
An RBAC Framework for Time Constrained Secure Interoperation in

Multi-domain Environments

Smithi Piromruen, James B. D. Joshi

{smithip, jjoshi}@mail.sis.pitt.edu

Department of Information Sciences and Telecommunications, University of Pittsburgh

Abstract

In emerging e-commerce applications, time

constrained information sharing between different

systems is becoming a common phenomenon. A flexible

and efficient mechanism is needed to support short
term time-based sharing policies between transient

partners. In particular, the interacting domains need to

establish a time-based inter-domain access policy

without violating the original time-based security

policies of the individual systems. In this paper, we
address this issue using the Generalized Temporal

Role Based Access Control (GTRBAC) framework. The

proposed mechanism involves a system processing an

inter-domain access requirement specification to

extend or restructure its local GTRBAC policy with

proper temporal constraints to allow its external
partner domain to access its resources. The

transformed local GTRBAC policy facilitates the inter-

domain accesses while still conforming to the original

local policy requirements.

1. Introduction

An important requirement of emerging systems is to

be able to share information with other systems [5, 6].

When a system needs to allow previously unknown

entities to access its resources, mechanisms should be

in place to ensure that the accesses granted are limited

to pre-defined sharing requirements. When such inter-

domain accesses are allowed between multiple systems

with individual systems employing its own security

policies, the systems are said to form a multi-domain

environment. The accesses allowed may be time-

constrained to ensure that resources are made available

only when required. For instance, if a company is

providing a consulting service to a bank for a specified

period of time, then the bank needs to ensure that the

required information and other resources are made

available to the consulting company within relevant

intervals of time within their contractual period. Such

multi-domain environments have manifested in various

forms of emerging systems. Those particularly

becoming prominent include web-services, peer-to-

peer systems, grid-based systems, etc. [7, 10].

Multidomain environments can be loosely or tightly
coupled (federated) [7]. In a loosely coupled

environment, independent systems dynamically agree

to share information for a brief period of time. In a

federated multi-domain environment, one system is

typically designated as the master and others as local

domains. The master is responsible for mediating

accesses to individual systems by maintaining a global

policy. Such systems may also characterize merged

organizational systems, in which the policies are

integrated.

In this paper, we emphasize that when

requirements-driven interoperation is needed in a

loosely coupled environment there should be a sound

mechanism to facilitate an external entity to access its

resources by mapping external entities to local entities,

which may need to be newly created (such as roles) to

be created to fulfill requested access. While there has

been several work done in the areas of policy

integration and trust negotiation/management [1, 4,

12], we believe the approach we present is simple,

intuitive and more desirable for a loosely coupled

environment. Existing policy integration work focuses

on creating a new complex policy by combining the

multi-domain policies [2, 11] – such an approach is

more suited to tightly coupled environments and is

usually very complex. Existing work on trust

negotiation do not address policy mapping issues and

focus on establishing trust between unknown partners

[7]. Hence, the work presented here can be combined

with trust negotiation techniques to generate a holistic

solution to secure interoperation in loosely coupled

environments that characterize many of the currently

emerging applications such as P2P and mobile

applications.

In this paper, we assume that a pair of security

domains trying to interoperate employs Generalized

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

Temporal RBAC policies. The requesting domain

specifies its access requirements and the provider

domain reconfigures or extends its local policy to

satisfy them by creating “exported” roles.

The paper is organized as follows. In Section 2, we

present background on the GTRBAC framework

particularly relevant to the present secure-

interoperation approach. In Section 3, we present our

approach and the algorithms for inter-domain policy

generation that incorporates temporal access control

requirements. We present related work in Section 4 and

conclude in Section 5.

2. GTRBAC Overview

2.1. Periodic Expression

The GTRBAC framework uses periodic time to

express temporal constraints. Periodic time is

represented by as a tuple à[begin, end], Pð, where P is a

periodic expression denoting an infinite set of periodic

time instants, and [begin, end] is a time interval

denoting the lower and upper bounds for the instants in

P [8]. The periodic time uses the notion of calendar

defined as a countable set of contiguous intervals. We

assume a set of calendars containing the calendars

Hours, Days, Weeks, Months, and Years, where Hours

is the calendar with the finest granularity. Given two

calendars C1 and C2, C1 is said to be a sub-calendar of

C2, written as C1 C2, if each interval of C2 is

covered by a finite number of intervals of C1.

Calendars can be combined to represent more general

periodic expressions denoting periodic intervals such

as the set of Mondays.

Definition 2.1 (Periodic time): A periodic

expression P is defined as: P = ä =

n

i 1
Oi.Ci x.Cd,

where, Cd, C1, .., Cn are calendars,O1 = all, Oi ∈ 2 ∪
all , Ci Ci-1 for i = 2,.., n, Cd Cn, and x ∈ .

Symbol separates the first part of the periodic

expression indicating the set of starting points of the

intervals, from the specification of the duration of each

interval in terms of calendar Cd. For example,

{all.Years + {3, 7}.Months 2.Months} represents

the set of intervals having a duration of 2 months with

their starting times synchronized with the same instant

as the third or the seventh month of every year. A set

of time instants corresponding to a periodic expression

P is denoted by Sol(I, P).

2.2. The GTRBAC Model

The GTRBAC model introduces the separate notion

of role enabling and role activation, and provides

Table 2.1 Constraint Expressions

Categories Constraints Expression Type
User-role assignment (I, P, pr:assignU/deassignU r to u) CUrp

Role enabling (I, P, pr:enable/disable r) CRp

Periodicity
Constraint

Role-permission assignment (I, P, pr:assignP/deassignP p to r) CPRp

User-role assignment ([(I, P)| D], DU, pr:assignU/deassignU r to u) CUrd

Role enabling ([(I, P)| D], D R, pr:enable/disable r) CRd

Duration
Constraints

Role-permission assignment ([(I, P)| D], D P, pr:assignP/deassignP p to r) CPRd

Per-role ([(I, P)| D], Dactive, [Ddefault], pr:activeR_total r) Ca
drTotal active role

duration Per-user-role ([(I, P)| D], Duactive, u, pr:activeUR_total r) Ca
dur

Per-role ([(I, P)| D], Dmax, pr:activeR_max r) Ca
mr

Duration
Constraints on

Role Activation Max role duration per

activation Per-user-role ([(I, P)| D], Dumax, u, pr:activeUR_max r) Ca
mur

Per-role ([(I, P)| D], Nactive, [Ndefault], pr:activeR_n r) Ca
nrTotal no. of activations

Per-user-role ([(I, P)| D], Nuactive, u, pr:activeUR_n r) Ca
nur

Per-role ([(I, P)| D], Nmax, [Ndefault], pr:activeR_con r) Ca
nnr

Cardinality

Constraint on
Role Activation

Max. no. of concurrent

activations Per-user-role ([(I, P)| D], Numax, u, pr:activeUR_con r) Ca
nmur

Trigger E1 ,…, En , C1 ,…, Ck → pr:E after t Ctr

Constraint

Enabling
pr:enable/disable c

where c ∈{(D, Dx, pr:E), (C) , (D, C)}

Cc

Users’ activation request (s:(de)activate r for u after t)) Cu

(pr:assignU/de-assignU r to u after t) Cadmin

(pr:enable/disable r after t) Cadmin

(pr:assignP/de-assignP p to r after t) Cadmin

Run-time

Requests

Administrator’s run-time request

(pr:enable/disable c after t) Cadmin

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

 constraints and event expressions associated with

both [8]. An enabled role indicates that a valid user can

activate it, whereas an activated role indicates that at

the least one user has activated the role. The basic

GTRBAC model proposed in [8], allows specification

of the following set of constraints: (i) Temporal

constraints on role enabling/disabling allow

specification of intervals and durations in which a role

is enabled; (ii) Temporal constraints on user-role and
role-permission assignments allow specifying intervals

and durations in which a user or permission is assigned

to a role; (iii) Activation constraints: These constraints

allow specification of restrictions on the activation of a

role. These include, for example, specifying the total

duration for which a user may activate a role, or the

number of concurrent activations of the role at a

particular time; (iv) Run-time events allow an

administrator and users to dynamically initiate the

various role events, or enable the duration or activation

constraints; (v) Constraint enabling events that enable

or disable duration and role activation constraints

mentioned earlier; and (vi) Triggers that allow

expressing dependencies among events and conditions

Table 2.1 summarizes the constraint types and

expressions of the GTRBAC model. The periodic time

expression and duration expressions are used to

express temporal constraints. D expresses the duration

specified for a constraint. In the duration and role

activation constraint expressions, Dx and Nx indicate

the constrained durations and cardinalities. If the

subscript x starts with u then it is a per-user-role

constraint otherwise it is a per-role constraint. For

instance, Dactive indicates how long the specified role

can be active, whereas, Duactive indicates the duration

for which the specified user may activate the specified

role. The following example illustrates the

specification of a GTRBAC policy. In the duration and

role activation constraint expressions, Dx and Nx

indicate the constrained durations and cardinalities. If

the subscript x starts with u then it is a per-user-role

constraint otherwise it is a per-role constraint. For

more details, we refer the readers to [8].

2.3. Temporal Role Hierarchies

The GTRBAC model includes different hierarchy

types and time-based semantics [8]. Various predicate

notations are used in defining the semantics of these

hierarchies, as shown in Table 2.2. Predicates

enabled(r, t), assigned(u, r, t) and assigned(p, r, t)

refer to the status of roles, user-role and role-

permission assignments at time t. Predicate

can_activate(u, r, t) indicates that user u can activate

role r at time t implying that user u is implicitly or

explicitly assigned to role r. active(u, r, s, t) indicates

that role r is active in user u’s session s at time t

whereas, acquires(u, p, s, t) implies that u acquires

permission p at time t in session s. The axioms in Table

2.2 capture the key relationships among these

predicates and identify precisely the permission-

acquisitions and role-activations allowed in GTRBAC

[8]. Axiom (1) states that if a permission is assigned to

a role, then it can be acquired through that role. Axiom

(2) states that all users assigned to a role can activate

that role. Axiom (3) states that if a user u can activate a

role r, then all the permissions that can be acquired

through r can be acquired by u. Similarly, axiom (4)

states that if there is a user session in which a user u

has activated a role r then u acquires all the

permissions that can be acquired through role r. We

note that axioms (1) and (2) indicate that permission-

acquisition and role-activation semantics is governed

by explicit user-role and role-permission assignments.

Semantically, a role hierarchy expands the scope of

the permission-acquisition and role-activation

semantics beyond the explicit assignments through the

hierarchical relations defined among roles. Within the

GTRBAC framework, the following three hierarchy

types have been identified: permission-inheritance-

only hierarchy (I-hierarchy), role-activation-only

Table 2.2 Status predicates

Predicate Meaning Axioms

enabled(r, t) Role r is enabled at time t

u_assigned(u, r, t) User u is assigned to role r at time t

For all r ∈ Roles, u ∈ Users, p ∈
Permissions, s∈ Sessions, and time instant

t ≥ 0, the following implications hold:

p_assigned(p, r, t) Permission p is assigned to role r at time t 1. assigned(p, r, t)→ can_be_acquired(p, r, t)

can_activate (u, r, t) User u can activate role r at time t 2. assigned(u, r, t) → can_activate (u, r, t)

can_acquire (u, p, t) User u can acquire permission p at time t

can_be_acquired(p, r, t) Permission p can be acquired through role r at time t

3. can_activate (u, r, t) ∧ can_be_acquired(p, r, t)

→ can_acquire (u, p,t)

active(u, r, s, t) Role r is active in user u’s session s at time t

acquires(u, p, s, t) User u’ acquires permission p in session s at time t

4. active(u, r, s, t) ∧ can_be_acquired(p, r, t) →
acquires(u, p, s, t)

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

hierarchy (A-hierarchy) and the combined inheritance-

activation hierarchy (IA-hierarchy) [8]. Each of these

hierarchies may be of restricted or unrestricted type. A

restricted hierarchy may further be categorized as

weakly or strongly restricted. In Table 2.3, the

semantics of each hierarchy type is defined by its

corresponding condition (c). The condition c for the

unrestricted I-hierarchy, (x≥ty), implies that if (x≥ty)

holds, then the permissions that can be acquired

through role x include all the permissions that can be

acquired through role y. In other words, permissions of

the junior roles are inherited by the senior role.

Similarly, the condition c corresponding to the

unrestricted A-hierarchy implies that if user u can

activate role x, and x ty is defined, then user u can

also activate role y even if he is not explicitly assigned

to y. The IA-hierarchy is the most general form and

includes both permission-inheritance and role-

activation semantics.

2.4. A-equivalence, Periodic Time Operators

Given a GTRBAC system, we call the set

containing all the constraints it’s Temporal Constraint

and Activation Base (TCAB). A TCAB T can be

represented as (CURp, CRp, CPRp, CURd, CRd, CPRd, Ca
dr,

Ca
dur, Ca

mr, Ca
mur, Ca

nr, Ca
nur, Ca

nmr, Ca
nmur, Ctr, Cc),

where each component is a constraint type as depicted

in the last column in Table 2.1. Here, we use a

constraint type name to also refer to the set containing

constraints of that type. For example CURp also refers to

the set containing the periodicity constraints on user-

role assignments. In the discussion below, we use a

shorter version, such as T = (CRp, CURp), when only CRp

and CURp are nonempty sets of constraints. The

behavior of a GTRBAC system depends on T, the set

of users Users, the set of roles Roles, the set of

permissions Permissions, and the role hierarchy RH.

Therefore, we can use the tuple (T, Users, Roles,

Permissions, RH) to indicate a GTRBAC configuration.

We use the notation (u
Cf

t
Ý p) to read “u acquires

permission p at time t under configuration Cf”. Next,

we define the notion of a-equivalence between two

GTRBAC configurations.

Definition 2.2 [9](Activity-equivalence): Given a

GTRBAC system with two configurations Cf1 = (T1,

Users, Roles1, Permissions, RH1) and Cf2 = (T2, Users,

Roles2, Permissions, RH2), the configurations Cf1 and

Cf2 are said to be a-equivalent (written as Cf1 ≈ Cf2) if,

for all pairs (u, p) such that u ∈ Users, p ∈
Permissions, the following condition holds:

(u
1Cf

t
Ý p) ↔(u

2Cf

t
Ý p).

Furthermore, if Cf1 ≈ Cfx and Cfx ≈ Cf2, then Cf1 ≈ Cf2

(transitivity).

The a-equivalence between two configurations of a

GTRBAC system indicates that by replacing

Table 2.3 Role hierarchies in GTRBAC

Category Short form Notation The condition c holds

I-hierarchy (x≥ty) ∀p, (x≥ty) ∧ can_be_acquired(p, y, t)→ can_be_acquired(p, x, t)

A-hierarchy (x ty) ∀u, (x ty) ∧ can_activate (u, x, t) → can_activate (u, y, t)

Unrestricted

hierarchies

(No effect of timing
constraints on role) IA-hierarchy (x ty) (x ty) ↔ (x≥ty) ∧ (x ty)

Consistency Property: Let <f1><f2> ∈{≥t, t, t}. Let x and y be distinct roles such that (x<f1>y); then the condition ¬(y <f2> x) must hold.

Table 2.4 Periodic time operators

Relation between

PE1 = (I1, P1) and PE2=(I2, P2)
If the following condition(s) is (are) satisfied

PE1 contained in PE2 (PE1 ⊂ PE2) Sol(I1, P1) ⊂ Sol(I2, P2)

PE1 and PE2 are equivalent (PE1 = PE2) Sol(I1, P1) = Sol(I2, P2)

PE1 and PE2 overlap (PE1 ⊗ PE2) • Sol(I1, P1) Sol(I2, P2) ∅, and ∃ t, t ∈ (Sol(I1, P1) - Sol(I2, P2)), and

• ∃ t, t ∈ (Sol(I2, P2) - Sol(I1, P1))

PE1 and PE2 are disjoint (PE1 ßPE2),
∀t, (t∈ Sol(I1, P1) ∧ t∈ Sol(I2, P2)) → t ∈ (ESol(I1, P1) ESol(I2, P2))

where ESol(I, P) is the set of end points of intervals of (I, P)

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

configuration Cf1 by Cf2, we do not change the accesses

that are allowed for each individual user.

2.5. Minimal Disjoint Set

When multiple periodic time expressions may be

applied on a GTRBAC entity, it is useful to determine

relations between them. The notions of containment,
equivalence, overlapping and disjunction between a

pair of periodic time expressions have been introduced

in [9], which is summarized in definitions in Table 2.4.

Note that the fourth part of the definition implies that if

only endpoints of the intervals of two periodic

expressions are common, then they are considered

disjoint.

Ideally, we want to compute a disjoint set of

periodic expressions that is minimal so that these can

be associated with temporally distinct roles. The next

definition expresses the notion of minimal disjoint set
(MDS) over a set of periodic expressions.

Definition 2.3 [9] (Minimal Disjoint Set): Let PE=

{PE1, PE2, …, PEn} be a set of arbitrary periodic

expressions. The minimal disjoint set (MDS) over PE

is the least set of disjoint periodic expressions, MDSPE,

defined as:

MDSPE = minm{PE'i | 1 ≤ i ≤ m}, such that the
following hold,

1. for all 1 ≤ i, j ≤ m, 1 ≤, i j, PE'i ß PE'j.

2. Sol(PE’1) ∪ Sol(PE’2) ∪ ... ∪ Sol(PE’m) =

Sol(PE1) ∪ Sol(PE2) ∪ ... ∪ Sol(PEn),

3. for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, PE'i ⊂ PEj or PE'i ß PEj

In the definition, the first and second condition

indicate that the MDS contains a disjoint set of

periodic expressions containing all time instants that

are exactly contained in all the original set of periodic

expressions PEis. The third condition ensures that each

PE’i contains time instants that entirely belong to some

PEj. Associated with an MDS, minimal subset (MS) of
a periodic expression over a MDS is defined as

follows.

Definition 2.4 [9] (Minimal subset (MS) for a

periodic expression over a MDS): Let MDSPE =

minm{PE'i | 1 ≤ i ≤ m} be a minimal disjoint set over
PE= {PE1, PE2, …, PEn}; The minimal subset (MS)

for a periodic expression PEj ∈ PE over the MDSPE is

the set MSPEx(MDSPE) = {PE’π1, PE’π2, …, PE’πk} ⊆
MDSPE, 1 ≤ k ≤ m such that,

• mink{πk | 1 ≤ i ≤ k, πi ∈ {1, 2, …, m}}, and

• for each t ∈ Sol(PEx), there is exactly one y ∈ {π1,

π2, …, πk} such that (t ∈ Sol(PE’y)

We see that MS of a periodic expression PEx of PE

is the minimal subset of MDSPE that collectively

contains all the time instants of PEx. Before presenting

an example for MDS and MS, we first show some

formal properties related to the computation of MDS

and MS. We write
iMDSPE to mean MDS of the first i

periodic expressions of PE, i.e., {PE1, PE2, …, PEi}

Property 1 (Bounds for size of MDS) [9]: Given a
set of periodic expressions PE = {PE1, PE2, ..., PEn}, if

MDSPE = {PE’1 , PE’2, ..., PE’m} and sn = |MDSPE|

then 1 ≤ sn ≤ (2
n
- 1).

Property 2 (Bounds for size of MS) [9]: Given a

set of periodic expressions PE = {PE1 , PE2, ..., PEn}

and MDSPE = {PE’1 , PE’2, ..., PE’m} if pn = |MSPE1| +

|MSPE2| + … + |MSPEn|, then n ≤ pn ≤ n2
n-1

.

Example 2.1: To simplify notation, we consider the

Daytime of the days listed in a periodic expression. For

example, if PE = {Sun}, we mean the interval (9am,

9pm) or daytime of a Sunday. Let PEA = {Sun, Mon,

Tue, Wed, Thu, Fri}, PEB = {Sun, Tue}, PEC = {Sun,

Tue, Thu, Fri}, PED = {Sun, Mon, Tue, Wed, Sat}, PEE

= {Thu, Fri}. The following steps illustrate the

computation of MDS{PEA, PEB, PEC, PED, PEE }.
1. MDS{PEA, PEB} = {{Sun, Tue}, {Mon, Wed, Thu, Fri}}

2. MDS{PEA, PEB, PEC} = {{Sun, Tues}, {Thu, Fri}, {Mon,

Wed}}

3. MDS{PEA, PEB, PEC, PED} ={{Sun, Tues},{Thu, Fri}, {Mon,

Wed}, {Sat}}

4. MDS{PEA, PEB, PEC, PED, PEE } = {{Sun, Tues}, {Thu, Fri},

{Mon, Wed}, {Sat}}

We get, PE’1={Sun, Tue}, PE’2={Thu, Fri},

PE’3={Mon, Wed}, PE’4={Sat}

Hence, we see that,
1. MSPEA(MDS{PEA, PEB, PEC, PED, PEE}) = {PE’1, PE’2, PE’3}.

2. MSPEB(MDS{PEA, PEB, PEC, PED, PEE}) = {PE’1}

3. MSPEC(MDS{PEA, PEB, PEC, PED, PEE}) = {PE’1, PE’2}.

4. MSPED(MDS{PEA, PEB, PEC, PED, PEE}) = {PE’1, PE’3, PE’4}.

5. MSPEE(MDS{PEA, PEB, PEC, PED, PEE}) = {PE’2}.

3. Time based Interoperation Framework

In this paper, we focus mainly on the algorithms to

extend a local GTRBAC policy to facilitate inter-

domain accesses. We assume that the negotiation

phases have been successfully completed and the

access request has been mapped to a set of local

permissions. That is, the external domain needs to be

allowed to acquire the mapped local permission set.

Figure 3.1 illustrates the proposed interoperation

framework. Assuming two domains interoperate, each

domain first sends the access requirements to the other.

Due to space limitation we do not address the trust

negotiation issues that may be employed at this time.

Once the requirements have been received, the requests

are fulfilled by identifying or creating roles with the

requested permissions. The external roles are mapped

to exported roles as A-hierarchy relation – this

semantically means, the external entity has to activate

the specified exported roles in the other domain. At

this time, the provider domain can establish activation

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

conditions to capture this mapping. The exported roles

are themselves made I-seniors of other local roles that

satisfy the requested accesses to ensure that the

external entities do not activate other local roles. By

using this A and I hierarchy structure, we prevent the

transitivity of the activation semantics that is usually

the underlying problem in inter-domain accesses [5].

We use the conventions shown in Figure 3.2 for our

discussion. A hexagon represents a user, a square

represents a permission, a circle represents a role and a

double circle represents a role through which some or

all of the permissions requested by the requesting

domain can be acquired.

Author names and affiliations are to be centered

beneath the title and printed in Times 12-point, non-

boldface type. Multiple authors may be shown in a

two- or three-column format, with their affiliations

italicized and centered below their respective names.

Include e-mail addresses if possible. Author

information should be followed by two 12-point blank

lines.

3.1. Non-temporal Inter-domain Access

In general, for a requested permission set Preq, the

following situations may arise in a local domain:

1. there is a set of roles, possibly hierarchically

related, through which Preq can be exactly acquired.

2. there is a set of roles, possibly hierarchically

related, for which Preq is a subset of permissions

that can be acquired. That is, the set of roles include

some other permissions as well.

3. there is a set of roles, possibly hierarchically

related, through which only a sub-set of Preq can be

acquired, as in cases 1 and 2.

In the first case, we need to simply identify the role

set required to satisfy Pr and allow them to be assigned

to the designated external entities. In the second case,

we need to do some additional transformation, which

may involve creating new roles, to get a role set that

exactly provides Preq to the external entities. In the

third case, we can split Preq into two subsets Preq1 and

Preq2 such that Preq1 relates to the first case and Preq2

refers to the permission set that are not available

through any existing role. We can then create a new

role for Preq2 and add that role to the set that satisfies

Preq1 to generate the role set that satisfy Preq. In all the

cases, any transformation need to ensure that the

original permission acquisition semantics is not lost;

i.e., each local user still has the same set of accesses

allowed in the transformed policy configuration.

Figure 3.3(a) illustrates a simple example where a

user u is assigned to role r to which permissions pa and

pb are assigned. Assume that Preq = {pa, pb}. This

conforms to the first case discussed earlier. It is

obvious that the request can be satisfied if the external

entity is mapped to role r, indicated by a double circle.

If Preq = {pa}, it conforms to the second case. Here,

role r cannot be assigned to the external entity as that

would allow the external entity to acquire an extra

permission pb. In such a case, following

transformations may be applied to satisfy the access

requirements

1. Split the original role: The role r may be split as

shown in Figure 3.3(c). New role ra now exactly

has Preq, and the other role now has the remaining

permission pb. Role ra can now satisfy the access

requirements. However, we note that the user who

was originally assigned to the split role r now needs

to be assigned to both ra and rb in order to maintain

his original access capabilities.

2. Augment local hierarchy: Instead of replacing r

with two new roles, we can simply create role ra as

an I-junior of role r (i.e., r ≥I ra) as shown in Figure

3.2(a). Here ra can now satisfy the access request.

Note that the second solution is more efficient than

the first one for several reasons. Firstly, the number of

permission assignments (to ra and rb in Figure 3.2(c))

and de-assignments (from role r in Figure 3.2(c))

involved are less. Secondly, if there are many users

assigned to the original role r, then the first solution

Function Definition
Pas(r) {p| p_assigned(p, r, t) }

Pat(r) {p| can_be_acquired(p, r, t)}

Preq Set of permission requested by an
external domain

Figure 3.2: Sharing partial permissions

Domain 1 Domain 2

Subset of roles in domain 1 through

which domain 2 will be accessed

Subset of roles in domain 2 through

which domain 1 will be accessed

A-hierarchy

relations only

Set of roles

exported to

domain 2

Set of roles

exported to

domain 1

I-hierarchy

relations only

Figure 3.1: Sharing in loosely coupled environment

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

involves many more user-role assignments (to the new

roles) and de-assignments (from the original role).

Figure 3.3 shows slightly more complex case,

where multiple roles that satisfy the access request may

be in the same hierarchy. It shows a GTRBAC policy

consisting of two hierarchically related roles, r1 and r2,

i.e., r1 <f> r2, <f> ∈{I, A, IA}. Assume user u1 is

assigned to role r1. Permission p1a and p1b are assigned

to r1 and p2a and p2b are assigned to r2.

In Figure 3.3(a), Preq = {p1a, p1b, p2a, p2b}. We note

that Preq = Pat(r1) when <f> = {I, IA} – hence r1

satisfies the request. However, if <f> = A then both r1

and r2 are needed to satisfy the request because Pat(r1)

= Pas(r1) = {p1a, p1b} and Pat(r2) = Pas(r2) = {p2a, p2b}.

Next assume that, Preq = {p1a, p2a, p2b}, as shown in

Figure 3.3(b). Note that the request cannot be satisfied

exactly from the existing GTRBAC configuration.

However, using an approach similar to Figure 3.2(d)

we can satisfy the request. Here, we can create a new

role r1a which becomes an I-junior of r1 and reassign

p1a to it. Now Preq can be exactly satisfied through r1a

and r2. Note that <f> can be either I or IA. <f> can also

be A as there is no relation between r1a and r2 in the

transformed hierarchy. The same technique can be

used in other cases where Preq={p1a, p1b} and Preq={p1a,
p2a}.

Next, we present an algorithm FindRoleSet that

finds the set of roles that satisfies a requested

permission set Preq. The algorithm does necessary

transformation to generate the exactly matching role

set for cases 1 and 2. The algorithm assumes that the

roles of the hierarchy are visited in a breadth first

search, assuming that there is single senior-most role.

In general, it is not necessary that there is one single

senior-most role. In such cases, we can easily create a

senior-most role with the original senior-most roles

acting as the juniors or simply assume an initial order

among the senior-most role to start the algorithm. The

algorithm collects those roles that collectively satisfy

the maximum subset of the requested permission set.

Once the roles are collected, we can now create a new

role that is an I-senior of all of them. This role can now

be an exported role. If there is one single role that

satisfies the entire requested permission set and it has

only I-juniors then, that role can itself be an exported

role. These steps make sure that the external entities

Figure 3.3 Interoperation through hierarchy

Algorithm FindRoleSet(Preq)
Input Preq // permission set requested to be shared

Output Rreq // a set of role which need to acquire Preq

Initialize a set Rreq = ∅
R is set of local roles // Assume roles sorted using BFS

H is set of role hierarchy relationships

PR is set of (p, r) which permission p is assigned to role r
R’ = R // R’ is the set of role of the original configuration

FOR each role r ∈ R’ DO

 // All uthorized permissions are needed

 IF (Pat(r) ⊆ Preq) ∧ (Pat(r) ∅) THEN

Preq = Preq - Pat(r)

Rreq = Rreq ∪ {r}
 // only some authorized permissions are needed

 ELSE IF Pat(r) Preq ∅ THEN

 // all assigned permissions are needed

IF (Pas(r) ⊆ Preq) ∧ (Pas(r) ∅) THEN

Preq = Preq - Pas(r)

IF r has junior role with only A-Hierarchy OR
 no junior role THEN

 Rexport = Rexport ∪ {r}
Preq = Preq - Pas(r)

 ELSE // r has junior role with I or IA Hierarchy

R = R ∪ {rreq} // Create new role rreq

 H = H ∪ r ≥I rreq // Create rreq I-junior to r

 FOR each p ∈ Pas(r) DO

PR = PR ∪{(p, rreq)} - {(p, r)}

 END FOR

Rreq = Rreq ∪ {rreq}

 END IF

 // only some assigned permissions are needed

 ELSE IF Pas(r) Preq ∅ THEN

R = R ∪ {rreq}

 H = H ∪ (r ≥I rreq)

 FOR each p ∈ Pas(r) Preq DO

PR = PR ∪{(p, rreq)} - {(p, r)}

 END FOR

Rreq = Rreq ∪ {rreq}

Preq = Preq - Pas(r)
 END IF // no assigned permissions are needed

 END IF // case of indirectly assigned permission

will be checked in the next role r

END FOR

// Refers to Case 3 – some permissions are not available

through existing roles

IF Preq ∅ THEN

 R = R ∪ {rnew}

 Assign Preq to rnew

Rreq = Rreq ∪ { rnew }

RETURN Rreq

Figure 3.4: Algorithm FindRoleSet()

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

are do not have authorization to activate other (sub)

roles because of the I or IA hierarchies that may exist

between the exported roles and the internal roles. The

modified GTRBAC configuration is essentially a-

equivalent to the original configuration. This is

because the transformation involves splitting or roles,

reassignments of users and permissions, or

restructuring of the hierarchy to ensure that the local

users are still authorized to the same permissions that

they were authorized for before the new policy

configuration is created. Due to space limitation, we

omit the formal proof.

3.2. Time-based Inter-domain Access

In real world applications, we also encounter

temporal requirements with respect to the when and

how long the inter-domain accesses need to be

allowed. For instance, an external auditor may need to

be given access to sensitive financial information only

during certain time of the day. Such requirements may

be needed to ensure proper availability of resources,

supporting personnel to provide assistance (e.g.,

collaborating internal and external auditors), etc., when

needed. In subscription based systems, time factor

related to access may be cost related. For instance, a

subscriber may choose to access stock information

only between 7PM- 9PM to ensure maximum use of

information he gets at a lower subscription rate for

only two hours per week. Furthermore, although the

domain that requests permission may not have time

constraints, it is possible that the provider domain will

have. As done in the earlier example, an exported role

that is made I-senior of the set of roles that satisfy the

request is created. We follow the similar semantics in

the case when the inter-domain accesses need to also

satisfy the timing constraints. We assume that all the

local roles have temporal constraints on its role

enabling. If the external entity does not have its

temporal requirements, the access is bounded by the

temporal constraints of the local roles that satisfy the

requested permission. In that case, we can simply use

the algorithm presented earlier. However, there may be

specific temporal requirements identified for the

external entity when it accesses its local resources

though cost-based negotiation.

Figure 3.5 shows a simple case, where role r

matches exactly with the temporal as well as requested

permission requirements of the external domain (the

local role’s temporal constraint is not shown). In such a

case the external entity is simply mapped to role r

(indicated by the dotted line) as shown in Figure 3.5(a).

However, as discussed earlier, in a general case, we

prefer to create a role r’ that is exported because if role

r has A or IA juniors then the activation semantics is

propagated and the external entity may be able to

activate other roles in the hierarchy.

In general, the time-based availability of a set of

permissions can be captured by using role enabling

time constraint [8]. If the temporal requirement from

the external domain has an exactly matching enabling

time constraint of a local role, then we can simply map

the external role to that role without changing the

original configuration, provided that requested

permission set is also exactly satisfied by the local role.

However, creating a separate role to be exported role is

more preferable as discussed in section 3.1. If there is

no local role that can exactly match the temporal and

permission requirements then the existing policy has to

be augmented to capture those requirements to

determine roles that can be exported. Four techniques

that can be used to modify the local configuration

based on the requested temporal constraint are

explored: (a) converting temporal enabling time

constraint to temporal constraints on permission-role

assignment [9] (b) creating a special exported role (c)

Figure 3.5 An example where tc matches t

Figure 3.6: The four techniques to handle the time-

based inter-domain access

r

p
a

p
b

r

p
a

p
b

(a)
Original role and

permissions

r

r'

p
a

p
b

I

(b)

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

creating roles with temporal constraints corresponding

to the MDS of the external domain’s requirement and

that of the provider domain [9] and (d) combining

MDS technique with a new exported role. Figure 3.6

shows the examples of each technique. The temporal

constraint tc represents the requirement of the

requesting domain and t represents role enabling time

constraint on a local role that matches the requested

permission set. The role with a connected dotted line is

mapped with the role from the external domain. In the

first technique, the temporal constraint t on role

enabling time is converted to temporal constraints on

permission-role assignment constraints – each

assignment uses the same temporal constraints

expression t. The role enabling time constraint of the

local role is then set to tc. It is easy to see that this

technique is applicable only when t ⊂ tc. This is

because, if t ⊂ tc does not hold then there will be some

instants in t that are not in tc, in which the users

assigned to the local role may not be able to acquire the

permissions assigned to the local role as it will be

disabled at that time. The second technique is to create

an exported role r with enabling time constraint tc.

This technique is suitable if there are multiple temporal

constraints (e.g., presence of both periodicity and

duration time constraints). Furthermore, the local

policy will not have to be modified. The third

technique is based on MDS computation and is shown

in Figure 3.6(c). Here the local role is temporally split

into roles corresponding to the MDS of the tc and t. In

this case permission-role assignment has to be

restructured and can become very complex. Also this

technique is only applicable for periodicity time

constraint [9]. The fourth technique combines the MDS

computation and the exported role techniques.

Exported roles are created with enabling time

constraints corresponding to the temporal constraints

of the MDS of tc and t and an I-hierarchy is created

from these roles to the local role with t. This technique

will reduce both of the number of roles to be created

and the number of permission-role re-assignments. The

local role and its assignments need not be modified. A

single exported role can be created as I-senior of all the

temporal exported roles created to facilitate mapping to

a single role. This approach is appropriate for more

complex scenarios where multiple local roles or

temporal constraints are involved. Note that in Figure

3.6 we only illustrate a simple case of one tc and one t.

We propose FindRoleSetWithTime algorithm, shown in

Figure 3.7 that use the exported role technique for

duration time constraint and non-temporal

requirements. For periodicity time constraints, it uses

the fourth technique. We assume that the requirements

of an external domain is represented as DOM_REQi =

{(di, {(Pij, RTij)}) | 1 j n} where di represents a

requesting external domain, Pij represents the requested

permission set and RTij = {(r, tc)}, where r is a role in

domain di through which a user needs to acquire Pij in

time instants in tc. RTij indicates that the same

permissions may need to be acquired by users in the di

at different times through different roles. Given the

requirement, the algorithm creates an inter-domain

mapping to provide the requested permissions

Algorithm: FindRoleSetWithTime ()

Input: DOM_REQ // contains the requirements of each domain
Output: POLICY_REL // contains the inter-domain policy

Initialize each set of POLICY_REL, PE_REQ and D_REQ = ∅
FOR each DOM_REQi of DOM_REQ DO

FOR each (Pij, RTij) of DOM_REQi DO

FOR each (r, tc) of RTij DO

 IF tc is a periodicity time constraint THEN

 // Create list of requirement with periodic constraint

 PE = PE ∪ {tc}

 PE_REQ = PE_REQ ∪{(r, tc)}
 ELSE IF tc is a duration time constraint THEN

 // Create requirement list with duration constraints

 D_REQ = D_REQ ∪{(r, tc)}

 ELSE

 // Create list of requirement no constraint

D_REQ = D_REQ ∪{(r, ∞)}

 END

 END FOR

// identify local roles for acquiring Pij

 Local_R = identifyRoles(Pij)

Initialize set EXPORTED_R = ∅
 MDSPE = computeMDS(PE)
 FOR each (ri, PEi) of PE_REQ DO

 // ri is a role from the external domain which needs Pij

 // during tc = PEi

MSPEi = computeMS(PEi, MDS(PE))

FOR each PEi’ of MSPEi DO

IF no exported_r ∈ EXPORTED_R which has enabling
time constraint = PEi’ THEN

R = R ∪ {exported_r}

Set exported_r enabling time constraint = PEi’

END IF

FOR each r in Local_R DO

H = H ∪ exported_r ≥I r

END FOR

POLICY_REL = POLICY_REL ∪ (exported_r, ri, di)

 END FOR

END FOR

// For requirement with duration or non-temporal constraint
 FOR each (ri, Di) of REQ DO

R = R ∪ {exported_r}

IF Di ∞ THEN

 Set exported_r enabling time constraint = Di

 END IF

 POLICY_REL = POLICY_REL ∪ (exported_r, ri, di)

 END FOR

END FOR

RETURN POLICY_REL

Figure 3.7: Algorithm FindRoleSetWithTime ()

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

according to the specified time constraints. Here, the

algorithm considers all requesting domains

DOM_REQi, 1 i m. Using the notion of a-
equivalence between two configurations of a GTRBAC

system, we can easily show that the modified

GTRBAC policy is a-equivalent to the original. Due to

space limitation, we omit the formal proof.

4. Related Work

Several research efforts have been devoted to the

topic of policy composition in multi-domain

environment [2, 3, 5]. The problem of secure

interoperation has been addressed in literature in the

context of multi-level security (MLS) model. [2, 3, 5].

Dawson et. al. [3] have discussed a mediator based

framework for establishing secure interoperation

among heterogeneous systems with lattice based access

control policies. MLS based approach is static in nature

and is very restrictive in nature. RBAC based secure

interoperation has being recently pursued as a practical

approach to solve the multi-domain problem [11].

Shafiq et al. [11] allows policy integration between

multiple RBAC policies using an Integer programming

approach. The main purpose is to maximize inter-

domain information exchange for enterprise-wide

system and collaboration environment it has a conflict

resolution and constraint relaxing using integer

programming to get a solution based on some optimal

criteria RBAC policy. However, such an approach is

suitable more for tightly coupled environments.

Furthermore, time-based secure interoperation has not

been addressed by earlier models. Several work such as

[1] address trust negotiation and trust management

issues that can complement the proposed framework

for generating a holistic solution for multi-domain

environments.

5. Conclusions

In this paper, we have presented our preliminary

work on temporal RBAC based policy mapping

between two loosely coupled interacting domains for

sharing information and resources. The algorithms

presented transforms local policies in such a way that

the modified policies still respects the original

authorizations for the local users while separating roles

that can now be provided to the external entities to

allow them access the requested resources and

information. The work is being extended in several

directions. Firstly, tools and techniques are needed to

administer the overall evolving policies. As policies

change the mappings between two domains may

change and hence restructuring it may be needed to

maintain inter-domain accesses. The proposed

framework needs to be integrated with trust negotiation

mechanisms to facilitate the overall system

implementation. The presented work considers only

two domains, and needs to be extended to generate

scalable techniques for any number of domains.

References
[1] M. Blaze, J. Feigenbaum, J. Ioannidis, and A.

Keromytis, “The KeyNote Trust-Management System

Version 2.” Internet RFC 2704, September 1999.

[2] P.A. Bonatti, M. L. Sapino, V.S. Subrahmanian,

“Merging Heterogeneous Security Orderings,”

ESORICS 1996, pp. 183-197.

[3] S. Dawson, S. Qian, and P. Samarati, "Providing Security

and Interoperation of Heterogeneous Systems,"

International Journal of Distributed and Parallel

Databases. 8(1), pp 119-145.

[4] E. Cohen, R. K. Thomas, W. Winsborough, and D.

Shands “Models for Coalition-based Access Control,”

Seventh ACM Symposium on Access Control Models

and Technologies, , June 2002, pp. 97 – 106.

[5] L. Gong and X. Qian, “Computational Issues in Secure

Interoperation”, IEEE Transaction on Software and

Engineering, Vol. 22, No. 1, January 1996.

[6] J. B. D. Joshi, A. Ghafoor, W. Aref, E. H. Spafford,

“Digital Government Security Infrastructure Design

Challenges,” IEEE Computer, Vol. 34, No. 2, February

2001, pp 66-72.

[7] J. B. D. Joshi, R. Bhatti, E. Bertino, A. Ghafoor, “An

Access Control Language for Multidomain

Environments,” IEEE Internet Computing, Nov-Dec

2004, pp 40-50.

[8] J. B. D. Joshi, E. Bertino, U. Latif, A. Ghafoor.

Generalized Temporal Role Based Access Control

Model. IEEE Transactions on Knowledge and Data

Engineering, 17 (1), Jan, 2005, pp 4-23.

[9] J. B. D. Joshi, E. Bertino, A. Ghafoor, “Analysis of

Expressiveness and Design Issues for a Temporal Role

Based Access Control Model," IEEE Transactions on

Dependable and Secure Computing (Accepted).

[10] L. Pearlman, V. Welch, Ian Foster, Carl Kesselman, S.

Tuecke, “A Community Authorization Service for

Group Collaboration,” 2002 IEEE Workshop on Policies

for Distributed Systems and Networks.

[11] B. Shafiq, J. B. D. Joshi, E. Bertino, A. Ghafoor,

“Secure Interoperation in a Multi-Domain Environment

Employing RBAC Policies, IEEE Transactions on

Knowledge & Data Engg. (Accepted).

[12] E. Bertino et. al. X -TNL: An XML-based Language for

Trust Negotiations. Proceedings of the 4th IEEE

International Workshop on Policies for Distributed

Systems and Networks. 2004.

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

