

SARBAC07: A Scoped Administration Model for RBAC with Hybrid Hierarchy

Yue Zhang James B.D. Joshi

Department of Computer Science School of Information Science
University of Pittsburgh University of Pittsburgh
Pittsburgh, PA, USA Pittsburgh, PA, USA
zysxqn@cs.pitt.edu jjoshi@sis.pitt.edu

Abstract

Recently, administration of RBAC systems using a
role-based approach has become very appealing because
of the benefits that such an approach typically brings.
This approach uses RBAC itself to manage RBAC policies
so that the administration functions can be decentralized
and made more efficient. Existing RBAC administration
models, however, fail to deal with RBAC systems with
hybrid hierarchy, which has been shown to be necessary
to specify fine-grained RBAC policies. In this paper, we
propose a Scoped Administration model for RBAC with
Hybrid Hierarchy (SARBAC07) by using the notion of an
administrative scope that was earlier proposed in the
SARBAC model. We show that our model keeps all the
advantages of the original model and can deal with more
complex situations where hybrid hierarchy is needed.

1. Introduction

Role Based Access Control (RBAC) has become
widely accepted as a promising alternative to the
traditional discretionary access control (DAC) and
mandatory access control (MAC) approaches [3, 4, 5, 12].
In RBAC, permissions are assigned to roles and users are
made members of roles. RBAC model is policy-neutral
and flexible. Users can be easily reassigned from one role
to another whenever needed, and roles can also be granted
new permissions or existing permissions can be easily
reassigned whenever the function of a role changes.

To support evolution of RBAC policies, efficient
administration of RBAC is a crucial challenge. In modern
large enterprise-wide systems, there could be many roles
and many more users/permissions [14]. The relationships
among the roles, users, and permissions change
continuously. Centralized management of such large
number of roles, users, permissions and their
interrelationships can have several drawbacks [14].
Hence, decentralizing the administration of RBAC
without losing the central control is a challenging goal for
system designers and developers.

The use of role itself to manage the RBAC policies has
become an appealing idea. Sandhu et al. [14] have
proposed an ARBAC97 (Administrate RBAC ‘97) model
consisting of URA97 (User-Role Assignment ’97),

PRA97 (Permission-Role Assignment ’97), and RRA97
(Role-Role Assignment ’97) model, which use RBAC to
manage RBAC policies. They have further extended this
model to ARBAC99 [15] and ARBAC02 [11]. Crampton
et al. have developed a Scoped Administration model for
RBAC (SARBAC) model using the concept of
administrative scope [1] to address some shortcomings of
the ARBAC97 model and has been shown to be better in
terms of completeness, simplicity, practicality and
versatility.

However, neither of these approaches deals with
RBAC policies with hybrid hierarchies – where different
types of hierarchical relationship among roles can co-
exist. Issues related to hybrid hierarchies have been first
formally addressed by Joshi et al. [10]. Several
researchers [9, 10, 13] have found that hybrid hierarchy is
necessary when more fine-grained RBAC policies are
needed, in particular, when we need to specify dynamic
separation of duty (DSoD), temporal and cardinality
constraints on roles in a hierarchy. Joshi et al. have
introduced three types of hierarchy relations by separating
the permission inheritance semantics (in I-hierarchy type)
and activation inheritance semantics (in A-hierarchy
type). Roles related by an A-hierarchy can be constrained
by a DSoD constraint [6]. Joshi et al. also show that A-
hierarchy is suitable for permission-centric cardinality
constraints, while I-hierarchy or IA-hierarchy (which
allows both permission and activation inheritance) is
suitable for user-centric cardinality constraints. Further
more, Du et al. [2] show that hybrid hierarchy is
particularly useful when we want to map the policies in
multi-domain applications.

In this paper, we redefine the concept of administrative
scope to develop a Scoped Administration model for
RBAC with Hybrid Hierarchy (SARBAC07) to administer
RBAC systems that support hybrid hierarchies. We also
show that the User-Role Assignment and Permission-
Role-Assignment operations defined in the SARBAC
model have some ambiguity because of the use of the role
hierarchy proposed in the NIST’s RBAC [4] (We refer to
this as “standard hierarchy” in this paper; also note that it
is same as the IA-hierarchy type). We show that we are
able to solve this ambiguity by using our proposed model.
In summary, this paper has two major contributions:

Third International Symposium on Information Assurance and Security

0-7695-2876-7/07 $25.00 © 2007 IEEE
DOI 10.1109/IAS.2007.90

149

1. We propose a SARBAC07 model which can deal with
RBAC policies with hybrid hierarchy by redefining
concepts and operations of the SARBAC model.

2. We solve an ambiguity in the SARBAC model by using
our SARBAC07 model and show that the User-Role
Assignment is determined by IA -relation while Role-
Permission Assignment is determined by I-relation in
hybrid hierarchy.
The rest of the paper is organized as follows. In

Section 2 we review the relevant background such as
hybrid hierarchy and the SARBAC model. We propose
and evaluate our SARBAC07 model in Section 3 and
Section 4, and finally conclude our work in Section 6.

2. Background

2.1. Hybrid Hierarchy

Hybrid hierarchy was introduced in the context of the
Generalized Time based RBAC (GTRBAC) model to
facilitate specifications of fine grained RBAC policies [7].
In a hybrid hierarchy, the following three hierarchical
relations among roles can co-exist: permission-
inheritance-only hierarchy (I-hierarchy represented as ≥i),
role-activation-only hierarchy (A-hierarchy represented as
≥a) and the combined permission-inheritance-activation
hierarchy (IA-hierarchy represented as ≥) [8].
Semantically, s ≥i j means permissions available through j
are also available through s; s ≥a j means that any user
who can activate s can also activate j; and s ≥ j means that
s inherits permissions of j and the users that can activate s
can also activate j. Figure 1 shows a sample hybrid
hierarchy. Note that in the standard hierarchy we also use
the symbol x ≥ y to represent the hierarchy relations.

Joshi et al. have shown that in a hybrid hierarchy the
hierarchical relation between any pair of roles which are
not directly related can be derived [8]. It is obvious that
the three hierarchy types are transitive. For instance, if (x
≥ y) and (y ≥ z) then it implies (x ≥ z). Similarly, since IA-
relation can be considered as both I-relation and A-
relation, we have the following relations as shown in
Figure 3(a): (x <f1> y) ∧ (y <f2> z) → (x <f> z), where,
(<f1> ∈ { ≥ }) ∨ (<f2> ∈ { ≥ }) and <f> = <f1>, if
<f2>∈ { ≥ }, otherwise <f> = <f2>.

PL

P

TR TW

a

r

a

r

r’

(a) r∈S+(a) (b) r∉ S+(a)
Figure 1. A sample Figure 2. Administrative scope

hybrid hierarchy in SARBAC
A special case of derived relation is when an A-relation

is followed by an I-relation, as shown in Figure 3(b); in
this case, we should be very careful when analyzing its

semantic. Here, by activating x, a user assigned to x can
not acquire the permissions of z, although he can acquire
the permissions of z by activating y. This means x can still
“inherit” permissions of z even if there is no I-relation
derived between them. In this situation, we say that x has
a “conditioned” relation with z, written as x[y] ≥i z. In [8],
the conditioned derived relation is defined as x[A](B) ≥i y,
where B indicates a set of A-paths from x to y. In this
paper, we ignore set B; if B is not empty, we simply
consider it as x ≥a y without affecting any semantics.

Now consider the case where an I-relation is followed
by an A-relation, as shown in Figure 3(c). Here, a user
assigned to x can not acquire the permissions of z, since
he can only acquire the permissions of y (by activating x)
but can not activate y. Therefore, there’s no relation
between x and z. We define the derived relations as
follows:
DEFINITION 2.4 (Derived Relation): Let x and y be roles
such that (x ≥d y), that is, x has a derived relation with y.
Then the following holds: (x ≥i y)∨(x ≥a y)∨(x ≥
y)∨(∃a∈R, x[a] ≥i y)

 Joshi et al. propose a complete and sound set of
inference rules to find all the possible derived relations
between any pair of roles in a hybrid hierarchy [8].

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

zx i≥ zx i≥ zx i≥zx a≥ zx ≥ zx a≥ zx a≥

x

y

z

x

y

z

zyx i≥][(c) No relation(b)(a) Unconditioned relations
Figure 3. Derived relations in a hybrid hierarchy

2.2. Overview of the SARBAC model.
The basic idea of the SARBAC model is to use some

roles to “administer” some other roles [1]. In this way, the
administration can be decentralized. The notion of
administrative scope, as defined below, is used to define
which role can administer which roles.
DEFINITION 2.5 (Administrative scope): Given a
role a, its administrative scope, S(a), is defined as:

S(a) = {r ∈ R: r ≤ a , ↑r \ ↑a ⊆↓a}
where, ↑r = {x ∈ R: x ≥ r}, ↓r = {x∈ R: x ≤ r}.

Informally, r∈S(a) if every path upwards from r
goes through a. That is, any change to r made by a
will not have unexpected side effects due to
inheritance elsewhere in the hierarchy. The strict
administrative scope of r is defined as S(r)\{r},
denoted as S+(r). If r∈S+ (a), we call a as an
administrator of r [1]. The SARBAC model has
three parts: the Role Hierarchy Administration
(RHA) model, the User Role Assignment (URA)

150

model, and the Permission Role Assignment (PRA)
model. SARBAC-RHA defines four administration
operations: AddRole(a, r, △r, ▽r), DeleteRole(a, r),
AddEdge(a, c, p), and DeleteEdge(a, c, p), where △r and
▽r are sets of the immediate juniors and immediate
seniors of r, respectively Table 2 describes the conditions
that needs to be satisfied for these operations to succeed.
SARBAC defines a family of four RHA models, namely
RHA1, RHA2, RHA3, and RHA4. The key difference
among them is that RHA3 and RHA4 create a set of
special administration roles and assign to each of them
some “normal” roles to adminster. Each administration
role can manage the “normal” roles assigned to it, as well
as all the roles within the administrative scopes of these
“normal” roles. In SARBAC-URA, operations and their
success conditions are summarized in Table 3, where ∧C
is a set of constraints needed to be satisfied by the users or
permissions and ua-constraints assign some constraints to
each of the role r. For example, the first row of Table 3
shows that if role a wants to assign user u to role r, r must
be within the administrative scope of a, and u must satisfy
the “pre-condition” associated with r. SARBAC-PRA is
very similar to SARBAC-URA – with users substituted
by permissions. In sub-section 3.3 we show some
ambiguities associated with both the SARBAC-URA and
SARBAC-PRA models.

Table 2. Hierarchy operations in SARBAC-RHA
Operation Conditions

AddRole (a, r, △r, ▽r) △r⊆S+ (a),▽r⊆S (a)
DeleteRole (a, r) r ∈S+ (a)
AddEdge (a, c, p) c, p ∈S (a)

DeleteEdge (a, c, p) c, p ∈S (a)

Table 3. User-Role operations in SARBAC-URA
Operation Conditions

AssignUser(a, u, r) r ∈S (a), u satisfies ∧C,
(r, ∧C) ∈ ua-constraints

RevokeUser(a, u, r) r ∈S (a)

3. The SARBAC07 Model

3.1. Administrative Scope in SARBAC07
As discussed earlier, a role r can be administered

under another role a if and only if all path upwards from r
go through a, as shown in Figure 2(a). On the contrary,
suppose there is a path upwards from r that doesn’t go
through a, and instead, goes through role r’, as shown in
Figure 2(b). Here a and r’ have no relation between them,
but both of them are related to r. If a makes some changes
to r, then it would also affect r’. So a should not be
allowed to administer r. Note that in a standard hierarchy,
if there’s a “path” between two different roles r1 and r2,
then r1 and r2 must be hierarchically related, i.e. r1≥r2 or
r2≥r1. Therefore, the definition of administrative scope
closely relies on finding the direct and indirect relations in
the path between r1 and r2. Based on the definition of the

derived relation ≥d earlier, we re-define the administrative
scope as follows:
DEFINITION 3.1 (Administrative Scope in Hybrid
Hierarchy): The administrative scope for role a in
a hybrid hierarchy, SHH(a), is defined as follows:

SHH(a) = {r ∈ R: r ≤d a , ↑r \ ↑a ⊆↓a}
Where, ↑r = {x∈ R: x ≥d r}, ↓r = {x∈ R: x ≤d r}.

Similarly, the strict administrative scope is SHH
+(r) = SHH

(r) / {r}. If r∈SHH
+(a), we call a as an administrator

of r. Figure 4 illustrates the difference between the
original administrative scope in SARBAC and the
administrative scope in SARBAC07. Note that the
structure of the three hierarchies is exactly the same and
the only difference is the types of the hierarchical
relations used. Figure 4(a) is a standard hierarchy; Figures
4(b) and 4(c) are hybrid hierarchies. In Figure 4(a), role a
can not administer role r because r’ is senior to r but is
not junior to a. In figure 4 (b), role a can not administer
role r either, since r’ is “conditionally” senior to r but is
not junior to a. In figure 4(c), however, role a can
administer role r because there’s no derived relation
between r and r’ even if there seems to be a “path”
between them. Note that in Figure 4(c), a can not
administer r1 because of r’. However, in the entire
hierarchy, there may exist another role (e.g., the senior
role of both a and r’) which can administer r1. Next, we
will show that our definition of administrative scope
provides better flexibility and maintains the
decentralization/autonomy properties.

a

r1

r

r’

(b)

a

r1

r

r’ a

r1

r

r’

(c))(aSr +∉)(aSr HH
+∉)(aSr HH

+∈
Figure 4. Administrative Scope in SARBAC and SARBAC07

Flexibility: The administrative scope in both the models
is determined by the role hierarchy itself, and it changes
dynamically as the hierarchical relations change. The
semantics of the hierarchy type affects the different
scenarios in our model. This also provides more fine-
grained semantics, and hence more flexibility.
Decentralization and Autonomy: we illustrate this by
proving the following proposition. We retain the notion of
the line manager from the SARBAC model:
PROPOSITION 3.2 (Line Manager in Hybrid Hierarchy):
In a hybrid hierarchy, if r has an administrator then the
set of administrators of r has a unique minimal
administrator, referred to as the line manager of r.
PROOF: If r has a single administrator, the result follows
immediately. Otherwise, suppose x and y are minimal
administrators of r, i.e., for all administrators z of r, z ≤d

151

x implies z = x, and z ≤d y implies z = y; hence, x≮y and
y≮x. Then, r∈SHH

+(x) and hence x∈↑r. Similarly,
r∈SHH

+(y) and hence ↑r\↑y⊆↓y. x∉↑y gives x∈↓y. Thus,
x<y, which is a contradiction. ■

The line manager can serve as a “local” administrator.
This provides decentralization and autonomy in
administration of hybrid hierarchies.

3.2. RHA in SARBAC07
In addition to the four operations defined in SARBAC

as shown in Table 2, we further add two operations in
SARBAC07: PartitionRole() and ChangeEdge(), which
are necessary for administering hybrid hierarchies. The
success conditions of each operation are shown in Table 4,
where △ar is a set of immediate A-juniors of the role r,
▽ar is the set of immediate A-seniors of role r, △ir is the
set of immediate I-juniors of role r, and ▽ir is the set of
immediate I-seniors of role r, as shown in Figure 5. The
semantics of ChangeEdge(a, c, p) is straight forward
since there are three types of edges in a hybrid hierarchy.
In fact, we can use AddEdge() and DeleteEdge()
operations to perform ChangeEdge(). That is, first delete
the old edge, and then add the edge with the new type.
The semantics of PartitionRole() is complex. Specifically,
we can partition a given role vertically, horizontally, or
both [8].

r

p2p1 p3

c1 c2 c3

p1∈▽ir
p2∈▽ir
p2∈▽ar

c1∈△ir c2∈△ir

c2∈△ar

c3∈△ar

DIR

PL1

PE1 QE2

ENG1

PL2

PE2 QE2

ENG2

ED

E
Figure 5. Parameters in AddRole Figure 7. A standard hierarchy

We need to maintain the administrative scope during
those operations by satisfying the following conditions:
C1: After AddRole() and PartitionRole() operations, the

new role(s) should be within a’s administrative scope.
C2: After each operation, the original roles’

administrators should not be changed.
It is obvious that C1 is satisfied according to our definition.
Since all the seniors of the new role should be
administered by a, the new role itself is also administered
by a. C2 is also satisfied for all operations. This
conclusion is not obvious with ChangeEdge() operation,
since the operation itself may change the relation between
roles and thus affect the administrative scope, as shown in
Figure 6. In Figure 6(a), r∈SHH(a). If we change the edge
(r, r1) to the I-type, as Figure 6 (b) shows, r∉SHH(a) now.
However, in Figure 6(a), r1 is not administered by a, so

the ChangeEdge() operation fails. Therefore, if
ChangeEdge() operation succeeds, it is guaranteed that it
will not affect the administrators of all the original roles.

Table 4. Hierarchy operations in SARBAC07
Operation Success Conditions
AddRole(a, r, △ar, ▽ar,
△ir, ▽i r)

△ar ⊆ SHH
+(a) ▽ar ⊆ SHH(a)

△ir ⊆ SHH
+(a) ▽ir ⊆SHH(a)

DeleteRole(a, r) r ∈ SHH
+(a)

PartitionRole(a, r) r ∈ SHH
+(a)

AddEdge(a, c, p, type) c, p ∈ SHH (a)
DeleteEdge(a, c, p) c, p ∈ SHH (a)
ChangeEdge(a, c, p, type) c, p ∈ SHH (a)

a

r1

r

r’

(b)

a

r1

r

r’

ChangeEdge(a, r, r1, I) =>

)(aSr HH
+∈

)(1 aSr HH
+∉

)(aSr HH
+∉

Figure 6. The ChangeEdge operation won’t succeed

3.3. URA and PRA in Hybrid Hierarchy
The key operations in SARBAC-URA are shown in

Table 3, and the permission-role assignment operations in
SARBAC-PRA are similar. We first show that there is an
ambiguity in the semantics of URA and PRA in the
original SARBAC, which our model solves by redefining
those operations. To illustrate these, we first review an
important concept in SARBAC, the SARBAC constraint,
as follows: let R’ = {r1, …, rk} be a subset of R and let
∧R’ denote r1∧…∧rk.
DEFINITION 3.3 (SARBAC constraint) A SARBAC
constraint has the form ∧C, where C ⊆ R. A
SARBAC constraint ∧C is satisfied by a user u if
C ⊆ ↓R(u). A SARBAC constraint ∧C is satisfied
by a permission p if C ⊆↑R(p), where for any Y ⊆X,
↑Y = {x∈X: ∃y∈Y such that x ≥ y}, and ↓Y = {x∈X:
∃y∈Y such that x ≤ y}.

Let’s first analyze under what situation a user will
satisfy a constraint. A sample standard hierarchy is shown
in Figure 7, which is borrowed from [1]. According to
Definition 3.3, the constraint PE1∧QE1 is satisfied by
any user assigned to both PE1 and QE1, and by
any user assigned to either PL1 or DIR. The
semantics here is that any user assigned to either
PL1 or DIR is also a member of PE1 and QE1, and
hence the PE1 ∧ QE1 constraint is satisfied.
Obviously, the authors of SARBAC implicitly
assumes the hierarchy relation in any standard
hierarchy as ‘‘Is-a’’ relation [10], i.e., x ≥ y means any
user assigned to x is also a member of y. For example, the

152

leader of a team is also a member of the team. However,
the semantics of standard hierarchy has long been argued
as ambiguous [9, 10, 13]. The hierarchical relation in a
standard hierarchy could be “Is-a”, “Supervision”, or
“Activation” [10]. The use of hybrid hierarchy can solve
this ambiguity accordingly by including three types of
hierarchical relations. The above “Is-a” relation is
essentially “IA” relation in the hybrid hierarchy, since x
“is” y means any user assigned to x should be able to
acquire all the permissions assigned to y through x, and
should also be able to activate y. Because whether a user
satisfies a constraint depends on the definition of ↓Y in
Definition 3.3, we re-define it as:

∀Y⊆X, ↓Y = {x∈ X: ∃y∈Y such that x ≤ y} (1)
Note the symbol ≤ clearly means the IA-relation in hybrid
hierarchy. Next let’s analyze in what situation a
permission will satisfy a constraint. In Figure 7, the
constraint PE1∧QE1 is satisfied by any permission
assigned to both PE1 and QE1, and by any
permission assigned to either ENG1 or ED or E.
The semantics here is that any permission
assigned to ENG1 or ED or E is also in the
permission set of PE1 and QE1, the PE1∧QE1
constraint is satisfied. In other words, x ≥ y means
P(y)⊆P(x), where P(r) is the permission set
available through r. Obviously, the author of
SARBAC implicitly assumes the hierarchy
relation in any standard hierarchy as ‘‘Permission
Inheritance’’ relation, which is in conflict with
previous assumption of ‘‘Is-a’’ relation. We believe
this ambiguity comes from the ambiguity of the
standard hierarchy, as pointed to by many
researchers [9, 10, 13]. Again, the use of hybrid
hierarchy can solve this by using ‘‘I-relation’’.
Specifically, since a permission satisfying a
constraint depends on the definition of ↑Y in
Definition 3.3, we re-define it as:

∀Y⊆X, ↑Y = {x∈ X: ∃y∈Y such that x ≥i y} (2)
Note that here we use the ≥i relation. Given the new

definition of ↓Y and ↑Y, we can define the SARBAC07
constraint as follows:
DEFINITION 3.4 (SARBAC07 constraint): A
SARBAC07 constraint has the form ∧C for some
C ⊆R. A SARBAC07 constraint ∧C is satisfied
by a user u if C ⊆ ↓R(u). A SARBAC07 constraint
∧C is satisfied by a permission p if C ⊆ ↑R(p),
where the symbol ↑ and ↓ are defined by (1) and (2).

The definition implies that the User-Role
Assignment is determined by the IA-relation
while the Permission-Role Assignment is
determined by the I-relation. The user-role
assignment operations are the same with
SARBAC, as shown in Table 3 (permission-role

assignment operations are similar).

4. Model Evaluation

In this section, we use two examples to show that our
SARBAC07 model is better in terms of practicality and
versatility. Also note that the SARBAC model is
inadequate for the hierarchies in the examples.
 Example 4.1: Consider the hierarchy in Figure 1 and
the following requirements for a programming project. A
software tool is used for the programming task. The
project leader (PL) mainly supervises the programming
tasks. Only the programmers (P) do the coding. PL can
only examine the tasks the P has carried out. Figure 1
depicts the hierarchy that can be generated for achieving
the goal. Role TaskR (TR) contains the read-only
permissions whereas role TaskW (TW) contains all the
write/modify permissions related to the programming task.
The role PL is I-senior to the role P. Note that users
assigned to the PL can acquire permissions of TR but not
of TW.
 In this example, standard hierarchy is inadequate. Since
the PL only has the read permission of the code but can
not edit the code, we can use two separate roles such as
TR and TW. If we use the standard hierarchy, we would
have PL ≯ TW. However, PL ≥ P and P ≥ TW would
mean PL ≥ TW, which is in conflict with PL ≯ TW.
Therefore, we must use hybrid hierarchy (Figure 1) to
satisfy all the semantics.
 According to our definition, SHH (PL) = {PL, P, TR},
and SHH (P) = {P, TR, TW}, i.e., PL can not administer
TW, only P can administrate TW, and both PL and P can
administer TR. This is exactly the original semantics of
the example 4.1. And suppose PL wants to change the
edge (P, TW) to an I-edge so that he can also inherit the
permissions of TW, the operation will not succeed as TW
∉SHH (PL). We can see that our example works well in
the presence of hybrid hierarchy. To show the versatility
of our model, we apply our model to a totally different
scenario described in example 4.2.
 Example 4.2: Assume domain 1 and domain 2 both
require services (a set of permissions) from each other. In
a RBAC system, domain 1 needs to export some roles that
have the set of permissions required by domain 2, and
domain 2 needs to export some roles that have the set of
permissions required by domain 1. In addition, to use the
permissions of domain 1, domain 2 must create some
roles through which it can access the permissions in
domain 1, and domain 1 also needs to create some roles
through which it can access the permissions in domain 2.
Figure 8 shows the entire example.

153

r1

r2

r3

Figure 8. Inter-domain role mapping using hybrid hierarchy

 In this example, the standard hierarchy will not work.
We should use I-relations and A-relation as in Figure 9 to
prevent the transitivity of the activation semantics which
is usually the key problem in inter-domain access [2].
 In figure 8, although r1 can have the permission
assigned to r3 by activating r2, r1 can not administer r3.
This is because in domain 2, r3 may have other seniors
that have no relationship with r1. However, r1 can
administer r2 according to the definition. This is quite
reasonable since r2 is “exported” from domain 2 to be
used by r1, but r3 is the “local” role in domain 2. In this
way, the overall effect of our model is that roles in
domain 1 can only administer the roles “specially
exported” from domain 2 but can not administer the
“local” roles in domain 2.

5. Conclusion and Future Work

In this paper, we have proposed the SARBAC07
model that can be used to administer RBAC system with
hybrid hierarchies. Our model uses the key notion of
administrative scope from Crampton et al.’s SARBAC
model and redefines. We also redefine all the necessary
operations accordingly. Moreover, we show that the
original SARBAC model has ambiguous semantics in its
User-Role Assignment and Role-Permission Assignment
components, which we remove in our proposed model.
Finally, we evaluate our model according to the criteria
used to evaluate the SARBAC model. We plan to extend
this work to construct a complete administration model
for GTRBAC systems with hybrid hierarchy and
constraints.

Acknowledgement: This research has been
supported by the US National Science Foundation award
IIS-0545912.

References
[1] J. Crampton, G. Loizou, “Administrative scope: A foundation for

role-based administrative models”, ACM Transactions on
Information and System Security (TISSEC), Volume 6, Issue 2,
May. 2003, pp. 201-231.

[2] S. Du, and J. B. D. Joshi, “Supporting Authorization Query and
Inter-domain Role Mapping in Presence of Hybrid Role
Hierarchy,” The 11th ACM Symposium on Access Control Models
and Technologies, USA, June 2006.

[3] D. Ferraioio, J. Cugini, and R. Kuhn, “Role-based access control
(RBAC): Features and motivations”, In Proceedings of 11th
Annual Computer Security Application Conference, New Orleans,
LA, Dec. 1995, pp. 241-48.

[4] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R.
Chandramouli,“Proposed NIST standard for role-based access
control,” ACM Transactions on Information and Systems Security,
vol. 4, no. 3, pp. 224–274, August 2001.

[5] L. Guiri, “Role-based access control: A natural approach”, In
Proceedings of the 1st ACM Workshop on Role-Based Access
Control, ACM, 1997.

[6] J. B. D. Joshi, E. Bertino, and A. Ghafoor, “Temporal hierarchies
and inheritance semantics for GTRBAC”, In Proceedings of the
7th ACM symposium on Access control models and technologies,
New York, NY, USA, pp. 74–83.

[7] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor, "Generalized
Temporal Role Based Access Control Model," IEEE Transactions
on Knowledge and Data Engineering, Volume 7, Issue 1, Jan.
2005.

[8] J. B. D. Joshi, E. Bertino, and A. Ghafoor, "Formal Foundations
for Hybrid Role Hierarchy", ACM Transaction in Information and
Systems Security (accepted).

[9] N. Li, “A Critique of the ANSI Standard on Role Based Access
Control”, to appear in IEEE Security and Privacy.

[10] J. D. Moffett and E. C. Lupu, “The uses of role hierarchies in
access control”, Proceedings of the fourth ACM workshop on
Role-based access control, 1999, pp. 153-160.

[11] S. Oh, R. Sandhu, “A model for role administration using
organization structure”, Proceedings of the 7th ACM symposium
on Access control models and technologies, Monterey, CA 2002.

[12] R. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
Based Access Control Models”, IEEE Computer 29(2): pp. 38-47,
IEEE Press, 1996.

 [13] R. Sandhu, “Role activation hierarchies”, Proceedings of the third
ACM workshop on Role-based access control, Fairfax, Virginia,
United States, 1998, pp. 33-40.

[14] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97
Model for Role-Based Administration of Roles”, ACM
Transactions on Information and System Security (TISSEC),
Volume 2, Issue 1, Feb. 1999, pp. 105-135.

[15] R. Sandhu and Q. Munawer, “The ARBAC99 Model for
Administration of Roles (1999)”, In Proceedings of 15th Computer
Security Applications Conference, Arizona, US, Feb 1999, pp.
229-2

154

