. For
this we use the Damerau-Levenshtein edit distance [15].
Damerau-Levenshtein edit distance counts a transposition
as a single edit operation. We calculate similarity of their
order using the edit distance as follows.

tLengthsLength

tsdist
tsmatchingsequence

,max

,
1),(_

We next calculate two probabilities for the similarities
between frequencies of two sets of assembly instructions
and their order in the sequence. If there are some sections
that satisfy the above two conditions, we can now
consider them similar with more certainty. As the two
conditions are independent, we can get the final similarity
value by multiplying the two results. Thus, the formula
for calculating the similarity of between two sequences is
as follows.

),(_,__, tsmatchingsequencetsCBsofSimilaritytsSimilarity

4. Experimental Results

In this section, we present some experimental results
based on the proposed similarity based detection of
malicious code. In particular, we experimented to see
whether any CB can be distinguished from the others by
using the proposed profiling technique. We tested about
100 executable files to observe the result of applying this
technique for distinguishing the CBs.

4.1 Test to Distinguish Conditional Statement

The graph in Figure 4 depicts the distribution of results
of calculating similarity with proposed method for 10
sample cases. We can regard blocks with high similarity
as noise, which could be caused by the inclusion of short
CBs. Such small CBs lack discriminatory power as they
can easily result in a similarity measure close o 100%
with other short blocks.

Figure 4. Cumulative distribution of false positives

To discard such false positives resulting from presence
of short CBs, we excluded short CBs containing less than
five instructions. We could reduce more than 70% of
false positives on an average this way. In addition to this,
by taking two blocks as similar only if their similarity is

higher than 90%, we obtained fewer false positives than
0.5% with the 100% of accuracy.

4.2 Number of Blocks and False Positives

Despite of 0.5% of false positives of the proposed
profiling technique, it is still not enough to decide
whether two CBs are similar because the length of the
executable file could be really long (more than 1 or 2
Giga bytes) and it might consist of millions of CBs. Note
that if detected blocks are contiguous, then there is a
higher probability that the series of detected blocks are
really similar than shorter ones. We conducted an
experiment to measure the relation between the reduction
in false positives and the number of CBs.

Figure 5. Relation between false positives and the
number of contiguous blocks

Figure 5 shows an example of a similarity matrix for
comparing two assembly instructions sequences of source
program with target program. With a threshold fixed at
80%, we could detect similar CBs as in the figure. Some
detected blocks were not similar and they should be
indicated as false positives. The graph also depicts the
results of our experiment to decide the minimum number
of contiguous blocks that would be meaningful. After a
large number of comparisons (thousands) between CBs,
we could find that the false positives decreased by more
than 97%.

Table 3. Test results for detecting a malware

Malicious
program

Sniffer Backdoor DDOS LKM

The mean of
Similarities

91% 94% 100% 91%

4.3 Test Results with Malicious Program

Next, we conducted an experiment to detect malicious
programs installed in the real environment with our
detection method. The experiment involved detecting 4
kinds of 15 malicious programs out of 100 normal
executable files. We detected almost all malicious
executable files except one program among the Linux
Kernel Module, and we tried to find the reason why it
could not be detected by the proposed method. After

192

observing the file that could not be detected, we found the
file was short and consisted of many conditional
statements. This allowed us to investigate increasing
contiguous similar blocks to make the matching process
more effective. Table 3 shows the results.

4.4 Detection Rate and the Critical value

The graph in Figure 6 shows the Receiver Operating
Characteristic (ROC) curve of the final results. To
measure the detection rate using the proposed methods,
we tried to find 100 similar files out of 312 executable
files. Similar files consisted of all possible cases of
transform like insertions, deletions, substitutions, and
transpositions.

Figure 6. A test result for determining threshold

The graph shows the relation between detection rate
and the false positives. A good critical point is the
similarity level after which the inclination of the curve is
decreased suddenly. This is because such sharp turns
indicate that false positives are increasing significantly at
those points. In Figure 6, there are three points we can
choose as a critical values.

Table 4. Thresholds and detection rates

Threshold 0.8 0.5 0.1

True Positive 76% 80% 91%

False Positive 0% 3% 47%

With this experiment we found that 80% of detection
rate and 3% of false positives are possible with 0.5 of
similarity. This means we can decide two files are similar
when their similarity measure is over 0.5. By controlling
the critical values for their environments, the forensics
analysts may learn deeper insights into the characteristics
of the malware being analyzed.

5. Conclusion

In this paper, we presented a method to find out
whether a detected executable file is similar to a
malicious executable file by comparing assembly
instruction sequences. Using the existing techniques, we
would not be able to detect any modified malicious

programs without executing the program or reverse
engineering. In addition, there exists no appropriate
method, to the best of our knowledge, to detect fragments
of a malicious executable file which is hidden or deleted.
In order to calculate similarity between two executable
files, we described the assembly instruction sequences as
a unique profile. By using the assembly instruction
sequence based technique, we could find fragments
similar to malicious program even when they are slightly
modified. The method could be used to also identify the
nature of executable fragments stored in slack space and
free data blocks. We summarized our experiments to
support the technique we have proposed and tested.

Acknowledgments

This work was supported by the Ministry of
Information & Communication, Korea, under the
Information Technology Research Center (ITRC) Support
Program and the University of Pittsburgh, USA.

References
[1] H. Chen, W. Chung, J. Jie Xu, Gang Wang, Yi Qin,

Michael Chau, “Crime Data Mining: A General Framework
and Some Example”. In Computer, April, 2004. pp.50-56

[2] B. D. Carrier, E. H. Spafford, “Defining Event
Reconstruction of Digital Crime Scenes,” In Cerias Tech
Report 2004-37.

[3] A. J. Marcella, R. S. Greenfield, “Cyber Forensics,”
Auerbach Publications, 2002.

[4] L. Garber, “EnCase: A Case Study in Computer-Forensic
Technology,” IEEE Computer Magazine, Jan., 2001,
pp202-205.

[5] Guidance Software, "EnCase Legal Journal," 2nd Edition,
Mar., 2003.

[6] D. Farmer, S. John, W. Venema, “The Coroners Toolkit
(TCT) v1.12,” http://www.porcupine.org/forensics/tct.html.

[7] B. Carrier, “TCTUTLs v1.01,” May, 2001,
http://www.cerias.purdue.edu/homes/carrier/forensics.html,

[8] R. Nagpal, “Recovery of Digital Evidence,”
http://www.asianlaws.ort/cyberlaw/li-brary/cc/dig_evi.htm, 2002.

[9]. F. Buchholz, E. Spafford, “On the role of file system
metadata in digital forensics,” In Journal of digital
investigation, Dec. 2004.

[10] K. J. Jones, R. Bejtlich, C. W. Rose, Real Digital Forensics,
Addison-Wesley, 2006.

[11] A. Housebolder, K. Houle, C. Daugberty, “Computer
Attack Trends Challenge Internet Security,” In IEEE
Security & Privacy, 2002.

[12] Intel Corporation, “The IA-32 Intel® Architecture
Software Developer's Manual,” Intel Corporation, 2003.

[13] A. Chuvakin, “Linux Data Hiding and Recovery,”
http://www.linuxsecurity.com/feature_stories/data-hiding-
forensics.html, October, 2002.

[14] J. R. Vacca, “Computer Forensics : Computer Crime Scene
Investigation,” Charles River media, 2002.

[15] E. Mays, F.J. Damerau, R.L. Mercer. Context-based
spelling correction. In information Proceeding and
Management, 27(5):517-522, 1991.

193

