Theorem: Can_share(a,x,y,G)
(for subjects)

Subject_can_share(q, x, y,G,) is true iff x and y are

Introduction to Sulﬂects and ot o
. ereIs an a eage fromx to y in G,
Computer Security OR I

3 a subject s € G, with an s-to-y a edge, and

Jislands I, ..., I, such that x € I,, s € I,, and there is a bridge
from /;to /.,

Lecture 3
Take Grant Model (Cont)

HRU
Schematic Protection Model

September 16, 2004

N

Courtesy of Professors INFSCI 2935 Introduction of Computer Security 1 INFSCI 2935 Introduction to Computer Security
Chris Clifton & Matt Bishop

What about objects?
Initial, terminal spans

Theorem: Can_share(a,x,y,G)

X /n/t/ally spans to y if xis a subject and 8?%??2are(a,x, ¥.Go) iff there is an a edge from x to y in
there is a tg-path associated with word 3 a vertex s G, with an s to y a edge,
{t *g } between them 3 a subject x " such that x '=x or x initially spans to x,
- v _ J a subject s " such that s '=s or s " terminally spans to s, and
X can grant a right to y Jislands I, ..., I,such thatx’ € I,, s € I, and there is a bridge

from /;to 1,,,

x terminally spans to y if x is a subject and
there is a tg-path associated with word LR)
{t_*} between them

X can take a right from y

s’ can take a right from s
INFSCI 2935: Introduction to Computer Security 4

X’ can grant a right to x
INFSCI 2935: Introduction to Computer Security 3

Theorem: Can_share(a,x,y,G,)

Corollary: There is an O(|V|+|E]) algorithm to test
can_share: Decidable in linear time!!
Theoren®

Let G, contain exactly one vertex and no edges,
R a set of rights.

G, |-* G iff G is a finite directed acyclic graph, with edges labeled
from R, and at least one subject with no incoming edge.

Only if part: v is initial subject and G, |*G;
No rule allows the deletion of a vertex

No rule allows an incoming edge to be added to a
vertex without any incoming edges. Hence, as v
has no incoming edges, it cannot be assigned any

INFSCI 2935: Introduction to Computer Security 5

Theorem: Can_share(a,x,y,G,)

If part : G meets the requirement

Assume v is the vertex with no incoming edge
and apply rules

Perform “v creates (a u {g} to) new x,” for all 2<=i
<=n, and a is union of all labels on the incoming
edges going into x; in G

For all pairs x, y with x a over y in G, perform “v
grants (atoy) to x”

If B is the set of rights x has over y in G, perform
“vremoves (au{g}-B)toy”

INFSCI 2935: Introduction to Computer Security

Example

INFSCI 2935: Introduction to Computer Security

Take-Grant Model:
Sharing through a Trusted Entity

Let p and q be two processes
Let b be a buffer that they share to communicate

Let s be third party (e.g. operating system) that
controls b

Witness \
+ Screates ({r, w}, to new object) b | \
* Sgrants ({r, w}, b) to p
* Sgrants ({r, w}, b)toq

INFSCI 2935: Introduction to Computer Security 8

Theft in Take-Grant Model

Can_steal(a,x,y,G) is true if there is no a edge
from x to y in G, and 3 sequence G, ..., G, s. t.
Jaedge fromxtoyin G,,
Jrules py,..., p, that take G, | p; G;, and
vV v,w e G, 1<i<n, if 3 a edge from v to y in G, then
p;is not “v grants (a to y) to w”

Disallows owners of a rights to y from transferring
those rights

Does not disallow them to transfer other rights
This models a Trojan horse

INFSCI 2935: Introduction to Computer Security

A witness to theft

ugrants (ttov)tos
s takes (t to u) from v
s takes (a to w) from u

INFSCI 2935: Introduction to Computer Security

Theorem:
When Theft Possible

Theorem:
When Theft Possible

Can_steal(a,x,y,G,) iff there is no a edge from < Assume can_steal is true:
xtoyin Gyand3 Gy, ..., G, s. t.: No a edge from definition 3.10 in G,
There is no a edge from xtoy in G, Can_share(a,x,y,G,) from definition 3.10 condition (a): a from
3 subject X’ such that x’=x or x’ initially spans to x, xtoyin G,
and s exists from can_share and earlier theorem
3 s with a edge to y in G,and can_share(t,x,s,G,) Show Can_share(t,x,s,G,) holds: s can’t grant a (definition),
Proof: someone else must get a from s, show that this can only be

. accomplished with take rule
=: Assume the three conditions hold

x can get t right over s (x is a subject) and then take a
right over y from s

s
X' creates a surrogate to pass a to x (x is an object)
X' initially spans to x (Theorem 3.10 — can_share(t,x’,s,G)) g
09

INFSCI 2935: Introduction to Computer Security 1 INFSCI 2935: Introduction to Computer Security 12

Conspiracy

Theft indicates cooperation: which subjects are actors in
a transfer of rights, and which are not?
Next question is

How many subjects are needed to enable Can_share(a,x,y,G,)?
Note that a vertex y

Can take rights from any vertex to which it terminally spans

Can pass rights to any vertex to which it initially spans
Access set A(y) with focus y (y is subject) is union of

set of vertices y,

vertices to which y initially spans, and

vertices to which y terminally spans

INFSCI 2935: Introduction to Computer Security 13

Conspiracy

Deletion set &(y,y’): Allz € A(y) N A(y’) for

which
y initially spans to z and y’ terminally spans to z U
y terminally spans to z and y’ initially spans to z U
z=y U z=y’

Conspiracy graph H of G:

Represents the paths along which subjects can
transfer rights

For each subject in G, there is a corresponding
vertex h(x) in H

if 5(y,y’) not empty, edge fromy to y’

INFSCI 2935: Introduction to Computer Security 14

Example

t
O t M o M) ° e\
4 U U
X a b [
t
O M e\ 9 a 9
U U v
y f h i

INFSCI 2935: Introduction to Computer Security

Theorems

Theorem:

Can_share(a,x,y,G,) iff conspiracy path from an
item in an island containing x to an item that can
steal fromy

Conspirators required is shortest path in
conspiracy graph
Example from book

INFSCI 2935: Introduction to Computer Security 16

Back to HRU:
Fundamental questions

How can we determine that a system is
secure?

Need to define what we mean by a system
being “secure”

Is there a generic algorithm that allows us
to determine whether a computer system
is secure?

INFSCI 2935: Introduction to Computer Security 17

Turing Machine & halting proble

The halting problem:

Given a description of an algorithm and a
description of its initial arguments, determine
whether the algorithm, when executed with
these arguments, ever halts (the alternative is
that it runs forever without halting).

Reduce TM to Safety problem

If Safety problem is decidable then it implies
that TM halts (for all inputs) — showing that the
halting problem is decidable (contradiction)

INFSCI 2935: Introduction to Computer Security 18

Turing Machine

TM is an abstract model of computer
Alan Turing in 1936

TM consists of
A tape divided into cells; infinite in one direction
A set of tape symbols M
M contains a special blank symbol b
A set of states K
A head that can read and write symbols
An action table that tells the machine
What symbol to write
How to move the head (‘L’ for left and ‘R’ for right)
What is the next state

INFSCI 2935: Introduction to Computer Security 19

Turing Machine

The action table describes the transition

function

Transition function 6(k, m) = (k', m', L):
in state k, symbol m on tape location is
replaced by symbol m’,

head moves to left one square, and TM enters
state k'

Halting state is q;
TM halts when it enters this state

INFSCI 2935: Introduction to Computer Security 20

Turing Machine

Let 6(1{, C) = (kb)(9 R)

1 2 3 4 where k, is the next state | 2 3 4
A| B| C|D]|... > A| B| X |D
4head
head

Let 6(kla D) = (k27 Ya L)

Current state is k where k, is the next state

Current symbol is C |

2

i)

A

B

INFSCI 2935: Introduction to Computer Security

?4 head =

General Safety Problem

Theorem: It is undecidable if a given state of a
given protection system is safe for a given
generic right
Proof: Reduce TM to safety problem

Symbols, States = rights

Tape cell = subject
Cell s;has A = §; has A rights on itself
Cell s = s, has end rights on itself

State p, head ats; = s; has p rights on itself
Distinguished Right own:
s;owns siH1for1<i<k

INFSCI 2935: Introduction to Computer Security 22

Command Mapping
(Left move)

Mapping

d(k, C) = (kq, X, L)

1 2 3 4
dc,(s; ;)
4 Sy s | sy | sy command C; o\, 5y . .
Bc|pl = if own in a[s, |, s;] and k in a[s;, s;] and C in a[s, s;]
s, | A |own then
head 5, B |own delete & from A[s;,s;];
. delete C from A[s,,s;];
(C:urrentt stateblslk' . Sy Ck | own enter X into A[Siﬂsi];
urrent Ssymootl 18 . .
S4 D end enter k| into A[s; ;, s,];
end

INFSCI 2935: Introduction to Computer Security 23 INFSCI 2935: Introduction to Computer Security 24

Mapping (Left Move)

A| B|X|D = S1] S2] 5 54
s, | A |own
head Sy B k| own
3 X | own
After 6(k, C) = (k;, X, L)
where k is the current S4 D end

state and k, the next state

INFSCI 2935: Introduction to Computer Security

25

Mapping (Initial)

A B|C|D|.|=p| |t |%] 5| %
s, | A |own
head Sy B |own
Current state is k Sy Ck | own
Current symbol is C
Sy Dend

INFSCI 2935: Introduction to Computer Security

26

Command Mapping
(Right move)

d(k, C) = (ky, X, R)

command ¢, (s;, 5;11)
if own in als;, s;,,] and k in als;, s;] and C in
als; s;]
then
delete &k from A[s,,s,];
delete C from A[s,,s,];
enter X into A4[s,,s;];
enter &, INtOrA LS S poydio seann o

ond

Mapping

2 3 4

A| B| X |D |... [

head

After 8(k, C) = (k;, X, R)
where £ is the current
state and k, the next state

St S2] 83 S4
s, | A |own
S, B |own
S5 X | own
S4 Dk, end

INFSCI 2935: Introduction to Computer Security

28

Command Mapping
(Rightmost move)

d(k4, D) = (ky, Y, R) at end becomes

command crightmost, ~(s,,5,,,)

if end in a[s,,s;] and k, in a[s;,s;] and D in a[s,,s,]

then
delete end from a[s,,s;];
create subject s, ;
enter own into a[s;,s;,,];
enter end into als;,,, s;,];
delete k, from g

INFSCI 2935[?(:1(?;(?1:17]'4; Computer Security
delete D from afs..s.];

29

Mapping
2 3 4
Al Bl X |Y =) Sy S2| 53] 8 S5
s, | A |own
head S, B |own
S5 X |own
After 8(k,, D) = (k,, Y, R)
where £, is the current S4 Y | own
state and £, the next state
Ss b k, end

INFSCI 2935: Introduction to Computer Security

30

Rest of Proof

Protection system exactly simulates a TM
Exactly 1 end right in ACM
1 right corresponds to a state

Thus, at most 1 applicable command in each
configuration of the TM

If TM enters state q;, then right has leaked

If safety question decidable, then represent TM
as above and determine if q; leaks

Leaks halting state = halting state in the matrix =
Halting state reached

Conclusion: safety question undecidable

INFSCI 2935: Introduction to Computer Security 31

Other theorems

Set of unsafe systems is recursively
enumerable

Recursively enumerable?
For protection system without the create
primitives, (i.e., delete create primitive); the
safety question is complete in P-SPACE
It is undecidable whether a given configuration
of a given monotonic protection system is safe
for a given generic right

Delete destroy, delete primitives;

The system becomes monotonic as they only
increase in size and complexity

INFSCI 2935: Introduction to Computer Security 32

Other theorems

The safety question for biconditional monotonic
protection systems is undecidable
The safety question for monoconditional,
monotonic protection systems is decidable
The safety question for monoconditional
protection systems with create, enter, delete
(and no destroy) is decidable.
Observations

Safety is undecidable for the generic case

Safety becomes decidable when restrictions are
applied

INFSCI 2935: Introduction to Computer Security 33

Schematic Protection Model

Key idea is to use the notion of a protection type
Label that determines how control rights affect an entity
Take-Grant:

subject and object are different protection types

TS and TO represent subject type set and object set
t(X) is the type of entity X
A ticket describes a right

Consists of an entity name and a right symbol: X/z
Possessor of the ticket X/z has right r over entity X
Y has tickets X/r, X/w ->Y has tickets X/rw

Each entity X has a set dom(X) of tickets Y/z
t©(X/r:c) = t(X)/r:c is the type of a ticket

INFSCI 2935: Introduction to Computer Security 34

Schematic Protection Model

Inert right vs. Control right
Inert right doesn’t affect protection state, e.g. read right
take right in Take-Grant model is a control right
Copy flag c
Every right r has an associated copyable right rc
r:c means rorrc

Manipulation of rights

A link predicate

Determines if a source and target of a transfer are
“connected”

A filter function
Determines if a transfer is authorized

INFSCI 2935: Introduction to Computer Security 35

Transferring Rights

dom(X) : set of tickets that X has
Link predicate: link(X,Y)
conjunction or disjunction of the following terms
X/z e dom(X); X/z e dom(Y);
Y/z e dom(X); Y/z € dom(Y)
true
Determines if X and Y “connected” to transfer right
Examples:
Take-Grant: link(X, Y) =Y/g € dom(X) v X/tedom(Y)
Broadcast: link(X, Y) = X/b edom(X)
Pull: link(X, Y) = Yip edom(Y)
Universal: link(X, Y) = true
Scheme: a finite set of link predicates is called a scheme

INFSCI 2935: Introduction to Computer Security 36

Filter Function

Filter function:
Imposes conditions on when tickets can be transferred
f: TSx TS — 2™R (range is copyable rights)
X/r:c can be copied from dom(Y) to dom(Z) iff 3i s. t. the
following are true:
X/rc € dom(Y)
link(Y, Z)
©(X)/r:c ef(t(Y), 1(Z))
Examples:
If £(x(Y), ©(Z)) = T x R then any rights are transferable
If £(z(Y), ©(Z)) = T x Rl then only inert rights are transferable
If £((Y), ©(Z)) = © then no tickets are transferable
One filter function is defined for each link predicate

INFSCI 2935: Introduction to Computer Security 37

SCM Example 1

Owner-based policy
Subject U can authorize subject V to access an object F iff U
owns F
Types: TS= {user}, TO = {file}
Ownership is viewed as copy attributes
If U owns F, all its tickets for F are copyable
RI: {r:c, w, a:c, x:c }; RC is empty
read, write, append, execute; copy on each
Vv U, V e user, link(U, V) = true

Anyone can grant a right to anyone else if they posses the right to
do so (copy)

f(user, user) = { filelr, filelw, filela, file/x }
Can copy read, write, append, execute

INFSCI 2935: Introduction to Computer Security 38

SPM Example 1

Peter owns file Doom; can he give Paul
execute permission over Doom?
t(Peter) is user and t(Paul) is user
t(Doom) is file
Doomixc € dom(Peter)
Link(Peter, Paul) = TRUE
t(Doom)/x € f(t(Peter), t(Paul)) - because of 1
and 2
Therefore, Peter can give ticket Doom/xc to Paul

INFSCI 2935: Introduction to Computer Security 39

SPM Example2

Take-Grant Protection Model
TS = { subjects }, TO = { objects }
RC = {tc, gc}, RI = {rc, wc}
Note that all rights can be copied in T-G model
link(p, q) = p/t € dom(q) v q/t edom(p)
f(subject, subject) = { subject, object } x { tc, gc,

re, we '}
Note that any rights can be transferred in T-G model

INFSCI 2935: Introduction to Computer Security 40

Demand

A subject can demand a right from another
entity
Demand function d:TS — 27*R

Let a and b be types

alr.c ed(b) : every subject of type b can demand a
ticket X/r.c for all X such that t1(X) = a

A sophisticated construction eliminates the
need for the demand operation — hence omitted

INFSCI 2935: Introduction to Computer Security 41

Create Operation

Need to handle

type of the created entity, &

tickets added by the creation
Relation canecreate(a, b) c TSx T

A subject of type a can create an entity of type b
Rule of acyclic creates

Limits the membership in canscreate(a, b)

If a subject of type a can create a subject of type b, then none of the
descendants can create a subject of type a

(@)y—=

'

INFSCI 2935: Introduction to Computer Security 42

£

Create operation
Distinct Types

create rule cr(a, b) specifies the

tickets introduced when a subject of type a creates an
entity of type b

B object: cr(a, b) c { b/r.c € RI'}
Only inert rights can be created
A gets B/r.ciff blr.c € cr(a, b)

B subject: cr(a, b) has two parts
cre(a, b) added to A, crg(a, b) added to B
A gets B/r:cif bir.c in cry(a, b)
B gets A/rcif alr.c in crg(a, b)

INFSCI 2935: Introduction to Computer Security 43

Non-Distinct Types

cr(a, a): who gets what?
selfir.c are tickets for creator
alr.c tickets for the created
cr(a, a) ={ alr.c, selfirc|r.c e R}
cr(a, a) = crg(a, b)|crp(a, b) is attenuating if:
cre(a, b) c cre(a, b) and
alr.c € cre(a, b) = selfir.c e cry(a, b)
A scheme is attenuating if,
For all types a, cc(a, a) — cr(a, a) is attenuating

INFSCI 2935: Introduction to Computer Security 44

Examples

Owner-based policy
Users can create files: cc(user, file) holds
g;}eator can give itself any inert rights: cr(user, file) = {filelr:c| r €
Take-Grant model
A subject can create a subject or an object
cc(subject, subject) and cc(subject, object) hold
Subject can give itself any rights over the vertices it creates but

the subject does not give the created subject any rights
(although grant can be used later)
cre(a, b) = ©; cry(a, b) = {sub/tc, sub/gc, sub/rc, sub/wc}
Hence,
cr(sub, sub) = {sub/tc, sub/gc, sub/rc, sub/wc} | ©
cr(sub, obj) = {obj/tc, obj/gc, obj/rc, obj/wc} | ©

INFSCI 2935: Introduction to Computer Security 45

Safety Analysis in SPM

Idea: derive maximal state where changes don’t
affect analysis

Indicates all the tickets that can be transferred from one
subject to another

Indicates what the maximum rights of a subject is in a
system

Theorems:
A maximal state exists for every system

If parent gives child only rights parent has (conditions
somewhat more complex), can easily derive maximal
state

Safety: If the scheme is acyclic and attenuating, the
safety question is decidable

INFSCI 2935: Introduction to Computer Security 46

