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Abstract 

In emerging e-commerce applications, time 

constrained information sharing between different 

systems is becoming a common phenomenon. A flexible 

and efficient mechanism is needed to support short 
term time-based sharing policies between transient 

partners. In particular, the interacting domains need to 

establish a time-based inter-domain access policy 

without violating the original time-based security 

policies of the individual systems. In this paper, we 
address this issue using the Generalized Temporal 

Role Based Access Control (GTRBAC) framework. The 

proposed mechanism involves a system processing an 

inter-domain access requirement specification to 

extend or restructure its local GTRBAC policy with 

proper temporal constraints to allow its external 
partner domain to access its resources. The 

transformed local GTRBAC policy facilitates the inter-

domain accesses while still conforming to the original 

local policy requirements.  

1. Introduction 

An important requirement of emerging systems is to 

be able to share information with other systems [5, 6]. 

When a system needs to allow previously unknown 

entities to access its resources, mechanisms should be 

in place to ensure that the accesses granted are limited 

to pre-defined sharing requirements. When such inter-

domain accesses are allowed between multiple systems 

with individual systems employing its own security 

policies, the systems are said to form a multi-domain 

environment. The accesses allowed may be time-

constrained to ensure that resources are made available 

only when required. For instance, if a company is 

providing a consulting service to a bank for a specified 

period of time, then the bank needs to ensure that the 

required information and other resources are made 

available to the consulting company within relevant 

intervals of time within their contractual period. Such 

multi-domain environments have manifested in various 

forms of emerging systems. Those particularly 

becoming prominent include web-services, peer-to-

peer systems, grid-based systems, etc. [7, 10]. 

Multidomain environments can be loosely or tightly
coupled (federated) [7]. In a loosely coupled 

environment, independent systems dynamically agree 

to share information for a brief period of time. In a 

federated multi-domain environment, one system is 

typically designated as the master and others as local 

domains. The master is responsible for mediating 

accesses to individual systems by maintaining a global 

policy. Such systems may also characterize merged 

organizational systems, in which the policies are 

integrated.  

In this paper, we emphasize that when 

requirements-driven interoperation is needed in a 

loosely coupled environment there should be a sound 

mechanism to facilitate an external entity to access its 

resources by mapping external entities to local entities, 

which may need to be newly created (such as roles) to 

be created to fulfill requested access. While there has 

been several work done in the areas of policy 

integration and trust negotiation/management [1, 4, 

12], we believe the approach we present is simple, 

intuitive and more desirable for a loosely coupled 

environment. Existing policy integration work focuses 

on creating a new complex policy by combining the 

multi-domain policies [2, 11] – such an approach is 

more suited to tightly coupled environments and is 

usually very complex. Existing work on trust 

negotiation do not address policy mapping issues and 

focus on establishing trust between unknown partners 

[7]. Hence, the work presented here can be combined 

with trust negotiation techniques to generate a holistic 

solution to secure interoperation in loosely coupled 

environments that characterize many of the currently 

emerging applications such as P2P and mobile 

applications.  

In this paper, we assume that a pair of security 

domains trying to interoperate employs Generalized 
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Temporal RBAC policies. The requesting domain 

specifies its access requirements and the provider 

domain reconfigures or extends its local policy to 

satisfy them by creating “exported” roles.  

The paper is organized as follows. In Section 2, we 

present background on the GTRBAC framework 

particularly relevant to the present secure-

interoperation approach. In Section 3, we present our 

approach and the algorithms for inter-domain policy 

generation that incorporates temporal access control 

requirements. We present related work in Section 4 and 

conclude in Section 5. 

2. GTRBAC Overview  

2.1. Periodic Expression 

The GTRBAC framework uses periodic time to 

express temporal constraints. Periodic time is 

represented by as a tuple à[begin, end], Pð, where P is a 

periodic expression denoting an infinite set of periodic 

time instants, and [begin, end] is a time interval 

denoting the lower and upper bounds for the instants in 

P [8]. The periodic time uses the notion of calendar

defined as a countable set of contiguous intervals. We 

assume a set of calendars containing the calendars 

Hours, Days, Weeks, Months, and Years, where Hours

is the calendar with the finest granularity. Given two 

calendars C1 and C2, C1 is said to be a sub-calendar of 

C2, written as C1 C2, if each interval of C2 is 

covered by a finite number of intervals of C1.

Calendars can be combined to represent more general 

periodic expressions denoting periodic intervals such 

as the set of Mondays.

Definition 2.1 (Periodic time): A periodic 

expression P is defined as: P = ä =

n

i 1
Oi.Ci x.Cd,

where, Cd, C1, .., Cn are calendars,O1 = all, Oi ∈ 2 ∪
all , Ci Ci-1 for i = 2,.., n, Cd Cn, and x ∈ .

Symbol separates the first part of the periodic 

expression indicating the set of starting points of the 

intervals, from the specification of the duration of each 

interval in terms of calendar Cd. For example, 

{all.Years + {3, 7}.Months  2.Months} represents 

the set of intervals having a duration of 2 months with 

their starting times synchronized with the same instant 

as the third or the seventh month of every year. A set 

of time instants corresponding to a periodic expression 

P is denoted by Sol(I, P).  

2.2. The GTRBAC Model 

The GTRBAC model introduces the separate notion 

of role enabling and role activation, and provides  

Table 2.1 Constraint Expressions 

Categories Constraints Expression Type 
User-role assignment (I, P, pr:assignU/deassignU r to u) CUrp

Role enabling (I, P, pr:enable/disable r) CRp

Periodicity 
Constraint 

Role-permission assignment (I, P, pr:assignP/deassignP p to r) CPRp

User-role assignment ([(I, P)| D], DU, pr:assignU/deassignU r to u) CUrd

Role enabling ([(I, P)| D], D R, pr:enable/disable r ) CRd

Duration 
Constraints 

Role-permission assignment ([(I, P)| D], D P, pr:assignP/deassignP p to r) CPRd

Per-role ([(I, P)| D], Dactive, [Ddefault], pr:activeR_total r) Ca
drTotal active role 

duration Per-user-role ([(I, P)| D], Duactive, u, pr:activeUR_total r) Ca
dur

Per-role ([(I, P)| D], Dmax, pr:activeR_max r ) Ca
mr

Duration 
Constraints on 

Role Activation Max role duration per 

activation Per-user-role ([(I, P)| D], Dumax, u, pr:activeUR_max r) Ca
mur

Per-role ([(I, P)| D], Nactive, [Ndefault], pr:activeR_n r ) Ca
nrTotal no. of activations 

Per-user-role ([(I, P)| D], Nuactive, u, pr:activeUR_n r) Ca
nur

Per-role ([(I, P)| D], Nmax, [Ndefault], pr:activeR_con r) Ca
nnr

Cardinality 

Constraint on 
Role Activation 

Max. no. of concurrent 

activations Per-user-role ([(I, P)| D], Numax, u, pr:activeUR_con r) Ca
nmur

Trigger E1 ,…, En , C1 ,…, Ck     → pr:E after t Ctr

Constraint 

Enabling 
pr:enable/disable c

where c ∈{(D, Dx, pr:E), (C) , (D, C)} 

Cc

Users’ activation request (s:(de)activate r for u after t)) Cu

(pr:assignU/de-assignU r to u after t) Cadmin

(pr:enable/disable r after t) Cadmin

(pr:assignP/de-assignP p to r after t) Cadmin

Run-time 

Requests 

Administrator’s run-time request 

(pr:enable/disable c after t) Cadmin
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 constraints and event expressions associated with 

both [8]. An enabled role indicates that a valid user can 

activate it, whereas an activated role indicates that at  

the least one user has activated the role. The basic 

GTRBAC model proposed in [8], allows specification 

of the following set of constraints: (i) Temporal 

constraints on role enabling/disabling allow 

specification of intervals and durations in which a role 

is enabled; (ii) Temporal constraints on user-role and 
role-permission assignments allow specifying intervals 

and durations in which a user or permission is assigned 

to a role; (iii) Activation constraints: These constraints 

allow specification of restrictions on the activation of a 

role. These include, for example, specifying the total 

duration for which a user may activate a role, or the 

number of concurrent activations of the role at a 

particular time; (iv) Run-time events allow an 

administrator and users to dynamically initiate the 

various role events, or enable the duration or activation 

constraints; (v) Constraint enabling events that enable 

or disable duration and role activation constraints 

mentioned earlier; and (vi) Triggers that allow 

expressing dependencies among events and conditions 

Table 2.1 summarizes the constraint types and 

expressions of the GTRBAC model. The periodic time 

expression and duration expressions are used to 

express temporal constraints. D expresses the duration 

specified for a constraint. In the duration and role 

activation constraint expressions, Dx and Nx indicate 

the constrained durations and cardinalities. If the 

subscript x starts with u then it is a per-user-role 

constraint otherwise it is a per-role constraint. For 

instance, Dactive indicates how long the specified role 

can be active, whereas, Duactive indicates the duration 

for which the specified user may activate the specified 

role. The following example illustrates the 

specification of a GTRBAC policy. In the duration and 

role activation constraint expressions, Dx and Nx

indicate the constrained durations and cardinalities. If 

the subscript x starts with u then it is a per-user-role 

constraint otherwise it is a per-role constraint. For 

more details, we refer the readers to [8]. 

2.3. Temporal Role Hierarchies  

The GTRBAC model includes different hierarchy 

types and time-based semantics [8]. Various predicate 

notations are used in defining the semantics of these 

hierarchies, as shown in Table 2.2. Predicates 

enabled(r, t), assigned(u, r, t) and assigned(p, r, t)

refer to the status of roles, user-role and role-

permission assignments at time t. Predicate 

can_activate(u, r, t) indicates that user u can activate 

role r at time t implying that user u is implicitly or 

explicitly assigned to role r. active(u, r, s, t) indicates 

that role r is active in user u’s session s at time t

whereas, acquires(u, p, s, t) implies that u acquires 

permission p at time t in session s. The axioms in Table 

2.2 capture the key relationships among these 

predicates and identify precisely the permission-

acquisitions and role-activations allowed in GTRBAC 

[8]. Axiom (1) states that if a permission is assigned to 

a role, then it can be acquired through that role. Axiom 

(2) states that all users assigned to a role can activate

that role. Axiom (3) states that if a user u can activate a 

role r, then all the permissions that can be acquired

through r can be acquired by u. Similarly, axiom (4) 

states that if there is a user session in which a user u

has activated a role r then u acquires all the 

permissions that can be acquired through role r. We 

note that axioms (1) and (2) indicate that permission-

acquisition and role-activation semantics is governed 

by explicit user-role and role-permission assignments.  

Semantically, a role hierarchy expands the scope of 

the permission-acquisition and role-activation 

semantics beyond the explicit assignments through the 

hierarchical relations defined among roles. Within the 

GTRBAC framework, the following three hierarchy 

types have been identified: permission-inheritance-

only hierarchy (I-hierarchy), role-activation-only

Table 2.2 Status predicates 

Predicate Meaning Axioms

enabled(r, t) Role r is enabled at time t 

u_assigned(u, r, t) User u is assigned to role r at time t 

For all r ∈ Roles, u ∈ Users, p ∈
Permissions, s∈ Sessions, and time instant 

t ≥ 0, the following implications hold:

p_assigned(p, r, t) Permission p is assigned to role r at time t 1. assigned(p, r, t)→ can_be_acquired(p, r, t)

can_activate (u, r, t) User u can activate role r at time t 2. assigned(u, r, t) → can_activate (u, r, t)

can_acquire (u,  p, t) User u can acquire permission p at time t 

can_be_acquired(p, r, t) Permission p can be acquired through role r at time t 

3. can_activate (u, r, t) ∧ can_be_acquired(p, r, t)

→ can_acquire (u, p,t)

active(u, r, s, t) Role r is active in user u’s session s at time t 

acquires(u, p, s, t) User u’ acquires permission p in session s  at time t 

4. active(u, r, s, t) ∧ can_be_acquired(p, r, t) →
acquires(u, p, s, t)
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hierarchy (A-hierarchy) and the combined inheritance-

activation hierarchy (IA-hierarchy) [8]. Each of these 

hierarchies may be of restricted or unrestricted type. A 

restricted hierarchy may further be categorized as 

weakly or strongly restricted. In Table 2.3, the 

semantics of each hierarchy type is defined by its 

corresponding condition (c). The condition c for the 

unrestricted I-hierarchy, (x≥ty), implies that if (x≥ty)

holds, then the permissions that can be acquired 

through role x include all the permissions that can be 

acquired through role y. In other words, permissions of 

the junior roles are inherited by the senior role. 

Similarly, the condition c corresponding to the 

unrestricted A-hierarchy implies that if user u can 

activate role x, and x ty is defined, then user u can 

also activate role y even if he is not explicitly assigned 

to y. The IA-hierarchy is the most general form and 

includes both permission-inheritance and role-

activation semantics. 

2.4. A-equivalence, Periodic Time Operators  

Given a GTRBAC system, we call the set 

containing all the constraints it’s Temporal Constraint 

and Activation Base (TCAB). A TCAB T can be 

represented as (CURp, CRp, CPRp, CURd, CRd, CPRd, Ca
dr,

Ca
dur, Ca

mr, Ca
mur, Ca

nr, Ca
nur, Ca

nmr, Ca
nmur, Ctr, Cc), 

where each component is a constraint type as depicted 

in the last column in Table 2.1. Here, we use a 

constraint type name to also refer to the set containing 

constraints of that type. For example CURp also refers to 

the set containing the periodicity constraints on user-

role assignments. In the discussion below, we use a 

shorter version, such as T = (CRp, CURp), when only CRp

and CURp are nonempty sets of constraints. The 

behavior of a GTRBAC system depends on T, the set 

of users Users, the set of roles Roles, the set of 

permissions Permissions, and the role hierarchy RH.

Therefore, we can use the tuple (T, Users, Roles,

Permissions, RH) to indicate a GTRBAC configuration. 

We use the notation (u
Cf

t
Ý p) to read “u acquires 

permission p at time t under configuration Cf”. Next, 

we define the notion of a-equivalence between two 

GTRBAC configurations.  

Definition 2.2 [9](Activity-equivalence): Given a 

GTRBAC system with two configurations Cf1 = (T1, 

Users, Roles1, Permissions, RH1) and Cf2 = (T2, Users,

Roles2, Permissions, RH2), the configurations Cf1 and

Cf2 are said to be a-equivalent (written as Cf1 ≈ Cf2) if, 

for all pairs (u, p) such that u ∈ Users, p ∈
Permissions, the following condition holds:

(u
1Cf

t
Ý  p) ↔(u

2Cf

t
Ý  p).

Furthermore, if Cf1 ≈ Cfx and Cfx ≈ Cf2, then Cf1 ≈ Cf2

(transitivity).

The a-equivalence between two configurations of a 

GTRBAC system indicates that by replacing 

Table 2.3 Role hierarchies in GTRBAC 

Category Short form Notation The condition c holds 

I-hierarchy (x≥ty) ∀p, (x≥ty) ∧ can_be_acquired(p, y, t)→ can_be_acquired(p, x, t)

A-hierarchy (x ty) ∀u, (x ty) ∧ can_activate (u, x, t) → can_activate (u, y, t)

Unrestricted 

hierarchies 

(No effect of timing 
constraints on role) IA-hierarchy (x ty) (x ty) ↔ (x≥ty) ∧ (x ty)

Consistency Property: Let <f1><f2> ∈{≥t, t, t}. Let x and y be distinct roles such that (x<f1>y); then the condition ¬(y <f2> x) must hold.

Table 2.4 Periodic time operators 

Relation between

PE1 = (I1, P1) and PE2=(I2, P2)
If the following condition(s) is (are) satisfied 

PE1 contained in PE2 (PE1 ⊂ PE2) Sol(I1, P1) ⊂ Sol(I2, P2)

PE1 and PE2 are equivalent (PE1 = PE2) Sol(I1, P1) = Sol(I2, P2)

PE1 and PE2 overlap (PE1 ⊗ PE2) • Sol(I1, P1) Sol(I2, P2) ∅, and ∃ t, t ∈ (Sol(I1, P1) -  Sol(I2, P2)), and 

• ∃ t, t ∈ (Sol(I2, P2) -  Sol(I1, P1))

PE1 and PE2 are disjoint (PE1 ßPE2),
∀t, (t∈ Sol(I1, P1) ∧ t∈ Sol(I2, P2)) → t ∈ (ESol(I1, P1) ESol(I2, P2))  

where ESol(I, P) is the set of end points of intervals of (I, P)
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configuration Cf1 by Cf2, we do not change the accesses 

that are allowed for each individual user.   

2.5. Minimal Disjoint Set  

When multiple periodic time expressions may be 

applied on a GTRBAC entity, it is useful to determine 

relations between them. The notions of containment, 
equivalence, overlapping and disjunction between a 

pair of periodic time expressions have been introduced 

in [9], which is summarized in definitions in Table 2.4. 

Note that the fourth part of the definition implies that if 

only endpoints of the intervals of two periodic 

expressions are common, then they are considered 

disjoint. 

Ideally, we want to compute a disjoint set of 

periodic expressions that is minimal so that these can 

be associated with temporally distinct roles. The next 

definition expresses the notion of minimal disjoint set
(MDS) over a set of periodic expressions. 

Definition 2.3 [9] (Minimal Disjoint Set): Let PE=

{PE1, PE2, …, PEn} be a set of arbitrary periodic 

expressions. The minimal disjoint set (MDS) over PE

is the least set of disjoint periodic expressions, MDSPE,

defined as:

MDSPE = minm{PE'i | 1 ≤ i ≤ m}, such that the 
following hold,

1. for all 1 ≤ i, j ≤ m, 1 ≤, i j, PE'i ß PE'j.

2. Sol(PE’1) ∪ Sol(PE’2) ∪ ... ∪ Sol(PE’m) = 

Sol(PE1) ∪ Sol(PE2) ∪ ... ∪ Sol(PEn),

3. for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, PE'i ⊂ PEj or PE'i ß PEj

In the definition, the first and second condition 

indicate that the MDS contains a disjoint set of 

periodic expressions containing all time instants that 

are exactly contained in all the original set of periodic 

expressions PEis. The third condition ensures that each 

PE’i contains time instants that entirely belong to some 

PEj. Associated with an MDS, minimal subset (MS) of 
a periodic expression over a MDS is defined as 

follows. 

Definition 2.4 [9] (Minimal subset (MS) for a 

periodic expression over a MDS): Let MDSPE = 

minm{PE'i | 1 ≤ i ≤ m} be a minimal disjoint set over 
PE= {PE1, PE2, …, PEn}; The minimal subset (MS) 

for a periodic expression PEj ∈ PE over the MDSPE is

the set MSPEx(MDSPE) = {PE’π1, PE’π2, …, PE’πk} ⊆
MDSPE, 1 ≤ k ≤ m such that, 

• mink{πk | 1 ≤ i ≤ k, πi ∈ {1, 2, …, m}}, and 

• for each t ∈ Sol(PEx), there is exactly one y ∈ {π1, 

π2, …, πk} such that (t ∈ Sol(PE’y)

We see that MS of a periodic expression PEx of PE

is the minimal subset of MDSPE that collectively 

contains all the time instants of PEx. Before presenting 

an example for MDS and MS, we first show some 

formal properties related to the computation of MDS 

and MS. We write 
iMDSPE to mean MDS of the first i

periodic expressions of PE, i.e., {PE1, PE2, …, PEi}

Property 1 (Bounds for size of MDS) [9]: Given a 
set of periodic expressions PE = {PE1, PE2, ..., PEn}, if 

MDSPE = {PE’1 , PE’2, ..., PE’m} and  sn = |MDSPE|

then 1 ≤ sn ≤ (2
n
- 1).

Property 2 (Bounds for size of MS) [ 9]: Given a 

set of periodic expressions PE = {PE1 , PE2, ..., PEn}

and MDSPE = {PE’1 , PE’2, ..., PE’m} if pn = |MSPE1| + 

|MSPE2| + … + |MSPEn|, then n ≤ pn ≤ n2
n-1

.

Example 2.1: To simplify notation, we consider the 

Daytime of the days listed in a periodic expression. For 

example, if PE = {Sun}, we mean the interval (9am, 

9pm) or daytime of a Sunday. Let PEA = {Sun, Mon, 

Tue, Wed, Thu, Fri}, PEB = {Sun, Tue}, PEC = {Sun, 

Tue, Thu, Fri}, PED = {Sun, Mon, Tue, Wed, Sat}, PEE

= {Thu, Fri}. The following steps illustrate the 

computation of MDS{PEA, PEB, PEC, PED, PEE }.
1. MDS{PEA, PEB}  = {{Sun, Tue}, {Mon, Wed, Thu, Fri}}

2. MDS{PEA, PEB, PEC} = {{Sun, Tues}, {Thu, Fri}, {Mon, 

Wed}}

3. MDS{PEA, PEB, PEC, PED} ={{Sun, Tues},{Thu, Fri}, {Mon, 

Wed}, {Sat}}

4. MDS{PEA, PEB, PEC, PED, PEE }  = {{Sun, Tues}, {Thu, Fri}, 

{Mon, Wed}, {Sat}}

We get, PE’1={Sun, Tue}, PE’2={Thu, Fri},

PE’3={Mon, Wed}, PE’4={Sat}

Hence, we see that,   
1. MSPEA(MDS{PEA, PEB, PEC, PED, PEE}) = {PE’1, PE’2, PE’3}.  

2. MSPEB(MDS{PEA, PEB, PEC, PED, PEE}) = {PE’1}

3. MSPEC(MDS{PEA, PEB, PEC, PED, PEE}) = {PE’1, PE’2}.

4. MSPED(MDS{PEA, PEB, PEC, PED, PEE}) = {PE’1, PE’3, PE’4}. 

5. MSPEE(MDS{PEA, PEB, PEC, PED, PEE}) = {PE’2}.

3. Time based Interoperation Framework  

In this paper, we focus mainly on the algorithms to 

extend a local GTRBAC policy to facilitate inter-

domain accesses. We assume that the negotiation 

phases have been successfully completed and the 

access request has been mapped to a set of local 

permissions. That is, the external domain needs to be 

allowed to acquire the mapped local permission set.  

Figure 3.1 illustrates the proposed interoperation 

framework. Assuming two domains interoperate, each 

domain first sends the access requirements to the other. 

Due to space limitation we do not address the trust 

negotiation issues that may be employed at this time. 

Once the requirements have been received, the requests 

are fulfilled by identifying or creating roles with the 

requested permissions. The external roles are mapped 

to exported roles as A-hierarchy relation – this 

semantically means, the external entity has to activate 

the specified exported roles in the other domain. At 

this time, the provider domain can establish activation 
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conditions to capture this mapping. The exported roles 

are themselves made I-seniors of other local roles that 

satisfy the requested accesses to ensure that the 

external entities do not activate other local roles. By 

using this A and I hierarchy structure, we prevent the 

transitivity of the activation semantics that is usually 

the underlying problem in inter-domain accesses [5].  

We use the conventions shown in Figure 3.2 for our 

discussion. A hexagon represents a user, a square 

represents a permission, a circle represents a role and a 

double circle represents a role through which some or 

all of the permissions requested by the requesting 

domain can be acquired. 

Author names and affiliations are to be centered 

beneath the title and printed in Times 12-point, non-

boldface type. Multiple authors may be shown in a 

two- or three-column format, with their affiliations 

italicized and centered below their respective names. 

Include e-mail addresses if possible. Author 

information should be followed by two 12-point blank 

lines. 

3.1. Non-temporal Inter-domain Access  

In general, for a requested permission set Preq, the 

following situations may arise in a local domain: 

1. there is a set of roles, possibly hierarchically 

related, through which Preq can be exactly acquired. 

2. there is a set of roles, possibly hierarchically 

related, for which Preq is a subset of permissions 

that can be acquired. That is, the set of roles include 

some other permissions as well. 

3. there is a set of roles, possibly hierarchically 

related, through which only a sub-set of Preq can be 

acquired, as in cases 1 and 2. 

In the first case, we need to simply identify the role 

set required to satisfy Pr and allow them to be assigned 

to the designated external entities. In the second case, 

we need to do some additional transformation, which 

may involve creating new roles, to get a role set that 

exactly provides Preq to the external entities. In the 

third case, we can split Preq into two subsets Preq1 and 

Preq2 such that Preq1 relates to the first case and Preq2

refers to the permission set that are not available 

through any existing role. We can  then create a new 

role for Preq2 and add that role to the set that satisfies 

Preq1 to generate the role set that satisfy Preq. In all the 

cases, any transformation need to ensure that the 

original permission acquisition semantics is not lost; 

i.e., each local user still has the same set of accesses 

allowed in the transformed policy configuration. 

Figure 3.3(a) illustrates a simple example where a 

user u is assigned to role r to which permissions pa and 

pb are assigned. Assume that Preq = {pa, pb}. This 

conforms to the first case discussed earlier. It is 

obvious that the request can be satisfied if the external 

entity is mapped to role r, indicated by a double circle. 

If Preq = {pa}, it conforms to the second case. Here, 

role r cannot be assigned to the external entity as that 

would allow the external entity to acquire an extra 

permission pb. In such a case, following 

transformations may be applied to satisfy the access 

requirements 

1. Split the original role:  The role r may be split as 

shown in Figure 3.3(c). New role ra now exactly 

has Preq, and the other role now has the remaining 

permission pb. Role ra can now satisfy the access 

requirements. However, we note that the user who 

was originally assigned to the split role r now needs 

to be assigned to both ra and rb in order to maintain 

his original access capabilities. 

2. Augment local hierarchy: Instead of replacing r

with two new roles, we can simply create role ra as 

an I-junior of role r (i.e., r ≥I ra) as shown in Figure 

3.2(a). Here ra can now satisfy the access request. 

Note that the second solution is more efficient than 

the first one for several reasons. Firstly, the number of 

permission assignments (to ra and rb in Figure 3.2(c)) 

and de-assignments (from role r in Figure 3.2(c)) 

involved are less. Secondly, if there are many users 

assigned to the original role r, then the first solution 

Function Definition 
Pas(r) {p| p_assigned(p, r, t) } 

Pat(r) {p| can_be_acquired(p, r, t)}

Preq Set of permission requested by an 
external domain 

Figure 3.2: Sharing partial permissions 

Domain 1 Domain 2

Subset of roles in domain 1 through 

which domain 2 will be accessed

Subset of roles in domain 2 through 

which domain 1 will be accessed

A-hierarchy

relations only

Set of roles 

exported to 

domain 2

Set of roles 

exported to 

domain 1

I-hierarchy

relations only

Figure 3.1: Sharing in loosely coupled environment 
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involves many more user-role assignments (to the new 

roles) and de-assignments (from the original role).  

Figure 3.3 shows slightly more complex case, 

where multiple roles that satisfy the access request may 

be in the same hierarchy. It shows a GTRBAC policy 

consisting of two hierarchically related roles, r1 and r2,

i.e., r1 <f> r2, <f> ∈{I, A, IA}. Assume user u1 is 

assigned to role r1. Permission p1a and p1b are assigned 

to r1 and p2a and p2b are assigned to r2.

In Figure 3.3(a), Preq = {p1a, p1b, p2a, p2b}. We note 

that Preq = Pat(r1) when <f> = {I, IA} – hence r1

satisfies the request. However, if <f> = A then both r1

and r2 are needed to satisfy the request because Pat(r1)

= Pas(r1) = {p1a, p1b} and Pat(r2) = Pas(r2) = {p2a, p2b}. 

Next assume that, Preq = {p1a, p2a, p2b}, as shown in 

Figure 3.3(b). Note that the request cannot be satisfied 

exactly from the existing GTRBAC configuration. 

However, using an approach similar to Figure 3.2(d) 

we can satisfy the request. Here, we can create a new 

role r1a which becomes an I-junior of r1 and reassign 

p1a to it. Now Preq can be exactly satisfied through r1a

and r2. Note that <f> can be either I or IA. <f> can also 

be A as there is no relation between r1a and r2 in the 

transformed hierarchy. The same technique can be 

used in other cases where Preq={p1a, p1b} and Preq={p1a,
p2a}.

Next, we present an algorithm FindRoleSet that 

finds the set of roles that satisfies a requested 

permission set Preq. The algorithm does necessary 

transformation to generate the exactly matching role 

set for cases 1 and 2. The algorithm assumes that the 

roles of the hierarchy are visited in a breadth first 

search, assuming that there is single senior-most role. 

In general, it is not necessary that there is one single 

senior-most role. In such cases, we can easily create a 

senior-most role with the original senior-most roles 

acting as the juniors or simply assume an initial order 

among the senior-most role to start the algorithm. The 

algorithm collects those roles that collectively satisfy 

the maximum subset of the requested permission set. 

Once the roles are collected, we can now create a new 

role that is an I-senior of all of them. This role can now 

be an exported role. If there is one single role that 

satisfies the entire requested permission set and it has 

only I-juniors then, that role can itself be an exported 

role. These steps make sure that the external entities 

Figure 3.3 Interoperation through hierarchy

Algorithm FindRoleSet(Preq)
Input Preq // permission set requested to be shared

Output Rreq  // a set of role which need to acquire Preq

Initialize a set Rreq = ∅
R is set of local roles   // Assume roles sorted using BFS 

H is set of role hierarchy relationships 

PR is set of (p, r) which permission p is assigned to role r
R’ = R // R’ is the set of role of the original configuration

FOR each role r ∈ R’ DO 

 // All uthorized permissions are needed

 IF (Pat(r) ⊆ Preq) ∧ (Pat(r) ∅) THEN  

Preq = Preq - Pat(r)

Rreq = Rreq ∪ {r}
 // only some authorized permissions are needed 

 ELSE IF Pat(r) Preq ∅ THEN   

  // all assigned permissions are needed  

IF (Pas(r) ⊆ Preq) ∧ (Pas(r) ∅) THEN

Preq = Preq - Pas(r)

IF r has junior role with only A-Hierarchy OR  
                         no junior role THEN 

    Rexport = Rexport ∪ {r}
Preq = Preq - Pas(r)

   ELSE // r has junior role with I or IA Hierarchy 

R = R ∪ {rreq}   // Create new role rreq

    H = H ∪ r ≥I rreq   // Create rreq  I-junior to r 

    FOR each p ∈ Pas(r) DO

PR = PR ∪{(p, rreq)} - {(p, r)}

    END FOR 

Rreq = Rreq ∪ {rreq}

   END IF 

  // only some assigned permissions are needed

  ELSE IF Pas(r) Preq ∅ THEN  

R = R ∪ {rreq}

   H = H ∪ (r ≥I rreq)

   FOR each p ∈ Pas(r) Preq DO

PR = PR ∪{(p, rreq)} - {(p, r)}

   END FOR 

Rreq = Rreq ∪ {rreq}

Preq = Preq - Pas(r)
  END IF   // no assigned permissions are needed 

 END IF   // case of indirectly assigned permission 

will be checked in the next role r 

END FOR 

// Refers to Case 3 – some permissions are not available 

through existing roles

IF Preq ∅ THEN  

 R = R ∪ {rnew}

 Assign Preq to rnew

Rreq = Rreq ∪ { rnew } 

RETURN Rreq 

Figure 3.4:  Algorithm FindRoleSet() 
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are do not have authorization to activate other (sub) 

roles because of the I or IA hierarchies that may exist 

between the exported roles and the internal roles. The 

modified GTRBAC configuration is essentially a-

equivalent to the original configuration. This is 

because the transformation involves splitting or roles, 

reassignments of users and permissions, or 

restructuring of the hierarchy to ensure that the local 

users are still authorized to the same permissions that 

they were authorized for before the new policy 

configuration is created. Due to space limitation, we 

omit the formal proof. 

3.2. Time-based Inter-domain Access  

In real world applications, we also encounter 

temporal requirements with respect to the when and 

how long the inter-domain accesses need to be 

allowed. For instance, an external auditor may need to 

be given access to sensitive financial information only 

during certain time of the day. Such requirements may 

be needed to ensure proper availability of resources, 

supporting personnel to provide assistance (e.g., 

collaborating internal and external auditors), etc., when 

needed. In subscription based systems, time factor 

related to access may be cost related. For instance, a 

subscriber may choose to access stock information 

only between 7PM- 9PM to ensure maximum use of 

information he gets at a lower subscription rate for 

only two hours per week. Furthermore, although the 

domain that requests permission may not have time 

constraints, it is possible that the provider domain will 

have. As done in the earlier example, an exported role 

that is made I-senior of the set of roles that satisfy the 

request is created. We follow the similar semantics in 

the case when the inter-domain accesses need to also 

satisfy the timing constraints. We assume that all the 

local roles have temporal constraints on its role 

enabling. If the external entity does not have its 

temporal requirements, the access is bounded by the 

temporal constraints of the local roles that satisfy the 

requested permission. In that case, we can simply use 

the algorithm presented earlier. However, there may be 

specific temporal requirements identified for the 

external entity when it accesses its local resources 

though cost-based negotiation.  

Figure 3.5 shows a simple case, where role r

matches exactly with the temporal as well as requested 

permission requirements of the external domain (the 

local role’s temporal constraint is not shown). In such a 

case the external entity is simply mapped to role r

(indicated by the dotted line) as shown in Figure 3.5(a). 

However, as discussed earlier, in a general case, we 

prefer to create a role r’ that is exported because if role 

r has A or IA juniors then the activation semantics is 

propagated and the external entity may be able to 

activate other roles in the hierarchy. 

In general, the time-based availability of a set of 

permissions can be captured by using role enabling 

time constraint [8]. If the temporal requirement from 

the external domain has an exactly matching enabling 

time constraint of a local role, then we can simply map 

the external role to that role without changing the 

original configuration, provided that requested 

permission set is also exactly satisfied by the local role. 

However, creating a separate role to be exported role is 

more preferable as discussed in section 3.1. If there is 

no local role that can exactly match the temporal and 

permission requirements then the existing policy has to 

be augmented to capture those requirements to 

determine roles that can be exported. Four techniques 

that can be used to modify the local configuration 

based on the requested temporal constraint are 

explored: (a) converting temporal enabling time 

constraint to temporal constraints on permission-role 

assignment [9] (b) creating a special exported role (c) 

Figure 3.5 An example where tc matches t

Figure 3.6: The four techniques to handle the time-

based inter-domain access 
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creating roles with temporal constraints corresponding 

to the MDS of the external domain’s requirement and 

that of the provider domain [9] and (d) combining 

MDS technique with a new exported role. Figure 3.6 

shows the examples of each technique. The temporal 

constraint tc represents the requirement of the 

requesting domain and t represents role enabling time 

constraint on a local role that matches the requested 

permission set. The role with a connected dotted line is 

mapped with the role from the external domain. In the 

first technique, the temporal constraint t on role 

enabling time is converted to temporal constraints on 

permission-role assignment constraints – each 

assignment uses the same temporal constraints 

expression t. The role enabling time constraint of the 

local role is then set to tc. It is easy to see that this 

technique is applicable only when t ⊂ tc. This is 

because, if t ⊂ tc does not hold then there will be some 

instants in t that are not in tc, in which the users 

assigned to the local role may not be able to acquire the 

permissions assigned to the local role as it will be 

disabled at that time. The second technique is to create 

an exported role r with enabling time constraint tc.

This technique is suitable if there are multiple temporal 

constraints (e.g., presence of both periodicity and 

duration time constraints). Furthermore, the local 

policy will not have to be modified. The third 

technique is based on MDS computation and is shown 

in Figure 3.6(c). Here the local role is temporally split 

into roles corresponding to the MDS of the tc and t. In 

this case permission-role assignment has to be 

restructured and can become very complex. Also this 

technique is only applicable for periodicity time 

constraint [9]. The fourth technique combines the MDS

computation and the exported role techniques. 

Exported roles are created with enabling time 

constraints corresponding to the temporal constraints 

of the MDS of tc and t and an I-hierarchy is created 

from these roles to the local role with t. This technique 

will reduce both of the number of roles to be created 

and the number of permission-role re-assignments. The 

local role and its assignments need not be modified. A 

single exported role can be created as I-senior of all the 

temporal exported roles created to facilitate mapping to 

a single role. This approach is appropriate for more 

complex scenarios where multiple local roles or 

temporal constraints are involved. Note that in Figure 

3.6 we only illustrate a simple case of one tc and one t.

We propose FindRoleSetWithTime algorithm, shown in 

Figure 3.7 that use the exported role technique for 

duration time constraint and non-temporal 

requirements. For periodicity time constraints, it uses 

the fourth technique. We assume that the requirements 

of an external domain is represented as DOM_REQi = 

{(di, {(Pij, RTij)}) | 1 j n} where di represents a 

requesting external domain, Pij represents the requested 

permission set and RTij = {(r, tc)}, where r is a role in 

domain di through which a user needs to acquire Pij in 

time instants in tc. RTij indicates that the same 

permissions may need to be acquired by users in the di

at different times through different roles. Given the 

requirement, the algorithm creates an inter-domain 

mapping to provide the requested permissions 

Algorithm: FindRoleSetWithTime ()

Input: DOM_REQ // contains the requirements of each domain 
Output: POLICY_REL // contains the inter-domain policy  

Initialize each set of POLICY_REL, PE_REQ and D_REQ = ∅
FOR each DOM_REQi of DOM_REQ DO

FOR each (Pij, RTij) of DOM_REQi DO

FOR each (r, tc) of RTij DO

   IF tc is a periodicity time constraint THEN

    // Create list of requirement with periodic constraint

    PE = PE ∪ {tc}

          PE_REQ = PE_REQ ∪{(r, tc)}
   ELSE IF tc is a duration time constraint THEN

    // Create requirement list with duration constraints 

    D_REQ = D_REQ ∪{(r, tc)}

   ELSE 

    // Create list of requirement no constraint

D_REQ = D_REQ ∪{(r, ∞ )}  

   END  

  END FOR 

// identify local roles for acquiring Pij

  Local_R = identifyRoles(Pij)

Initialize set  EXPORTED_R = ∅
  MDSPE = computeMDS(PE)
  FOR each (ri, PEi) of PE_REQ DO

  // ri is a role from the external domain which needs Pij

  // during tc = PEi

MSPEi = computeMS(PEi, MDS(PE))

FOR each PEi’ of MSPEi DO

IF no exported_r ∈ EXPORTED_R which has enabling  
time constraint = PEi’ THEN

R = R ∪ {exported_r}

Set exported_r enabling time constraint  = PEi’

END IF 

FOR each r in Local_R DO

H = H ∪ exported_r ≥I r

END FOR 

POLICY_REL = POLICY_REL ∪ (exported_r, ri, di)

  END FOR 

END FOR 

// For requirement with duration or non-temporal constraint
 FOR each (ri, Di) of REQ DO

R = R ∪ {exported_r}

IF Di ∞ THEN 

   Set exported_r enabling time constraint = Di

         END IF 

   POLICY_REL = POLICY_REL ∪ (exported_r, ri, di)

 END FOR

END FOR    

RETURN POLICY_REL 

Figure 3.7: Algorithm FindRoleSetWithTime () 
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according to the specified time constraints. Here, the 

algorithm considers all requesting domains 

DOM_REQi, 1 i m. Using the notion of a-
equivalence between two configurations of a GTRBAC 

system, we can easily show that the modified 

GTRBAC policy is a-equivalent to the original. Due to 

space limitation, we omit the formal proof. 

4. Related Work 

Several research efforts have been devoted to the 

topic of policy composition in multi-domain 

environment [2, 3, 5]. The problem of secure 

interoperation has been addressed in literature in the 

context of multi-level security (MLS) model. [2, 3, 5]. 

Dawson et. al. [3] have discussed a mediator based 

framework for establishing secure interoperation 

among heterogeneous systems with lattice based access 

control policies. MLS based approach is static in nature 

and is very restrictive in nature. RBAC based secure 

interoperation has being recently pursued as a practical 

approach to solve the multi-domain problem [11]. 

Shafiq et al. [11] allows policy integration between 

multiple RBAC policies using an Integer programming 

approach. The main purpose is to maximize inter-

domain information exchange for enterprise-wide 

system and collaboration environment it has a conflict 

resolution and constraint relaxing using integer 

programming to get a solution based on some optimal 

criteria RBAC policy. However, such an approach is 

suitable more for tightly coupled environments. 

Furthermore, time-based secure interoperation has not 

been addressed by earlier models. Several work such as 

[1] address trust negotiation and trust management 

issues that can complement the proposed framework 

for generating a holistic solution for multi-domain 

environments. 

5. Conclusions

In this paper, we have presented our preliminary 

work on temporal RBAC based policy mapping 

between two loosely coupled interacting domains for 

sharing information and resources. The algorithms 

presented transforms local policies in such a way that 

the modified policies still respects the original 

authorizations for the local users while separating roles 

that can now be provided to the external entities to 

allow them access the requested resources and 

information. The work is being extended in several 

directions. Firstly, tools and techniques are needed to 

administer the overall evolving policies. As policies 

change the mappings between two domains may 

change and hence restructuring it may be needed to 

maintain inter-domain accesses. The proposed 

framework needs to be integrated with trust negotiation 

mechanisms to facilitate the overall system 

implementation. The presented work considers only 

two domains, and needs to be extended to generate 

scalable techniques for any number of domains. 
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