Courtesy of Professors
Chris Clifton & Matt Bishop

Malicious Code
Vulnerability Analysis
Intrusion Detection

Lecture 11
November 13, 2003

INFSCI 2935: Introduction of Computer Security

What is Malicious Code?

® Set of instructions that causes a security policy
to be violated
Ols an unintentional mistake that violates policy
malicious code? (Tricked into doing that?)
OWhat about “unwanted” code that doesn’t cause a
security breach?
® Generally relies on “legal” operations
OAuthorized user could perform operations without
violating policy
OMalicious code “mimics” authorized user

INFSCI 2935: Introduction to Computer Security

Types of Malicious Code

® Trojan Horse

OTrick user into executing malicious code
® Virus

OReplicates and inserts itself into fixed set of files
®\Worm

OCopies itself from computer to computer

INFSCI 2935: Introduction to Computer Security 3

Trojan Horse

® Program with an overt (expected) and covert
(unexpected) effect
OAppears normal/expected
OCovert effect violates security policy
® User tricked into executing Trojan horse
OExpects (and sees) overt behavior
OCovert effect performed with user’s authorization

® Trojan horse may replicate
OCreate copy on execution
OSpread to other users/systems

INFSCI 2935: Introduction to Computer Security

Propagation

O Perpetrator
cat >/homes/victim/s <<eof
cp /bin/sh tmp/.xxsh
chmod u+s,0+x /tmp/.xxsh
rm ./ls
Is $*
eof

O Victim
Is

® |t is a violation to trick someone into creating a shell that
is setuid to themselves

® How to replicate this?

INFSCI 2935: Introduction to Computer Security

Virus

® Self-replicating code
OA freely propagating Trojan horse
®some disagree that it is a Trojan horse
Olnserts itself into another file
® Alters normal code with “infected” version

® Operates when infected code executed
If spread condition then
For target files
if notinfected then alter to include virus
Perform malicious action
Execute normal program

INFSCI 2935: Introduction to Computer Security

Virus Types

® Boot Sector Infectors (The Brain Virus)
O Problem: How to ensure virus “carrier” executed?

O Solution: Place in boot sector of disk
® Run on any boot
O Propagate by altering boot disk creation
® Less common with few boots off floppies
® Executable infector (The Jerusalem Virus, Friday 13t
not 1987)

O Malicious code placed at beginning of legitimate program
(.COM .EXE files)

O Runs when application run
O Application then runs normally

® Multipartite virus : boot sector + executable infector

INFSCI 2935: Introduction to Computer Security

Virus Types/Properties

® Terminate and Stay Resident
O Stays active in memory after application complete
O Allows infection of previously unknown files
® Trap calls that execute a program
O Can be boot sector infectors or executable infectors (Brain and
Jerusalem)
® Stealth (an executable infector)
O Conceal Infection
® Trap read to provide disinfected file
® Let execute call infected file
® Encrypted virus
® Prevents “signature” to detect virus
® [Deciphering routine, Enciphered virus code, Deciphering Key]
® Polymorphism
® Change virus code to something equivalent each time it propagates

INFSCI 2935: Introduction to Computer Security

Virus Types/Properties

® Macro Virus

OComposed of a sequence of instructions that is
interpreted rather than executed directly

Olnfected “executable” isn't machine code
® Relies on something “executed” inside application data
® Example: Melissa virus infected Word 97/98 docs

® Otherwise similar properties to other viruses
O Architecture-independent
OApplication-dependent

INFSCI 2935: Introduction to Computer Security

Worms

® Replicates from one computer to another
OSelf-replicating: No user action required
OVirus: User performs “normal” action

OTrojan horse: User tricked into performing
action

® Communicates/spreads using standard
protocols

INFSCI 2935: Introduction to Computer Security 10

Other forms of malicious logic

® \We've discussed how they propagate
OBut what do they do?
® Rabbits/Bacteria
OExhaust system resources of some class
ODenial of service; e.g., While (1) {mkdirx; chdir x}
® Logic Bomb
OTriggers on external event
®Date, action
OPerforms system-damaging action
@ Often related to event
® Others?

INFSCI 2935: Introduction to Computer Security 11

What do we Do?

[N .

~°

® Turing machine definition of a virus
OMakes copies on parts of tape not including v

® |s it decidable if an arbitrary program does this?
ONo!

INFSCI 2935: Introduction to Computer Security 12

We can’t detect it: Now what?
Detection

® Signature-based antivirus
O Look for known patterns in malicious code
O Always a battle with the attacker
O Great business model!

® Checksum (file integrity, e.g. Tripwire)

O Maintain record of “good” version of file
® Compute signature blocks

O Check to see if changed
® Validate action against specification
OlIncluding intermediate results/actions

O N-version programming: independent programs
® Afault-tolerance approach (diversity)

INFSCI 2935: Introduction to Computer Security 13

Detection

® Proof-carrying code
OCode includes proof of correctness

OAt execution, verify proof against code
®|f code modified, proof will fail

® Statistical Methods

OHigh/low number of files read/written
OUnusual amount of data transferred
OAbnormal usage of CPU time

INFSCI 2935: Introduction to Computer Security 14

Defense

® Clear distinction between data and
executable

OVirus must write to program
®\V/rite only allowed to data
OMust execute to spread/act

®Data not allowed to execute

OAuditable action required to change data to
executable

INFSCI 2935: Introduction to Computer Security 15

Defense

® Information Flow
OMalicious code usurps authority of user
OLimit information flow between users
® |f A talks to B, B can no longer talk to C
OLimits spread of virus
OProblem: Tracking information flow

® Least Privilege
OPrograms run with minimal needed privilege
OExample: Limit file types accessible by a program

INFSCI 2935: Introduction to Computer Security 16

Defense

® Sandbox / Virtual Machine
ORun in protected area
OLibraries / system calls replaced with limited

privilege set

® Use Multi-Level Security Mechanisms
OPlace programs at lowest level
ODon't allow users to operate at that level
OPrevents writes by malicious code

INFSCI 2935: Introduction to Computer Security 17

Courtesy of Professors
Chris Clifton & Matt Bishop

Vulnerability Analysis

INFSCI 2935: Introduction of Computer Security

Vulnerability Analysis

® Vulnerability or security flaw: specific failures of
security controls (procedures, technology or
management)
OgErrors in code
OHuman violators
OMismatch between assumptions

® Exploit: Use of vulnerability to violate policy
® Attacker: Attempts to exploit the vulnerability

INFSCI 2935: Introduction to Computer Security 19

Techniques for Detecting
Vulnerabilities

® System Verification
ODetermine preconditions, post-conditions

OValidate that system ensures post-conditions
given preconditions

Can prove the absence of vulnerabilities
® Penetration testing
OStart with system/environment characteristics
OTry to find vulnerabilities
Can not prove the absence of vulnerabilities

INFSCI 2935: Introduction to Computer Security 20

10

System Verification

® \What are the problems?
Olnvalid assumptions
OLimited view of system
OSitill an inexact science
OExternal environmental factors

Olncorrect configuration, maintenance and
operation of the program or system

INFSCI 2935: Introduction to Computer Security 21

Penetration Testing

® Test strengths of security controls of the
complete system
OAttempt to violate stated policy
OWorks on in-place system
OFramework for evaluating results
OExamines procedural, operational and technological
controls
® Typical approach: Red Team, Blue Team
ORed team attempts to discover vulnerabilities
OBlue team simulates normal administration
® Detect attack, respond
OWhite team injects workload, captures results

INFSCI 2935: Introduction to Computer Security 22

11

Types/layers of Penetration Testing

® Black Box (External Attacker)

O External attacker has no knowledge of target system

O Attacks often build on human element — Social Engineering
® System access provided (External Attacker)

O Red team provided with limited access to system
® Models external attack

O Goal is to gain normal or elevated access
® Then violate policy

® Internal attacker
O Red team provided with authorized user access
O Goal is to elevate privilege / violate policy

INFSCI 2935: Introduction to Computer Security 23

Red Team Approach
Flaw Hypothesis Methodology:

® |Information gathering
OExamine design, environment, system functionality

® Flaw hypothesis

OPredict likely vulnerabilities -

® Flaw testing

ODetermine where vulnerabilities exist -

® Flaw generalization
OAttempt to broaden discovered flaws

® Flaw elimination (often not included)
OSuggest means to eliminate flaw

INFSCI 2935: Introduction to Computer Security

12

Problems with
Penetration Testing

® Nonrigorous
ODependent on insight (and whim) of testers
ONo good way of evaluating when “complete”
® How do we make it systematic?

OTry all classes of likely flaws
OBut what are these?

® \Vulnerability Classification!

INFSCI 2935: Introduction to Computer Security 25

Vulnerability Classification

® Goal: describe spectrum of possible flaws
OEnables design to avoid flaws
Olmproves coverage of penetration testing
OHelps design/develop intrusion detection

® How do we classify?
OBy how they are exploited?
OBy where they are found?
OBY the nature of the vulnerability?

INFSCI 2935: Introduction to Computer Security 26

13

Example flaw: xtermlog

® xterm runs as root
OGenerates a log file
OAppends to log file if file exists

® Problem: In/etc/passwd log_file
® Solution

if (access(“log_file”, W_OK) == 0)
fd = open(‘log_file”, O_WRONLY|O_APPEND)

® \What can go wrong?

INFSCI 2935: Introduction to Computer Security 27

Example: Finger Daemon
(exploited by Morris worm)

® finger sends name to fingerd

Ofingerd allocates 512 byte buffer on stack

OPlaces name in buffer

ORetrieves information (local finger) and returns
® Problem: If name > 512 bytes, overwrites return

address
® Exploit: Put code in “name”, pointer to code in

bytes 513+

OOverwrites return address

INFSCI 2935: Introduction to Computer Security 28

14

Vulnerability Classification:
Generalize

® xterm: race condition between validation
and use

® fingerd: buffer overflow on the stack

® Can we generalize to cover all possible
vulnerabilities?

INFSCI 2935: Introduction to Computer Security 29

RISOS:Research Into Secure Operati '
Systems (Seven Classes)
1.

Incomplete parameter validation

Check parameter before use
E.g., buffer overflow —

Inconsistent parameter validation

Different routines with different formats for same data

Implicit sharing of privileged / confidential data

OS fails to isolate processes and users

Asynchronous validation / inadequate serialization

Race conditions and TOCTTOU flaws

Inadequate identification /authentication / authorization

Trojan horse; accounts without passwords

Violable prohibition / limit

Improper handling of bounds conditions (e.g., in memory
allocation)

Exploitable logic error

Incorrect error handling, incorrect resource allocations etc.

INFSCI 2935: Introduction to Computer Security

15

Protection Analysis Model
Classes

® Pattern-directed protection evaluation
OMethodology for finding vulnerabilities

® Applied to several operating systems
ODiscovered previously unknown vulnerabilities

® Resulted in two-level hierarchy of
vulnerability classes
OTen classes in all

INFSCI 2935: Introduction to Computer Security 31

PA flaw classes

1. Improper protection domain initialization and
enforcement

a. domain: Improper choice of initial protection domain

b. exposed representations: Improper isolation of
implementation detail (Covert channels)

c. consistency of data over time: Improper change
d. naming: Improper naming (two objects with same name)
e. residuals: Improper deallocation or deletion

2. Improper validation validation of operands, queue
management dependencies:

3. Improper synchronization
a. interrupted atomic operations: Improper indivisibility
b. serialization: Improper sequencing

4. critical operator selection errors: Improper choice of
operand or operation

INFSCI 2935: Introduction to Computer Security

16

PA analysis procedure

® A pattern-directed protection evaluation
approach
OCollect known protection problems

OConvert these problems to a more formalized notation
(set of conditions)

OEliminate irrelevant features and abstract system-
specific components into system-independent
components (generalize raw patterns)

ODetermine relevant features of OS Code
OCompare features with generic error patterns

INFSCI 2935: Introduction to Computer Security 33

NRL Taxonomy

® Three classification schemes
OHow did it enter
OWhen was it “created”
OWhere is it

Genesis

Intentional

[Trapldoor] [Trojar; horse] ﬁ_ogic/tir;w boml] [Coverlchannel] [Other]

[Nonreplicating] [Replicating] [Timing] [Storage]

INFSCI 2935: Introduction to Computer Security 34

17

NRL Taxonomy (Genesis)

Inadvertent

Validation error (Incomplete/| nconsistent)

Domain error (including object re-use, residuals, and
exposed representation errors

Seridization/aliasing (including TCTTOU errors)

Boundary conditions violation (including resource
exhaustion and violable constraint errors)

Other exploitable logic error

INFSCI 2935: Introduction to Computer Security 35

NRL Taxonomy:
Time

Time of
introduction

[Development] [Maintenance] [Operation]

[I 1
Requirement

specification | [Source code| | Object code
design

INFSCI 2935: Introduction to Computer Security 36

18

NRL Taxonomy:

Location

[Software] [Hardware]
T

I
[Operating
System

1 1
] [Application] [Support]

System
initialization

—[Memory Management]

—[Device management]

[Process management
/ scheduling

File Management]—

_[

Identification /]
Authentication

Other /
Unknown

INFSCI 2935: Introduction to Computer Security

Privileged
Utilities

Unprivileged
Utilities

Aslam’s Model

® Attempts to classify faults
unambiguously
O Decision procedure to
classify faults
® Coding Faults
O Synchronization errors
® Timing window
® Improper serialization
O Condition validation errors
® Bounds not checked
® Access rights ignored
® Input not validated

® Authentication /
Identification failure

Emergent Faults
O Configuration errors
® \Wrong install location
® \Wrong configuration
information
® \Wrong permissions

O Environment Faults

INFSCI 2935: Introduction to Computer Security

19

Common Vulnerabilities and Exposurg
(cve.mitre.orq)

® Captures specific

Name CVE-1999-
vulnerabilities 0965
OStandard name Description | Race condition
OCross-reference to in xterm allows
CERT, etc. local users to
® Entry has three parts modify arbitrary
. files via the
OUnique ID . .
o logging option.
ODescription
OReferences References

*CERT:CA93.17
XF:xterm

INFSCI 2935: Introduction to Computer Security 39

Buffer Overflow

® As much as 50% of today’s widely
exploited vulnerability

® \Why do we have them

OBad language design

o usually C, C++ : note they are good from other
reasons

®Hence good programming practice is needed
@ Java is a safer language

OPoor programming

INFSCI 2935: Introduction to Computer Security 40

20

Buffer Overflow

® Some culprits
OString operations that do no argument checking
®strcpy () (most risky)

®gets() (very risky)
®scanf () (very risky)

void main(int argc, char **argv) { Better design
char buf[256]; dst = (char *)malloc(strlen(src) +1);
sscanf(argv[0],"%s", &buf) strcpy(dst, src);

Buffer overflow if the input is more than
256 characters

INFSCI 2935: Introduction to Computer Security a1

Courtesy of Professors
Chris Clifton & Matt Bishop

Intrusion Detection

INFSCI 2935: Introduction of Computer Security

21

Intrusion Detection/Response

® Characteristics of systems not under attack:

® Denning: Systems under attack fail to meet
one or more of the following characteristics

1. Actions of users/processes conform to statistically
predictable patterns

2. Actions of users/processes do not include sequences
of commands to subvert security policy

3. Actions of processes conform to specifications
describing allowable actions

— Denning: Systems under attack fail to meet
one or more of these characteristics

INFSCI 2935: Introduction to Computer Security 43

Intrusion Detection

® Idea: Attack can be discovered by one of the above
being violated
O Problem: Definitions hard to make precise
O Automated attack tools
® Designed to violate security policy
® Example: rootkits: sniff passwords and stay hidden
® Practical goals of intrusion detection systems:
O Detect a wide variety of intrusions (known + unknown)
O Detect in a timely fashion
O Present analysis in a useful manner
® Need to monitor many components; proper interfaces needed
O Be (sufficiently) accurate
® Minimize false positives and false negatives

INFSCI 2935: Introduction to Computer Security 44

22

IDS Types:
Anomaly Detection

® Compare characteristics of system with expected values
O report when statistics do not match
® Threshold metric: when statistics deviate from normal by
threshold, sound alarm
O E.g., Number of failed logins
@ Statistical moments: based on mean/standard deviation
of observations
O Number of user events in a system
O Time periods of user activity
O Resource usages profiles
® Markov model: based on state, expected likelihood of
transition to new states
O If a low probability event occurs then it is considered suspicious

INFSCI 2935: Introduction to Computer Security 45

Anomaly Detection:
How do we determine normal?

® Capture average over time

OBut system behavior isn’'t always average
® Correlated events

OEvents may have dependencies
® Machine learning approaches

OTraining data obtained experimentally

OData should relate to as accurate normal
operation as possible

INFSCI 2935: Introduction to Computer Security 46

23

IDS Types:
Misuse Modeling

® Does sequence of instructions violate security
policy?
OProblem: How do we know all violating sequences?
® Solution: capture known violating sequences
OGenerate a rule set for an intrusion signature

®But won't the attacker just do something different?
® Often, no: kiddie scripts, Rootkit, ...

® Alternate solution: State-transition approach

OKnown “bad” state transition from attack (e.g. use
petri-nets)

OCapture when transition has occurred (user > root)

INFSCI 2935: Introduction to Computer Security a7

Specification Modeling

® Does sequence of instructions violate
system specification?
OWhat is the system specification?

® Need to formally specify operations of
potentially critical code
Otrusted code

® Verify post-conditions met

INFSCI 2935: Introduction to Computer Security 48

24

IDS Systems

® Anomaly Detection
O Intrusion Detection Expert System (IDES) — successor is NIDES
O Network Security MonitorNSM
® Misuse Detection
O Intrusion Detection In Our Time- IDIOT (colored Petri-nets)
O USTAT?
O ASAX (Rule-based)
® Hybrid
O NADIR (Los Alamos)
O Haystack (Air force, adaptive)
O Hyperview (uses neural network)
O Distributed IDS (Haystack + NSM)

INFSCI 2935: Introduction to Computer Security 49

IDS Architecture

® Similar to Audit system
OLog events
OAnalyze log

® Difference:
Ohappens realtime - timely

® (Distributed) IDS idea:
OAgent generates log
ODirector analyzes logs
® May be adaptive
ONotifier decides how to handle result
® GrIDS displays attacks in progress

INFSCI 2935: Introduction to Computer Security

A
Agent
Host 1

25

Where is the Agent?

® Host based IDS
Owatches events on the host
OOften uses existing audit logs

® Network-based IDS

OPacket sniffing
OFirewall logs

INFSCI 2935: Introduction to Computer Security 51

IDS Problem

® IDS useless unless accurate
OSignificant fraction of intrusions detected
OSignificant number of alarms correspond to
intrusions
® Goal is
OReduce false positives
®Reports an attack, but no attack underway

OReduce false negatives
® An attack occurs but IDS fails to report

INFSCI 2935: Introduction to Computer Security 52

26

Intrusion Response

® Incident Prevention

O Stop attack before it succeeds

O Measures to detect attacker

O Example: Jailing (alsO Honepots)

® Make attacker think they are succeeding and confine to an area

® [ntrusion handling

O Preparation for detecting attacks

O Identification of an attack

O Contain attack

O Eradicate attack

O Recover to secure state

O Follow -up to the attack - Punish attacker

INFSCI 2935: Introduction to Computer Security 53

Containment

® Passive monitoring
OTrack intruder actions
OEases recovery and punishment
® Constraining access
ODowngrade attacker privileges
OProtect sensitive information
OWhy not just pull the plug?
OExample: Honepots

INFSCI 2935: Introduction to Computer Security 54

27

Eradication

® Terminate network connection
® Terminate processes

® Block future attacks
OClose ports
ODisallow specific IP addresses
OWrappers around attacked applications

INFSCI 2935: Introduction to Computer Security 55

Follow-Up

® L egal action
OTrace through network

® Cut off resources
ONotify ISP of action

® Counterattack
Ols this a good idea?

INFSCI 2935: Introduction to Computer Security

28

