
INFSCI 2935: Introduction to Computer Security
HW 5

Monday, November 3, 2003

1. Do Problem 12.10.2 (Score 20)

2. Programming Assignment (Score 100)

The programming assignment has three parts: Authentication, Signature, and Encryption.
It is strongly suggested that you do them in that order, especially if you do not have
previous Java experience.

Before beginning the assignment, you should familiarize yourself with using Java on a
SIS Unix machine (e.g., paradox.sis.pitt.edu). If you prefer, you can also use Java on your
own PC but you will need to download and install Java Software Development Kit
yourself.

Java is an object-oriented programming language. This means that you create classes of
objects. In Java, the name of a source file must match the name of the public class
defined and implemented in that file. So a class named ProtectedServer must be defined
and implemented inside a file named ProtectedServer.java.

All Java source code files end with .java extension. To compile a source file name
ProtectedServer.java, type the following at the command prompt:

javac ProtectedServer.java

If you have multiple source files in your project, you can compile all of them at once by
typing:

javac *.java

The compilation produces files with .class extension. The number of files produced is the
same as the number of classes that you have. The entry point of a Java program is the
main function, which is defined in one of the source files. So if your main function is
defined inside the ProtectedServer class in ProtectedServer.java file, you can execute
your program by typing:

java ProtectedServer

Note that you only specify the class name, without the .class extension.

For example, the first part of your assignment asks you to implement double-strength
password authentication. To run this part of the assignment, you should type in your first
command line window: “java ProtectedServer” to start the server. Then on the second

command line window, type: “java ProtectedClient” to start the client. You must start
the server first.

You will most likely need to consult Java API documentation. You can download and
install the documentation yourself, or you can access them from this URL:

http://java.sun.com/j2se/1.4.2/docs/api/index.html

For each part of the assignment, skeleton Java code has been provided. These skeletons
will NOT compile. You will need to make modifications on them before they can be
successfully compiled and run.

A) Authentication

For the first part of the assignment, you should use the skeleton Java code to implement
double-strength password login using message digest. There are three classes defined:

• Protection, which provides three functions makeBytes, makeDigest (version 1),
and makeDigest (version 2).

o makeBytes takes in a long integer and a double, then converts them into a
single byte array. makeBytes has already been implemented for you.

o makeDigest (version 1) takes in a byte array, a timestamp, and a random
number, then generates a digest using SHA. This function has already
been implemented for you.

o makeDigest (version 2) takes in a user name, a password, a timestamp, and
a random number, then generates a digest using SHA. You need to
implement this function. You may have to consult MessageDigest API in
the documentation.

• ProtectedClient, which implements the client. There are two functions: main and

sendAuthentication.
o main is the starting point of the client program and has already been

implemented for you. Make sure the host variable is set to the correct
server address (it is currently set to paradox.sis.pitt.edu).

o sendAuthentication is the function that you need to implement. It takes in
user name, password, and an output stream as the function inputs. In this
function, you should implement double-strength password authentication
and send to the server by writing to the variable ‘out’. Consult
DataOutputStream API on how to write different data types to ‘out’.

• ProtectedServer, which implements the server. There are three functions: main,

lookupPassword, and authenticate.
o main is the starting point of the server program and has already been

implemented for you. It creates a server process that waits for an
incoming connection. Once a connection is established, authenticate is

called to authenticate the user. If the user successfully authenticate, your
program should print out “Client logged in.”

o lookupPassword, which simply returns the password of the user stored on
the server.

o authenticate is the function which you need to implement to authenticate
the user trying to log in. Consult DataInputStream API on how to read
data from the ‘in’ stream. The function should return either true or false
depending on whether the user is authenticated.

B) Signature

In this part of the assignment, you are to implement the El Gamal Signature scheme
described in the textbook in section 10.6.2.2.

There are two classes in this assignment, ElGamalAlice and ElGamalBob, corresponding
to the sender (Alice) and the receiver (Bob). The main functions for both the classes have
been written for you. Your assignment is to write various functions that implement El
Gamal key generation and signature creation algorithms (for Alice), and signature
verification algorithm (for Bob). The functions you have to implement are indicated in
the source files.

C) Encryption

In the last part of the assignment, the client program CipherClient should (1) generates a
DES key and stores the key in a file, (2) encrypts the given String object using that key
and sends the encrypted object over the socket to the server. The server program
CipherServer then uses the key that was previously generated by the client to decrypt the
incoming object. The server obtains the key simply by reading it from the same file that
the client previously generated. The server should then print out the decrypted message.

For this part of the assignment, you will need to consult external sources and
documentations on how to generate a DES key, writing to or reading from a file, and
perform encryption/decryption of an object. Most of the needed information should be
available at:
http://java.sun.com/products/jce/doc/guide/API_users_guide.html

Submission: Submit all source files to the GSA via e-mail (rapst49@pitt.edu).

