
1

Courtesy of Professors
Chris Clifton & Matt Bishop

INFSCI 2935: Introduction of Computer Security 1

September 16, 2004September 16, 2004

Introduction to Introduction to
Computer SecurityComputer Security

Lecture 3Lecture 3

Take Grant Model (Cont)Take Grant Model (Cont)
HRUHRU

Schematic Protection ModelSchematic Protection Model

INFSCI 2935: Introduction to Computer Security 2

Theorem: Theorem: Can_shareCan_share((αα,,xx,,yy,,GG00))
(for subjects)(for subjects)

Subject_can_shareSubject_can_share((αα, , xx, , yy,,GG00) is true) is true iffiff xx and and yy are are
subjects andsubjects and

there is an α edge from x to y in G0
OR if:
∃ a subject s ∈ G0 with an ss--to-yy α edge, and
∃ islands I1, …, In such that xx ∈ I1, s ∈ In, and there is a bridge
from Ij to Ij+1

x s α

α
α

α

yII11
II22

IInn

2

INFSCI 2935: Introduction to Computer Security 3

What about objects?What about objects?
Initial, terminal spansInitial, terminal spans

xx initially spansinitially spans to to yy if if xx is a subject and is a subject and
there is a there is a tgtg--path associated with word path associated with word
{{tt→→*g*g→→} between them} between them
xx can grant a right to yy

xx terminally spansterminally spans to to yy if if xx is a subject and is a subject and
there is a there is a tgtg--path associated with word path associated with word
{{tt→→**} between them} between them
xx can take a right from yy

INFSCI 2935: Introduction to Computer Security 4

Theorem: Theorem: Can_shareCan_share((αα,,xx,,yy,,GG00))

Can_shareCan_share((αα,,xx, , yy,,GG00)) iffiff there is an there is an αα edge from edge from xx to to yy in in
GG00 or if:or if:

∃ a vertex ss ∈ G0 with an ss to yy α edge,
∃ a subject x’x’ such that x’=xx’=x or x’x’ initially spans to xx,
∃ a subject s’s’ such that s’=ss’=s or s’s’ terminally spans to ss, and
∃ islands II1, …, IIn such that x’x’ ∈ II1, s’s’ ∈ IIn, and there is a bridge
from Ij to Ij+1

x’ s’ α

α
α

α

yII11
II22

IInn

s

x

x’x’ can grant a right to can grant a right to xx s’s’ can take a right from can take a right from ss

α

3

INFSCI 2935: Introduction to Computer Security 5

Theorem: Theorem: Can_shareCan_share((αα,,xx,,yy,,GG00))

Corollary: There is an Corollary: There is an OO(|(|VV|+||+|EE|) algorithm to test |) algorithm to test
can_sharecan_share: : Decidable in linear time!!Decidable in linear time!!
Theorem:Theorem:

Let G0 contain exactly one vertex and no edges,
R a set of rights.
G0 ├* G iff G is a finite directed acyclic graph, with edges labeled
from R, and at least one subject with no incoming edge.
Only if part: v is initial subject and G0 ├* G;

No rule allows the deletion of a vertex
No rule allows an incoming edge to be added to a
vertex without any incoming edges. Hence, as v
has no incoming edges, it cannot be assigned any

INFSCI 2935: Introduction to Computer Security 6

Theorem: Theorem: Can_shareCan_share((αα,,xx,,yy,,GG00))

If part : G meets the requirement
Assume v is the vertex with no incoming edge
and apply rules

1. Perform “v creates (α ∪ {g} to) new xi” for all 2<=i
<= n, and α is union of all labels on the incoming
edges going into xi in G

2. For all pairs x, y with x α over y in G, perform “v
grants (α to y) to x”

3. If β is the set of rights x has over y in G, perform
“v removes (α ∪ {g} - β) to y”

4

INFSCI 2935: Introduction to Computer Security 7

ExampleExample

INFSCI 2935: Introduction to Computer Security 8

TakeTake--Grant Model: Grant Model:
Sharing through a Trusted EntitySharing through a Trusted Entity

Let Let pp and and qq be two processes be two processes
Let Let bb be a buffer that they share to communicatebe a buffer that they share to communicate
Let Let ss be third party (e.g. operating system) that be third party (e.g. operating system) that
controls controls bb

g

g

q

b
s

rw
rw

rw

urw

vrw

g

g

q

s

urw

vrw

Witness
• S creates ({r, w}, to new object) b
• S grants ({r, w}, b) to p
• S grants ({r, w}, b) to q

5

INFSCI 2935: Introduction to Computer Security 9

Theft in TakeTheft in Take--Grant ModelGrant Model

Can_stealCan_steal((αα,,xx,,yy,,GG00) is true if there is no) is true if there is no αα edge edge
from from xx to to yy in in GG00 and and ∃∃ sequence sequence GG11, , ……, , GGnn s. t.:s. t.:

∃ α edge from x to y in Gn,,
∃ rules ρ1,…, ρn that take Gi-1├ ρi Gi , and
∀ v,w ∈ Gi, 1≤i<n, if ∃ α edge from v to y in G0 then
ρi is not “v grants (α to y) to w”

- Disallows owners of α rights to y from transferring
those rights

- Does not disallow them to transfer other rights
- This models a Trojan horse

INFSCI 2935: Introduction to Computer Security 10

A witness to theftA witness to theft

u grants (t to v) to su grants (t to v) to s
s takes (t to u) from vs takes (t to u) from v
s takes (s takes (αα to w) from uto w) from u

g

s

w

t

t

ααu

v

6

INFSCI 2935: Introduction to Computer Security 11

Theorem:Theorem:
When Theft PossibleWhen Theft Possible

Can_stealCan_steal((αα,,xx,,yy,,GG00)) iffiff there is no there is no αα edge from edge from
xx to to yy in in GG00 and and ∃∃ GG11, , ……, , GGnn s. t.:s. t.:

There is no α edge from x to y in G0 ,
∃ subject x’ such that x’=x or x’ initially spans to x,
and
∃ s with α edge to y in G0 and can_share(t,x,s,G0)

Proof:Proof:
⇒: Assume the three conditions hold

x can get t right over s (x is a subject) and then take α
right over y from s
x’ creates a surrogate to pass α to x (x is an object)

• X’ initially spans to x (Theorem 3.10 – can_share(t,x’,s,G0))
g

g
t

sx’

x’’x
INFSCI 2935: Introduction to Computer Security 12

Theorem:Theorem:
When Theft PossibleWhen Theft Possible

⇐: Assume can_steal is true:
No α edge from definition 3.10 in G0.
Can_share(α,x,y,G0) from definition 3.10 condition (a): α from
x to y in Gn

s exists from can_share and earlier theorem
Show Can_share(t,x,s,G0) holds: s can’t grant α (definition),
someone else must get α from s, show that this can only be
accomplished with take rule

7

INFSCI 2935: Introduction to Computer Security 13

ConspiracyConspiracy

Theft indicates cooperation: which subjects are actors in Theft indicates cooperation: which subjects are actors in
a transfer of rights, and which are not?a transfer of rights, and which are not?
Next question is Next question is

How many subjects are needed to enable Can_share(α,x,y,G0)?
Note that a vertex yNote that a vertex y

Can take rights from any vertex to which it terminally spans
Can pass rights to any vertex to which it initially spans

AAcccceessss ssetet A(A(yy) with focus) with focus yy (y is subject) is union of (y is subject) is union of
set of vertices y,
vertices to which y initially spans, and
vertices to which y terminally spans

INFSCI 2935: Introduction to Computer Security 14

ConspiracyConspiracy

Deletion set Deletion set δδ((y,yy,y’): All z ’): All z ∈∈ A(yA(y)) ∩∩ A(yA(y’) for ’) for
whichwhich

y initially spans to z and y’ terminally spans to z ∪
y terminally spans to z and y’ initially spans to z ∪
z=y ∪ z=y’

Conspiracy graph H of GConspiracy graph H of G00: :
Represents the paths along which subjects can
transfer rights
For each subject in G0, there is a corresponding
vertex h(x) in H
if δ(y,y’) not empty, edge from y to y’

8

INFSCI 2935: Introduction to Computer Security 15

ExampleExample

t g g t

g

t
gt gg

a b c d

e

f h i j

x

y

z

r

INFSCI 2935: Introduction to Computer Security 16

TheoremsTheorems

Theorem: Theorem:
Can_shareCan_share((αα,,xx,,yy,,GG00)) iffiff conspiracy path from an conspiracy path from an
item in an island containing item in an island containing xx to an item that can to an item that can
steal from steal from yy
Conspirators required is shortest path in Conspirators required is shortest path in
conspiracy graphconspiracy graph
Example from bookExample from book

9

INFSCI 2935: Introduction to Computer Security 17

Back to HRU:Back to HRU:
Fundamental questionsFundamental questions

How can we determine that a system is How can we determine that a system is
secure?secure?

Need to define what we mean by a system
being “secure”

Is there a generic algorithm that allows us Is there a generic algorithm that allows us
to determine whether a computer system to determine whether a computer system
is secure?is secure?

INFSCI 2935: Introduction to Computer Security 18

Turing Machine & halting problemTuring Machine & halting problem

The The halting problemhalting problem: :
Given a description of an algorithm and a Given a description of an algorithm and a
description of its initial arguments, determine description of its initial arguments, determine
whether the algorithm, when executed with whether the algorithm, when executed with
these arguments, ever halts (the alternative is these arguments, ever halts (the alternative is
that it runs forever without halting).that it runs forever without halting).

Reduce TM to Safety problemReduce TM to Safety problem
If Safety problem is decidable then it implies
that TM halts (for all inputs) – showing that the
halting problem is decidable (contradiction)

10

INFSCI 2935: Introduction to Computer Security 19

Turing MachineTuring Machine

TM is an abstract model of computerTM is an abstract model of computer
Alan Turing in 1936

TM consists ofTM consists of
A tape divided into cells; infinite in one direction
A set of tape symbols M

M contains a special blank symbol b
A set of states K
A head that can read and write symbols
An action table that tells the machine

What symbol to write
How to move the head (‘L’ for left and ‘R’ for right)
What is the next state

INFSCI 2935: Introduction to Computer Security 20

Turing MachineTuring Machine

The action table describes the transition The action table describes the transition
functionfunction
Transition function Transition function δδ((kk, , mm) = () = (kk′′, , mm′′, L):, L):

in state k, symbol m on tape location is
replaced by symbol m′,
head moves to left one square, and TM enters
state k′

Halting state is Halting state is qqff
TM halts when it enters this state

11

INFSCI 2935: Introduction to Computer Security 21

Turing MachineTuring Machine

A B C …

1 2 3 4

head

Current state is k

Let δ(k, C) = (k1, X, R)
where k1 is the next state

Current symbol is C

D A B X …

1 2 3 4

head

D

A B ? …

1 2 3 4

head

?

Let δ(k1, D) = (k2, Y, L)
where k2 is the next state

?

?
INFSCI 2935: Introduction to Computer Security 22

General Safety ProblemGeneral Safety Problem

Theorem: It is Theorem: It is undecidableundecidable if a given state of a if a given state of a
given protection system is safe for a given given protection system is safe for a given
generic rightgeneric right
Proof: Reduce TM to safety problem Proof: Reduce TM to safety problem

Symbols, States ⇒ rights
Tape cell ⇒ subject
Cell si has A ⇒ si has A rights on itself
Cell sk ⇒ sk has end rights on itself
State p, head at si ⇒ si has p rights on itself
Distinguished Right own:

si owns si+1 for 1 ≤ i < k

12

INFSCI 2935: Introduction to Computer Security 23

MappingMapping

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

own

A B C …

1 2 4

head

Current state is k
Current symbol is C

D

1 2 3 4

INFSCI 2935: Introduction to Computer Security 24

Command MappingCommand Mapping
(Left move)(Left move)

δδ((kk, C) = (, C) = (kk11, X, L), X, L)

commandcommand cckk,C,C((ssii, , ssii--11))
ifif ownown inin aa[[ssii--11, , ssii]] andand kk inin aa[[ssii, , ssii]] andand C C inin aa[[ssii, , ssii]]
thenthen

deletedelete kk fromfrom AA[[ssii,,ssii];];
deletedelete C C fromfrom AA[[ssii,,ssii];];
enterenter X X intointo AA[[ssii,,ssii];];
enterenter kk11 intointo AA[[ssii--11, , ssii--11];];

endend

13

INFSCI 2935: Introduction to Computer Security 25

Mapping (Left Move)Mapping (Left Move)

s1 s2 s3 s4

s4

s3

s2

s1 A

B k1

X

D end

own

own

own
After δ(k, C) = (k1, X, L)
where k is the current
state and k1 the next state

A B X …

1 2 4

head

D

1 2 3 4

INFSCI 2935: Introduction to Computer Security 26

Mapping (Initial)Mapping (Initial)

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

own

A B C …

1 2 4

head

Current state is k
Current symbol is C

D

1 2 3 4

14

INFSCI 2935: Introduction to Computer Security 27

Command MappingCommand Mapping
(Right move)(Right move)

δδ((kk, C) = (, C) = (kk11, X, R), X, R)

commandcommand cckk,C,C((ssii, , ssii+1+1))
ifif ownown inin aa[[ssii, , ssii+1+1]] andand kk inin aa[[ssii, , ssii]] andand C C inin

aa[[ssii, , ssii]]
thenthen

deletedelete kk fromfrom AA[[ssii,,ssii];];
deletedelete C C fromfrom AA[[ssii,,ssii];];
enterenter X X intointo AA[[ssii,,ssii];];
enterenter kk11 intointo AA[[ssii+1+1, , ssii+1+1];];

endend
INFSCI 2935: Introduction to Computer Security 28

MappingMapping

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own
After δ(k, C) = (k1, X, R)
where k is the current
state and k1 the next state

A B X …

1 2 4

head

D

1 2 3 4

15

INFSCI 2935: Introduction to Computer Security 29

Command MappingCommand Mapping
(Rightmost move)(Rightmost move)

δδ((kk11, D) = (, D) = (kk22, Y, R) at end becomes, Y, R) at end becomes

commandcommand crightmostcrightmostkk,C,C((ssii,,ssii+1+1))
ifif endend inin aa[[ssii,,ssii]] andand kk11 inin aa[[ssii,,ssii]] andand D D inin aa[[ssii,,ssii]]
thenthen

deletedelete endend fromfrom aa[[ssii,,ssii];];
create subjectcreate subject ssii+1+1;;
enterenter own own into into aa[[ssii,,ssii+1+1];];
enterenter endend intointo aa[[ssii+1+1, , ssii+1+1];];
deletedelete kk11 fromfrom aa[[ssii,,ssii];];
deletedelete D D fromfrom aa[[ssii,,ssii];];

INFSCI 2935: Introduction to Computer Security 30

MappingMapping

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own
After δ(k1, D) = (k2, Y, R)
where k1 is the current
state and k2 the next state

s5

s5

own

b k2 end

A B X

1 2 4

head

Y

1 2 3 4

16

INFSCI 2935: Introduction to Computer Security 31

Rest of ProofRest of Proof

Protection system exactly simulates a TMProtection system exactly simulates a TM
Exactly 1 end right in ACM
1 right corresponds to a state
Thus, at most 1 applicable command in each
configuration of the TM

If TM enters state If TM enters state qqff, then right has leaked, then right has leaked
If safety question decidable, then represent TM If safety question decidable, then represent TM
as above and determine if as above and determine if qqff leaksleaks

Leaks halting state ⇒ halting state in the matrix ⇒
Halting state reached

Conclusion: safety question Conclusion: safety question undecidableundecidable

INFSCI 2935: Introduction to Computer Security 32

Other theoremsOther theorems

Set of unsafe systems is recursively Set of unsafe systems is recursively
enumerableenumerable

Recursively enumerable?
For protection system without the create For protection system without the create
primitives, (i.e., delete primitives, (i.e., delete createcreate primitive); the primitive); the
safety question is complete in safety question is complete in PP--SPACESPACE
It is It is undecidableundecidable whether a given configuration whether a given configuration
of a given monotonic protection system is safe of a given monotonic protection system is safe
for a given generic rightfor a given generic right

Delete destroy, delete primitives;
The system becomes monotonic as they only
increase in size and complexity

17

INFSCI 2935: Introduction to Computer Security 33

Other theoremsOther theorems

The safety question for The safety question for biconditionalbiconditional monotonic monotonic
protection systems is protection systems is undecidableundecidable
The safety question for The safety question for monoconditionalmonoconditional, ,
monotonic protection systems is decidablemonotonic protection systems is decidable
The safety question for The safety question for monoconditionalmonoconditional
protection systems with protection systems with createcreate, , enterenter, , deletedelete
(and no (and no destroydestroy) is decidable.) is decidable.
ObservationsObservations

Safety is undecidable for the generic case
Safety becomes decidable when restrictions are
applied

INFSCI 2935: Introduction to Computer Security 34

Schematic Protection ModelSchematic Protection Model

Key idea is to use the notion of a protection type Key idea is to use the notion of a protection type
Label that determines how control rights affect an entity
Take-Grant:

subject and object are different protection types
TS and TO represent subject type set and object set
τ(X) is the type of entity X

A A ticket ticket describes a rightdescribes a right
Consists of an entity name and a right symbol: X/z

Possessor of the ticket X/z has right r over entity X
Y has tickets X/r, X/w -> Y has tickets X/rw

Each entity X has a set dom(X) of tickets Y/z
τ(X/r:c) = τ(X)/r:c is the type of a ticket

18

INFSCI 2935: Introduction to Computer Security 35

Schematic Protection ModelSchematic Protection Model

Inert right vs. Control rightInert right vs. Control right
Inert right doesn’t affect protection state, e.g. read right
take right in Take-Grant model is a control right

Copy flag cCopy flag c
Every right r has an associated copyable right rc
r:c means r or rc

Manipulation of rightsManipulation of rights
A link predicate

Determines if a source and target of a transfer are
“connected”

A filter function
Determines if a transfer is authorized

INFSCI 2935: Introduction to Computer Security 36

Transferring RightsTransferring Rights

domdom((XX) : set of tickets that X has) : set of tickets that X has
Link predicate: Link predicate: linklinkii((XX,,YY))

conjunction or disjunction of the following terms
X/z ∈ dom(X); X/z ∈ dom(Y);
Y/z ∈ dom(X); Y/z ∈ dom(Y)
true

Determines if X and Y “connected” to transfer right
Examples:

Take-Grant: link(X, Y) = Y/g ∈ dom(X) v X/t∈dom(Y)
Broadcast: link(X, Y) = X/b ∈dom(X)
Pull: link(X, Y) = Y/p ∈dom(Y)
Universal: link(X, Y) = true

SchemeScheme: a finite set of link predicates is called a scheme: a finite set of link predicates is called a scheme

19

INFSCI 2935: Introduction to Computer Security 37

Filter FunctionFilter Function

Filter function: Filter function:
Imposes conditions on when tickets can be transferred
fi: TS x TS → 2TxR (range is copyable rights)

XX//r:cr:c can be copied from can be copied from domdom((YY)) to to domdom((ZZ)) iffiff ∃∃ii s. t. the s. t. the
following are true:following are true:

X/rc ∈ dom(Y)
linki(Y, Z)
τ(X)/r:c ∈fi(τ(Y), τ(Z))

Examples:Examples:
If fi(τ(Y), τ(Z)) = T x R then any rights are transferable
If fi(τ(Y), τ(Z)) = T x RI then only inert rights are transferable
If fi(τ(Y), τ(Z)) = Ө then no tickets are transferable

One filter function is defined for each link predicateOne filter function is defined for each link predicate

INFSCI 2935: Introduction to Computer Security 38

SCM Example 1SCM Example 1

OwnerOwner--based policybased policy
Subject U can authorize subject V to access an object F iff U
owns F
Types: TS= {user}, TO = {file}
Ownership is viewed as copy attributes

If U owns F, all its tickets for F are copyable
RI: { r:c, w:c, a:c, x:c }; RC is empty

read, write, append, execute; copy on each
∀ U, V ∈ user, link(U, V) = true

Anyone can grant a right to anyone else if they posses the right to
do so (copy)

f(user, user) = { file/r, file/w, file/a, file/x }
Can copy read, write, append, execute

20

INFSCI 2935: Introduction to Computer Security 39

SPM Example 1SPM Example 1

PeterPeter owns file owns file DoomDoom; can he give ; can he give PaulPaul
execute permission over execute permission over DoomDoom??
1.τ(Peter) is user and τ(Paul) is user
2.τ(Doom) is file
3.Doom/xc ∈ dom(Peter)
4.Link(Peter, Paul) = TRUE
5.τ(Doom)/x ∈ f(τ(Peter), τ(Paul)) - because of 1

and 2
Therefore, Peter can give ticket Doom/xc to Paul

INFSCI 2935: Introduction to Computer Security 40

SPM Example2SPM Example2

TakeTake--Grant Protection ModelGrant Protection Model
TS = { subjects }, TO = { objects }
RC = {tc, gc}, RI = {rc, wc}

Note that all rights can be copied in T-G model

link(p, q) = p/t ∈ dom(q) v q/t ∈dom(p)
f(subject, subject) = { subject, object } × { tc, gc,
rc, wc }

Note that any rights can be transferred in T-G model

21

INFSCI 2935: Introduction to Computer Security 41

DemandDemand

A subject can demand a right from another A subject can demand a right from another
entityentity

Demand function d:TS → 2TxR

Let a and b be types
a/r:c ∈d(b) : every subject of type b can demand a
ticket X/r:c for all X such that τ(X) = a

A sophisticated construction eliminates the
need for the demand operation – hence omitted

INFSCI 2935: Introduction to Computer Security 42

Create OperationCreate Operation

Need to handle Need to handle
type of the created entity, &
tickets added by the creation

Relation Relation can•createcan•create((aa, , bb)) ⊆⊆ TSTS x x TT
A subject of type a can create an entity of type b

Rule of Rule of acyclic createsacyclic creates
Limits the membership in can•create(a, b)
If a subject of type a can create a subject of type b, then none of the
descendants can create a subject of type a

a b

c d

a b

c d

22

INFSCI 2935: Introduction to Computer Security 43

Create operation Create operation
Distinct TypesDistinct Types

create rulecreate rule crcr((aa, , bb) specifies the) specifies the
tickets introduced when a subject of type a creates an
entity of type b

BB object: object: crcr((aa, , bb)) ⊆⊆ { { bb//rr::cc ∈∈ RIRI }}
Only inert rights can be created
A gets B/r:c iff b/r:c ∈ cr(a, b)

BB subject: subject: crcr((aa, , bb) has two parts) has two parts
crP(a, b) added to A, crC(a, b) added to B
A gets B/r:c if b/r:c in crP(a, b)
B gets A/r:c if a/r:c in crC(a, b)

INFSCI 2935: Introduction to Computer Security 44

NonNon--Distinct TypesDistinct Types

crcr((aa, , aa): who gets what?): who gets what?
self/r:c are tickets for creator
a/r:c tickets for the created

crcr((aa, , aa) = {) = { aa//rr::cc, , selfself//rr::cc | | rr::cc ∈∈ RR}}
crcr((aa, , aa) =) = crcrCC((aa, , bb))||crcrPP((aa, , bb)) is attenuating if:is attenuating if:

1. crC(a, b) ⊆ crP(a, b) and
2. a/r:c ∈ crP(a, b) ⇒ self/r:c ∈ crP(a, b)

A scheme is attenuating if, A scheme is attenuating if,
For all types a, cc(a, a) → cr(a, a) is attenuating

23

INFSCI 2935: Introduction to Computer Security 45

ExamplesExamples

OwnerOwner--based policybased policy
Users can create files: cc(user, file) holds
Creator can give itself any inert rights: cr(user, file) = {file/r:c| r ∈
RI}

TakeTake--Grant modelGrant model
A subject can create a subject or an object

cc(subject, subject) and cc(subject, object) hold
Subject can give itself any rights over the vertices it creates but
the subject does not give the created subject any rights
(although grant can be used later)

crC(a, b) = Ө; crP(a, b) = {sub/tc, sub/gc, sub/rc, sub/wc}
Hence,

cr(sub, sub) = {sub/tc, sub/gc, sub/rc, sub/wc} | Ө
cr(sub, obj) = {obj/tc, obj/gc, obj/rc, obj/wc} | Ө

INFSCI 2935: Introduction to Computer Security 46

Safety Analysis in SPMSafety Analysis in SPM

Idea: derive Idea: derive maximal statemaximal state where changes don’t where changes don’t
affect analysisaffect analysis

Indicates all the tickets that can be transferred from one
subject to another
Indicates what the maximum rights of a subject is in a
system

Theorems:Theorems:
A maximal state exists for every system
If parent gives child only rights parent has (conditions
somewhat more complex), can easily derive maximal
state
Safety: If the scheme is acyclic and attenuating, the
safety question is decidable

